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Abstract. We propose a new method for showing C1,α regularity
for solutions of the infinity Laplacian equation and provide full
details of the proof in two dimensions.

The proof for dimensions n ≥ 3 depends upon some conjectured
local gradient estimates for solutions of certain transformed PDE.

1. Introduction

This paper discusses the possible local C1,α regularity of viscosity
solutions u of the infinity Laplacian PDE

(1.1) −∆u := −uxi
uxj

uxixj
= 0

within an open region U ⊆ Rn. We refer the reader to the survey
paper by Aronsson, Crandall and Juutinen [A-C-J], which explains the
interest in this highly degenerate and highly nonlinear elliptic PDE, and
just note here that (1.1) arises as a sort of Euler-Lagrange equation for
a model problem in the “calculus of variations in the sup-norm”.

We say that u is “infinity harmonic” if u is a viscosity solution of
(1.1), the definition of which we next review.

Viscosity solutions, comparison with cones. Let us recall here
that a continuous function u is called a viscosity solution of the infinity
Laplacian PDE (1.1) provided for each smooth function φ,

(i) if u− φ has a local maximum at a point x0 ∈ U , then

−∆∞φ(x0) ≤ 0,

and (ii) if u− φ has a local minimum at a point x0 ∈ U , then

−∆∞φ(x0) ≥ 0.

We will in fact rarely invoke this characterization of viscosity so-
lutions, but rather the equivalent comparison with cones property, as
discussed in [C-E-G]. This states that for each open set V ⊆ U and
each point x0 /∈ V ,
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(i) if u ≤ c on ∂V for the cone c(x) = a|x− x0|+ b, then

u ≤ c within V ;

and (ii) if u ≥ c on ∂V for the cone c(x) = a|x− x0|+ b, then

u ≥ c within V.

In these formulas a and b are real numbers.

Differentiability, C1,α regularity. Since we can “touch the graph
of u from above and below by cones”, it is simple to show that bounded,
viscosity solutions of (1.1) are locally Lipschitz continuous within U
and are consequently differentiable almost everywhere.

Furthermore, some observations in [C-E-G] and [C-E] suggest that
u is in fact differentiable everywhere. These papers prove that if u is
infinity harmonic within say the unit ball B = B(0, 1), with u(0) = 0,
then given any small number λ > 0, there exists a small constant τ > 0
such that the rescaled function

uτ (x) :=
u(τx)

τ

satisfies
|uτ − eτ · x| ≤ λ‖u‖L∞(B)

for some appropriate vector eτ . The function u is consequently well
approximated by a linear functions at small length scales. Unfortu-
nately, this assertion alone does not mean u is necessarily differentiable
at 0, since the methods of [C-E-G], [C-E] definitely do not imply that
limτ→0 eτ exists. We have in particular no way to compare the differing
vectors eτ corresponding to approximation on differing length scales.

It therefore has been a major open problem to show an infinity har-
monic function is everywhere differentiable, and perhaps even C1. The
second author in [S] has recently proved C1 regularity in n = 2 di-
mensions, but with no estimate on the modulus of continuity of the
gradient Du.

This paper carries forward the regularity program by (i) proving
C1,α smoothness in n = 2 dimensions for some small α > 0, and (ii)
proposing a general scheme to establish C1,α for n ≥ 3 dimensions.
We are however not able to carry out all the steps of (ii) in general,
and need some as yet unproved gradient estimates for solutions of a
sequence of transformed PDE.

We discuss next our general strategy.

Approximation by planes. Almost all known methods for show-
ing C1,α regularity (or partial regularity) for a solution u of an elliptic
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PDE turn upon showing that if u(0) = 0 and if u is somehow approx-
imated by the linear mapping l = e · x on a small ball B(0, r), then u
can be better approximated by a slightly different linear mapping on
some smaller ball B(0, τr), where 0 < τ < 1.

The fundamental point is to show that the error in the approximation
improves by a multiplicative factor strictly less than one. Such an esti-
mate can then be iterated, thereby providing control on the differences
between the linear approximations at different length scales.

Typically such an assertion follows from a contradiction argument,
which investigates a sequence {vk}∞k=1 of isotropic rescalings of u about
the point 0. However naive versions of this procedure are known to
fail for the infinity Laplacian: see the discussion and counterexample
constructed in [E-Y].

We instead propose here a very highly anisotropic rescaling (2.5) and
blow-up procedure, replacing balls by thin cylinders, oriented along the
direction of the approximate gradient. We will need a small flatness
condition to begin our iteration, but this is a consequence of the con-
clusions of [C-E-G] and [C-E], cited above. The idea is to show that if
our solution u is sufficiently close to a plane in some cylinder, then it
is even closer, by a factor strictly less than one, to a slightly different
plane in a smaller and slightly tilted cylinder. That we must work in
such highly nonisotropic cylinders, rather than round balls, is forced
by the extremely degeneracy of our elliptic PDE (1.1).

To repeat, our method proves local C1,α regularity, provided we can
establish Lipschitz estimates for a certain sequence of appropriately
rescaled functions. These estimates unfortunately so far remain un-
proved for dimensions n ≥ 3. However, the last section of the paper,
due to the second author, proves the requisite estimates for n = 2
dimensions.

2. Rescaling and blow up

2.1 An example. To begin, let us consider in n = 2 dimensions
the square

Q := {|x1| ≤ 1, |x2| ≤ 1}
and solve the infinity-Laplacian PDE (1.1) in U := Q− (0, 0), subject
to the boundary conditions

u = x2 on ∂Q, u(0, 0) = λ,

for a small, positive number λ. It is not hard to see that the set
{u > x2} is approximately a vertical strip of width λ

1
2 .
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This example suggests that a perturbation of size λ influences a
solution only a distance λ

1
2 in a direction perpendicular to the gradient.

2.2 A model problem. Motivated by this example, consider now
in n ≥ 2 variables a solution u of the infinity Laplacian PDE in a region
containing the thin cylinder

(2.1) Qλ := {|x′| ≤ λ
1
2 , |xn| ≤ 1},

where λ > 0 is small. Here and hereafter we write

x = (x1, . . . , xn) = (x′, xn) for x′ = (x1, . . . , xn−1).

We normalize by assuming

(2.2) u(0) = 0.

We assume next the flatness condition that our solution u is very
close in the sup-norm to the plane xn:

(2.3) max
Qλ

|u− xn| ≤ λ.

Our additional Fundamental Assumption is that (2.3) implies for any
solution of the infinity Laplacian equation (1.1) the interior gradient
bounds

(2.4)

sup
1
2
Qλ

|D′u| ≤ Cλ
1
2 ,

sup
1
2
Qλ

|1− uxn| ≤ Cλ

for some constant C. Here

D′u := (ux1 , . . . , uxn−1)

denotes the gradient in the variables x′; and

1
2
Qλ := {|x′| ≤ 1

2
λ

1
2 , |xn| ≤ 1

2
}.

2.3 Rescaling and blow-up. Consider next a family of functions
{uk}∞k=1 which satisfy (2.2), (2.3) and (2.4) for a sequence λ = λk → 0.

Define then the highly nonisotropically rescaled functions

(2.5) vk(x) :=
1

λk

(uk(λ
1
2
k x′, xn)− xn),

which, owing to (2.3) and (2.4), are bounded within the standard cylin-
der

Q := {|x′| ≤ 1, |xn| ≤ 1}
and are uniformly Lipschitz continuous within

1
2
Q := {|x′| ≤ 1

2
, |xn| ≤ 1

2
}.
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Passing as necessary to a subsequence, we may therefore assume that
as λk → 0 we have

(2.6) vk → v,

uniformly in 1
2
Q.

2.4 The blown-up PDE. What PDE does v satisfy?

Theorem 2.1. The limit function v is a viscosity solution of the PDE

(2.7) −
n−1∑
i,j=1

vxi
vxj

vxixj
− 2

n−1∑
i=1

vxi
vxixn − vxnxn = 0

inside 1
2
Q.

Proof. Assume first that each function uk is smooth. Then according
to the rescaling (2.5),

vk
xi

= λ
− 1

2
k uk

xi
(λ

1
2
k x′, xn) (i = 1, . . . , n− 1),

vk
xn

= λ−1
k (uk

xn
(λ

1
2
k x′, xn)− 1),

and

vk
xixj

= uk
xixj

(λ
1
2
k x′, xn) (i, j = 1, . . . , n− 1),

vk
xixn

= λ
− 1

2
k uk

xixn
(λ

1
2
k x′, xn) (i = 1, . . . , n− 1),

vk
xnxn

= λ−1
k uk

xnxn
(λ

1
2
k x′, xn).

Since u solves the infinity Laplacian PDE (1.1), we have

0 = −uk
xi

uk
xj

uk
xixj

= −
n−1∑
i,j=1

λ
1
2
k vk

xi
λ

1
2
k vk

xj
vk

xixj

− 2
n−1∑
i=1

λ
1
2
k vk

xi
(1 + λkv

k
xn

)λ
1
2
k vk

xixn
− (1 + λkv

k
xn

)2λkv
k
xnxn

.

We divide by λk > 0 and then send λk → 0, thereby formally deriving
the limit PDE (2.7).

If the functions uk are not smooth, then standard viscosity solution
methods, using the foregoing calculations, let us rigorously derive that
the limit v is a viscosity solution of (2.7). We do not provide details
of this routine argument, other than to note that the definition of
viscosity solution lets us switch from the merely Lipschitz continuous
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v to a smooth function φ, for which the preceding calculations are
justified. �

2.5 Comparison with singular solutions. We next recast the
comparison with cones property for infinity harmonic functions into a
comparison property with certain singular solutions of the blown-up
PDE (2.7), having the form

(2.8) s(x) := axn +
|x′|2

2xn

for xn 6= 0,

for a ∈ R. A direct calculation shows that s does indeed solve (2.7)
where xn 6= 0.

Define for a fixed constant µ and small r > 0 the upper cylinder

(2.9) C+(r) := {|x′| ≤ µr, 0 ≤ xn ≤ r}
and the lower cylinder

(2.10) C−(r) := {|x′| ≤ µr,−r ≤ xn ≤ 0}.
We will always take r > 0 so small that C±(r) ⊂ 1

2
Q.

Theorem 2.2. Assume that v is a viscosity solution of (2.7) within
the cylinder 1

2
Q.

(i) If

v ≤ s on ∂C+(r),

then

v ≤ s within C+(r).

(ii) Similarly, if

v ≥ s on ∂C−(r),

then

v ≥ s within C−(r).

In other words, we have comparison from above by the singular solu-
tions s in the small upper cylinders C+(r), and comparison from below
in the lower cylinders C−(r).

Note that since s → ±∞ as xn → ±0 for x′ 6= 0, we need only check
the value of v(0) to see if v lies below or above s on ∂C±(r)∩{xn = 0}.
Furthermore, it makes no sense to talk about comparison from below
by s on C+(r) or from above on C−(r).

Proof. Since each infinity-harmonic function uk satisfies comparison
with cone functions of the form

c(x) := (1 + aλk)|x|,
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the rescaled functions vk, defined by (2.5), satisfy comparison with the
rescaled functions

ck(x) :=
1

λk

(c(λ
1
2
k x′, xn)− xn).

We consequently deduce that for xn > 0, the limit v satisfies com-
parison from above with the function

lim
k→∞

ck(x) := lim
k→∞

1

λk

(
(1 + aλk)(λk|x′|2 + x2

n)
1
2 − xn

)
= lim

k→∞

xn

λk

(
(1 + aλk)(1 + λk

|x′|2

x2
n

)
1
2 − 1

)
= axn +

|x′|2

2xn

= s(x).

We likewise see that v satisfies comparison with s from below if
xn < 0. �

3. Linear approximation

Our next goal is proving that a Lipschitz solution v of the blown-up
PDE

(3.1) −
n−1∑
i,j=1

vxi
vxj

vxixj
− 2

n−1∑
i=1

vxi
vxixn − vxnxn = 0

in 1
2
Q can on each small cylinder

τQ = {|x′| ≤ τ, |xn| ≤ τ}
be uniformly approximated by a linear function l = eτ · x. This is a
kind of analog of assertions from the earlier papers [C-E-G] and [C-E]
about infinity harmonic functions.

We assume hereafter the max-norm bound on the solution

(3.2) max
Q
|v| ≤ 1

and the interior gradient bound

(3.3) sup
1
2
Q

|Dv| ≤ C

for some constant C. We suppose also

(3.4) v(0) = 0.

Note that our blow-up limit from Section 2 satisfies these hypothesis,
provided the Fundamental Assumption is valid.



8 L C EVANS AND O SAVIN

3.1 Comparison with singular solutions. We start by modifying
from [C-E-G] and [C-E] some comparison with cones methods, but
working instead with the singular solutions introduced above at (2.8).

For small r > 0, define

(3.5) T+(r) := max
|x′|≤ 1

2

1

r

[
v(x′, r)− |x′|2

2r

]
and

(3.6) T−(−r) := max
|x′|≤ 1

2

1

r

[
−v(x′,−r)− |x′|2

2r

]
.

In view of (3.3) and (3.4), we have

(3.7) |T±(±r)| ≤ C;

and furthermore the maxima in (3.5), (3.6) are attained at points x′ =
x′(±r) satisfying

(3.8) |x′(±r)| ≤ Cr.

Theorem 3.1. (i) The mappings r 7→ T±(±r) are nondecreasing, and
consequently the limits

(3.9) T±(0) := lim
r→0

T±(±r)

exist.
(ii) Furthermore,

(3.10) T+(0) = T−(0).

We make no assertion about the sign of T+(0) = T−(0).

Proof. 1. Let µ > 0 be a large constant, to be selected later. Within
the upper cylinder C+(r), defined by (2.9), we set

s(x) := T+(r)xn +
|x′|2

2xn

.

This is a singular solution of (2.7), having the requisite form (2.8) to
which the comparison Theorem 2.2 applies.

On the top {xn = r} of the cylinder C+(r), the definition (3.5)
implies

v(x′, r) ≤ T+(r)r +
|x′|2

2r
= s(x′, r).

On the bottom {xn = 0}, we note that s ≡ ∞, except at 0. On the
vertical sides {|x′| = µr}, we have

v(x) ≤ −Cr +
µ2r

2
≤ T+(r)xn +

µ2r2

2xn

= s(x),
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provided we recall (3.3), (3.4) and (3.7) and fix µ sufficiently large.

According to Theorem 2.2, it follows that

v ≤ s

inside C+(r). In particular, if 0 < t < r, then

v(x′, t) ≤ s(x′, t) = T+(r)t +
|x′|2

2t

for |x′| ≤ µr. Hence

T+(t) ≤ T+(r),

and so r 7→ T+(r) is nondecreasing with r.

2. We similarly define the lower cylinder C−(r) by (2.10) and set

s(x) := T−(−r)xn +
|x′|2

2xn

for xn < 0. As above, we deduce w ≤ s inside C−(r), if µ is large
enough. For 0 < t < r, we therefore have

w(x′,−t) = −T−(−r)t− |x′|2

2t
≤ s(x′,−t)

for |x′| ≤ µr. It follows that

T−(−t) ≤ T−(−r);

and so r 7→ T−(−r) is nondecreasing with r. This proves assertion (i).

3. To prove (3.10), let us assume for later contradiction that

T−(0) > T+(0).

Select δ > 0 so small that

(3.11) T+(0)− T−(0) + 2δ < 0.

Next, take r0 so small that

(3.12) T+(r0) < T+(0) + δ.

Then

(3.13) v(x′, r0) ≤ (T+(0) + δ)r0 +
|x′|2

2r0

for all |x′| ≤ µr0.

4. We turn our attention now to the cylinder

C = C(r0, r) := {|x′| ≤ µr0,−r ≤ xn ≤ r0},
the small number r > 0 to be selected.
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Denote by x′(−r) a value of x′ where the maximum in (3.6) is at-
tained. So

(3.14) v(x′(−r),−r) = −rT−(−r)− |x′(−r)|2

2r
;

and according to (3.8) we may assume

|x′(−r)| ≤ Cr.

In view of (3.13), if r > 0 is small enough, then

v(x′, r0) ≤ v(x′(−r),−r) + (T+(0) + 2δ)(r0 + r) +
|x′ − x′(−r)|2

2(r0 + r)

on the top {xn = r0} of the cylinder C. We also observe that

v(x) ≤ v(x′(−r),−r) + (T+(0) + 2δ)(xn + r) +
|x′ − x′(−r)|2

2(xn + r)

on the vertical sides {|x′| = µr0}, again provided r is very small.
Thus from the comparison principle for v, we have

v(x) ≤ v(x′(−r),−r) + (T+(0) + 2δ)(xn + r) +
|x′ − x′(−r)|2

2(xn + r)
.

And then (3.14) implies

(3.15)

v(x) ≤ −rT−(−r) + (T+(0) + 2δ)(xn + r)

+
|x′ − x′(−r)|2

2(xn + r)
− |x′(−r)|2

2r

inside the cylinder C = C(r0, r).
Put x = 0, to deduce from (3.11) that

v(0) ≤ (−T−(−r) + T+(0) + 2δ)r < 0

if r is small enough, a contradiction to (3.4).

The case that

T−(0) < T+(0)

leads likewise to a contradiction. �

Remark. For future reference, we extract from this proof the asser-
tion that for any δ > 0, we can select r0 ≥ r1 > 0 (depending upon δ
and v) such that we have the bound from above:

(3.16)

v(x) ≤ −r1T
−(−r1) + (T+(0) + 2δ)(xn + r1)

+
|x′ − x′(−r1)|2

2(xn + r1)
− |x′(−r1)|2

2r1
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within the cylinder

{|x′| ≤ µr0,−r1 ≤ xn ≤ r0}.
Likewise, we can assume that for the same r0 ≥ r1 > 0, we have the

bound from below:

(3.17)

v(x) ≥ −r1T
+(r1) + (T−(0) + 2δ)(xn − r1)

+
|x′ − x′(r1)|2

2(xn − r1)
+
|x′(r1)|2

2r1

within the cylinder

{|x′| ≤ µr0,−r0 ≤ xn ≤ r1}.
�

3.2 Approximation by linear functions. We now show that we
can approximate v on a smaller cylinder

τQ = {|x′| ≤ τ, |xn| ≤ τ}
by a linear function l = eτ · x.

The idea will be to utilize the one-sided estimate (3.16), which for
small r bounds v from above by a smooth function of x. Since we can
employ (3.17) to similarly bound v from below by a different smooth
function, we will be able to build a two-sided linear approximation to
v near 0.

We continue to assume that v is a viscosity solution of the PDE (3.1),
satisfying (3.2), (3.3) and (3.4).

Theorem 3.2. Given any 0 < η < 1, there exists a constant

0 < τ ≤ 1

2
,

depending upon v and η, such that

(3.18) max
τQ

|v − eτ · x| ≤ ητ,

for some vector eτ satisfying

(3.19) |eτ | ≤ C1

for a constant C1.

Note that the scaling factor τ may depend upon the particular solu-
tion v: we will later remove this restriction.

Proof: 1. Define x′(−r) as in the previous proof, and write

y′(r) :=
x′(−r)

r
.
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Owing to (3.8), we have |y′(r)| ≤ C.

From the estimate (3.16), we see that for each small δ > 0 there exist
r0 ≥ r1 > 0 such that

(3.20)

v(r1x)

r1

≤ −T−(−r1) + T+(0) + 2δ

+ (T+(0) + 2δ)xn +
|x′ − y′(r1)|2

2(xn + 1)
− |y′(r1)|2

2

inside the cylinder

{|x′| ≤ µ
r0

r1

,−1 ≤ xn ≤
r0

r1

} ⊃ 1
2
Q,

the containment holding since r0 ≥ r1 and µ is large.
Define

w(x) := (T+(0) + 2δ)xn +
|x′ − y′(r1)|2

2(xn + 1)
− |y′(r1)|2

2
.

Then w(0) = 0 and

|Dw|, |D2w| ≤ C2 in 1
2
Q,

for a universal constant C2, which in particular does not depend upon
δ, r0 or r1. Consequently, (3.20) implies

(3.21) w(x) ≤ e · x + C2|x|2

for the vector e = Dw(0); and therefore

v(r1x)

r1

≤ −T−(−r1) + T+(0) + 2δ + e · x + C2|x|2 in 1
2
Q.

2. Now let σ > 0. Then

(3.22)
1

r1σ
v(r1σx)− e · x ≤ (−T−(−r1) + T+(0) + 2δ)σ−1 + C3σ

within the cylinder 1
2σ

Q.

Given η > 0, we first choose 0 < σ < 1
2

so small that

C3σ < η.

Now pick first δ > 0 and then r0 ≥ r1 > 0 so small (3.20) holds and
also

(−T−(−r1) + T+(0) + 2δ)σ−1 < η.

We conclude using estimate (3.22) that

(3.23)
1

r1σ
v(r1σx)− e · x ≤ 2η

within the cylinder 1
2σ

Q ⊃ Q.
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Invoking the estimate (3.17), we can similarly estimate from below
that

(3.24)
1

r1σ
v(r1σx)− e′ · x ≥ −2η

inside Q, for the same r1 but some possibly different vector e′.

3. Combining the inequalities (3.23) and (3.24), we deduce

(e′ − e) · x ≤ 4η

for all x ∈ Q; whence

(3.25) |e− e′| ≤ 4η.

If we now put
τ := r1σ, eτ := e,

then from (3.23), (3.24) and (3.25) we deduce that

max
τQ

|v − eτ · x| ≤ 6ητ.

�

Next, we employ a compactness argument to remove the restriction
that τ may depend upon our particular solution v:

Theorem 3.3. Given any 0 < η < 1, there exists a constant τ1(η) > 0
such that if v is a viscosity solution of the PDE (3.1), satisfying (3.2)–
(3.4), then for some

(3.26) 0 < τ1(η) < τ <
1

2
,

we have the estimate

(3.27) max
τQ

|v − eτ · x| < ητ,

for a vector eτ ∈ Rn satisfying

(3.28) |eτ | ≤ C1.

Proof. Assume the statement above is false for some η > 0. Then
we can find a sequence of τk → 0 and corresponding functions vk that
satisfy the hypothesis of the Theorem, but for which the conclusion is
false for all values of τk < τ < 1

2
.

We may assume the functions vk converge uniformly in Q to a func-
tion v∗. Then v∗ satisfies the hypotheses of Theorem 3.2, according to
which

(3.29) |v∗ − e∗ · x| < τ ∗η in τ ∗Q,
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for some small 0 < τ ∗ ≤ 1
2
. If k is large, then vk satisfies (3.29) as well;

and this is a contradiction. �

4. Improving flatness, C1,α regularity.

4.1 Improved flatness in tilted cylinders. Now assume that
within a narrow cylinder the infinity harmonic function u differs from
a linear function l = e · x in the sup-norm by no more than a small
number λ. We will show that on a smaller and possibly tilted cylinder,
the distance of u in the sup-norm to a slightly different linear function
is less than 1

2
λ.

In particular, the linear approximation of u on the smaller cylin-
der improves by a factor strictly less than one. As explained in the
introduction, this is the key point.

Notation. (i) Given a nonzero vector e ∈ Rn and a, b > 0, we define

Q(e, a, b) :=

{
x ∈ Rn | |x · e

|e|
| ≤ a; |x− x · e

|e|2
e| ≤ b

}
to be the cylinder with center 0, axis e, height 2a and radius b.

(ii) In this notation

Qλ = {|xn| ≤ 1, |x′| ≤ λ
1
2} = Q(en, 1, λ

1
2 )

for the coordinate vector en = (0, . . . , 0, 1).
(iii) We define as well the isotropic rescalings about the origin:

(4.1) uτ (x) :=
u(τx)

τ
.

Fundamental Assumption. We repeat our primary assumption,
that the flatness condition

(4.2) max
Qλ

|u− xn| ≤ λ

implies for any viscosity solution of the infinity Laplacian PDE (1.1)
the gradient bounds

(4.3)

sup
1
2
Qλ

|D′u| ≤ Cλ
1
2 ,

sup
1
2
Qλ

|1− uxn| ≤ Cλ

for some constant C.

Given this hypothesis, here is our main assertion about improved
linear approximation:
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Theorem 4.1. Suppose the above Fundamental Assumption.
There exist constants λ0 > 0 and 1

2
> τ0 > 0 such that if

(4.4) 0 < λ ≤ λ0,

u is infinity harmonic, u(0) = 0, and

(4.5) |u− e · x| ≤ λ in the cylinder Q(e, 1, λ
1
2 ),

for some vector e of length

1

2
≤ |e| ≤ 2,

then for some scaling factor

(4.6) 0 < τ0 < τ < 1
2
,

the rescaled function uτ satisfies

(4.7) |uτ − eτ · x| ≤ λ/2 in the cylinder Q(eτ , 1, (
λ
2
)

1
2 ),

for a vector eτ satisfying

(4.8) |eτ − e| ≤ Cλ
1
2 .

Proof. 1. Assume first that e is a unit vector, say e = en =
(0, . . . , 0, 1). Suppose

|u− xn| ≤ λ in Q(en, 1, λ
1
2 ) = Qλ.

We will show in this case that

(4.9) |uτ − eτ · x| ≤ λ/16 in Q(eτ , 1, λ
1
2 )

for some appropriate vector eτ , provided λ is sufficiently small.

2. Suppose this assertion is false, no matter how small λ is. Then
for a sequence λk → 0 there exist infinity harmonic functions uk such
that uk(0) = 0 and

|uk − xn| ≤ λk in Qλk
,

but for which (4.9) fails.

Rescale each uk according to (2.5). In light of the Fundamental
Assumption, the rescaled functions vk are uniformly Lipschitz contin-
uous in 1

2
Q, and so have a subsequence that converges uniformly to a

function v that satisfies the hypothesis of Theorem 3.3.

Let C1 be the constant from Theorem 3.3 and take η = 1
C132

. Then

for small enough λk and for some 1
2

> τk ≥ τ0 := τ1(η)
2C1

> 0, we have

| 1

λk

[(uk(λ
1
2
k x′, xn)− xn)− eτk

· x| ≤ τk/16
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in 2C1τkQ, for some vector eτk
= (e′, en) satisfying |eτk

| ≤ C1.

Therefore

|uk(x)− (λ
1
2
k e′, 1 + λken) · x| ≤ τkλk/16

in Q(en, 2C1τk, 2C1τkλ
1
2
k ). Restating this last estimate, we have

|uk
τk

(x)− ek · x| ≤ λk/16

in Q(en, 2C1, 2C1λ
1
2
k ), where

ek := (λ
1
2
k e′, 1 + λken).

Since |eτk
| ≤ C1 and we can assume C1 ≥ 1, it follows that

Q(ek, 1, λ
1
2
k ) ⊂ Q(en, 2C1, 2C1λ

1
2
k );

We consequently derive a contradiction.

This proves (4.9), and consequently the Theorem in the case that e
is a unit vector.

3. For the general case that 1/2 ≤ |e| ≤ 2, we observe that the
rescaled function

ũ(x) :=
2

|e|
u(x/2)

satisfies the hypothesis of the Theorem for the unit vector e/|e| and
4λ. That is,

|ũ(x)− e

|e|
· x| ≤ 4λ in Q(e, 1, (4λ)

1
2 ).

By Steps 1 and 2 of the proof above, there exists τ0 < τ < 1
2

such
that

|ũτ (x)− eτ · x| ≤ λ/4 in Q(eτ , 1, (4λ)
1
2 ))

for some vector eτ satisfying

|eτ −
e

|e|
| ≤ Cλ

1
2 .

We conclude that

|uτ/2(x)− e τ
2
· x| ≤ |e|λ/4 ≤ λ/2

in Q(e τ
2
, 1, (λ/2)

1
2 ), where

e τ
2

:= |e|eτ .

And we have the required estimate

|e τ
2
− e| ≤ Cλ

1
2 .

�
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4.2 Local C1,α regularity. Finally we iterate the preceding asser-
tion about improvement of linear approximations:

Theorem 4.2. Let λ0 be the constant from Theorem 4.1, and assume

(4.10) |u− e · x| ≤ |e|λ0 in Q(e, 1, λ
1
2
0 ).

Then

(4.11) |Du(x)−Du(0)| ≤ C|e||x|β,

for constants C > 0 and 0 < β < 1.

Proof: Without loss of generality, we may suppose |e| = 1.

1. We apply Theorem 4.1 repeatedly, to find scaling factors

0 < . . . rk < · · · < r1 < r0 = 1,

such that

(4.12) τ0 ≤
rk+1

rk

≤ 1

2
,

for which the rescaled functions urk
satisfy the estimates

(4.13) |urk
− erk

· x| ≤ λk in the cylinders Q(erk
, 1, λ

1
2
k )

for λk := 2−kλ0 and vectors erk
satisfying

(4.14) |erk
− erk−1

| ≤ Cλ
1
2
k .

2. Applying the Fundamental Assumption to the infinity harmonic
functions urk

, we find

|Durk
(x)−Durk

(0)| ≤ Cλ
1
2
k

for |x| ≤ 1
2
λ

1
2
k . In view of (4.12), this implies

|Du(x)−Du(0)| ≤ C12
−k/2,

for |x| ≤ Cτ k
0 2−k/2; and estimate (4.11) follows. �

We next observe that for each point in our domain, we can achieve
the starting flatness condition (4.10), if we look on a sufficiently small
length scale. This follows from the next lemma, which follows from
[C-E].

Lemma 4.3. There exist a universal constant τ1 > 0, such that if u is
infinity harmonic in the unit ball B := B(0, 1) ⊂ Rn,

|u| ≤ 1
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and
u(0) = 0,

then there exists

τ1 ≤ τ ≤ 1

2
,

such that

(4.15) max
B

|uτ − e · x| ≤ λ0

4
‖u‖L∞(B).

for the rescaled function uτ and some vector eτ satisfying

(4.16) |eτ | ≤ C‖u‖L∞(B).

Notice carefully that this Lemma says that u can be well approx-
imated by a linear mapping on sufficiently small balls, although our
iteration procedure above works on small cylinders.

Next is the key assertion of local C1,α regularity.

Theorem 4.4. Suppose that the Fundamental Assumption holds. Let
u be infinity harmonic in the unit ball B ⊂ Rn, with the bound

|u| ≤ 1.

Then

(4.17) |Du(x)−Du(0)| ≤ C|x|α

for constants C and α > 0.
In particular, u is C1,α in the interior of B.

Proof: 1. We repeatedly apply Lemma 4.3, to find scaling factors

0 < . . . sk < · · · < s1 < s0 = 1,

such that

τ1 ≤
sk+1

sk

≤ 1

2
,

for which the rescaled functions usk
satisfy

(4.18) ‖usk+1
− esk+1

· x‖L∞(B1) ≤
λ0

4
‖usk

‖L∞(B1).

for vectors esk+1
satisfying

|esk+1
| ≤ C‖usk

‖L∞(B1)

Observe also that if

(4.19) |esk+1
| ≤ 1

4
‖usk

‖L∞(B1),

then

‖usk+1
‖L∞(B1) ≤

1

2
‖usk

‖L∞(B1).
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2. Suppose first that (4.19) holds for all k = 1, 2, . . . . Then if

sk+1/2 ≤ |x| ≤ sk/2,

we have

(4.20) |Du(x)| ≤ C‖usk
‖L∞(B1) ≤ C2−k ≤ C|x|α

for some appropriate α > 0; and the Theorem is proved in this case.

3. In the case when (4.19) is not always satisfied, let k denote the
first index for which (4.19) fails; so that

|esk+1
| > 1

4
‖usk

‖L∞(B1).

This and (4.18) imply

‖usk+1
− esk+1

· x‖L∞(B1) ≤ λ0|esk+1
|.

We can therefore apply Theorem 4.2 to usk+1
. We deduce that for

all x ∈ B1,

|Du(sk+1x)−Du(0)| ≤ C‖usk
‖L∞(B1)|x|β

≤ C2−k|x|β ≤ C|sk+1x|β.

And from Steps 2 above, we see that (4.20) holds also for |x| ≥ sk+1.
The Theorem is proved. �

5. Two dimensions

In this section we verify that the Fundamental Assumption, and
therefore C1,α regularity, holds in

n = 2

dimensions. The following arguments are due to the second author and
sharpen some insights from his earlier paper [S].

Definition: The plane p := a + e · x is called a crossing tangent
plane for u in an η-neighborhood of 0 if either the open set {u > p} or
the open set {u < p} has at least two distinct connected components
which intersect the disk B(0, η).

The paper [S] proves

Theorem 5.1. Let u be infinity harmonic in a convex domain U ⊂ R2

and assume u is not identically equal to a plane in an η-neighborhood
of 0.

Then u admits a crossing tangent plane in an η-neighborhood of 0.

The next estimates improves and simplifies the results of Proposition
2.4 of [S], to verify the Fundamental Assumption.



20 L C EVANS AND O SAVIN

Theorem 5.2. Assume

(5.1) |u− x2| ≤ λ in Qλ.

(i) Suppose the plane P of slope e = (e1, e2) is a crossing tangent
plane in a small η-neighborhood of 0. Then for some constant C we
have the estimates

(5.2) |e1| ≤ Cλ
1
2 and |e2 − 1| ≤ Cλ.

(ii) Furthermore,

(5.3) |ux1| ≤ Cλ
1
2 , |ux2 − 1| ≤ Cλ in 1

2
Qλ

for some constant C.

Proof: 1. It is easy to show that

(5.4) |e| ≤ 1 + Cλ

for a constant C.

Next we assume for later contradiction that both of the following
inequalities hold:

(5.5) 1− e2 ≥ C1λ, |e1| ≤ C−1
1 λ−1/2(1− e2),

the large constant C1 to be chosen later.

2. We now claim that

(5.6) e · x ≤ x2 − λ if x2 ≥ 2C−1
1 , |x1| ≤ λ

1
2

and

(5.7) e · x ≥ x2 + λ if x2 ≤ −2C−1
1 , |x1| ≤ λ

1
2 .

To see this, note that

x2 − e · x = −e1x1 + (1− e2)x2

≥ −λ
1
2 |e1|+ (1− e2)x2

≥ (1− e2)(x2 − C−1
1 )

≥ λ

provided x2 ≥ 2C−1
1 . Similarly

x2 − e · x ≤ −λ,

provided x2 ≤ −2C−1
1 .

The inequalities (5.6) and (5.7) imply that

{x2 ≥ 4C−1
1 } ⊂ {u > p}

and
{x2 ≤ −4C−1

1 } ⊂ {u < p}.
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x2=δ

x2=-δ

u>p

L

x1=λ1/2

Figure 1. The regions where u > p

Let δ > 0 be a small number, to be determined later. We now fix
the constant C1 in (5.5) so large that

(5.8) {x2 ≥ δ} ⊂ {u > p}

and

(5.9) {x2 ≤ −δ} ⊂ {u < p}.

3. Since p := a+e ·x is a crossing tangent plane, either the open set
{u > p} or the open set {u < p} has at least two distinct connected
components that intersect the small ball B(0, η). Consequently we can
find a connected component of, say, {u > p} that is included in |x2| < δ.

Notice that this component cannot be compactly included in |x1| <
λ

1
2 , since otherwise we would contradict the comparison principle. There-

fore this connected component of {u > p} contains a polygonal line L,
that starts from an η-neighborhood of the origin and ends, say, on the
line segment {x1 = λ

1
2 , |x2| < δ}. See Figure 1.

4. Denote by S the strip

S := {λ
1
2 /4 ≤ x1 ≤ 3λ

1
2 /4} × {|x2| ≤ 1}.

Let U be the connected component of {u > p} in S that contains
{x2 ≥ δ}. Note that L ∩ S ⊂ S \ U .

5. We are next going to compare u with a suitable cone function v
in S \ U .
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Consider the family of cones with vertex at y = yδ := (λ
1
2 /2,−10δ),

height y2 + λ and slope c. That is, define

vy,c(x) := y2 + λ + c|x− y|.

We now claim that for

c0 = 1− λ

δ
,

the cone function v0 = vy,c0 satisfies

(5.10) v0 > x2 + λ on ∂S ∩ {x2 ≤ δ}
and

(5.11) v0 < x2 − λ on the segment {(λ 1
2 /2, x2) | |x2| ≤ δ}.

To prove (5.10), observe that v0(x) > x2 + λ, provided

c0 >
x2 − y2

|x− y|
.

This holds if the angle α between x−y and the positive x2 axis satisfies

(5.12) cos α < 1− λ

δ
.

Now points in the set ∂S ∩ {x2 ≤ δ} satisfy

(5.13) tan α ≥ 1

11δ

λ
1
2

4
:

see Figure 2.
Consequently, the assertion (5.10) follows if (5.13) implies (5.12).

This is indeed so, if we fix δ to be small enough.

To prove the upper bound (5.11), note that if x2 ≥ y2 = −10δ, then

v0(λ
1
2 /2, x2) = y2 + λ + c0(x2 − y2).

Consequently, (5.11) holds provided

y2 + λ + (1− λ

δ
)(x2 − y2) < x2 − λ.

And this is valid for |x2| ≤ δ.

6. Now we compare the cones vy,c with the solution u in the region
S \ U .

When c > 1, v is above u. Decrease c continually until v touches u
restricted to ∂(S \ U) for the first time, at a point x∗. Denote by c∗

the value of c for which this happens.
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x2=δ
x2=-δ

y

x1=3/4 λ
1/2

x1=1/4 λ
1/2

x

α

Figure 2. The angle α

According to (5.10) and (5.11), we have

c∗ > c0.

Therefore
x∗ ∈ {|x2| < δ, λ

1
2 /4 < x1 < 3λ

1
2 /4}.

Now

(5.14) vy,c∗(x
∗) = u(x∗) = p(x∗),

and
vy,c∗ ≥ u on [y, x∗] ∩ (S \ U).

[y, x∗] denoting the line segment from y to x∗.

7. Let z be a point of intersection of the polygonal line L with the
segment [y, x∗]. Then

(5.15) vy,c∗(z) ≥ u(z) > p(z).

From (5.14), (5.15) we find

e · x∗ − y

|x∗ − y|
> c∗ > c0.

Since
λ

1
2

δ
|e1|+ e2 ≥ e · x∗ − y

|x∗ − y|
,
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we can employ (5.5) to find

1− e2

C1δ
+ e2 ≥ 1− λ

δ
.

Therefore
λ

δ
≥ (1− e2)(1−

1

C1δ
) ≥ C1λ(1− 1

C1δ
).

But this is a contradiction if C1 is chosen large enough.

8. Consequently, (5.5) is false, and therefore at least one of the two
stated inequality fails. In either case, it follows that

(5.16) e2 ≥ 1− C1λ− C1λ
1
2 |e1|.

But then (5.4) implies

e2
1 ≤ (1 + C1λ)2 − e2

2

≤ Cλ + (1 + e2)(1− e2)

≤ Cλ + Cλ
1
2 |e1|;

whence
|e1| ≤ Cλ

1
2 .

Then (5.16) and (5.4) yield the inequality

|1− e2| ≤ Cλ.

We have at last proved estimate (5.2); and the paper [S] shows that
(5.2) then implies the gradient bounds (5.3). �

Theorem 5.2 confirms that the Fundamental Assumption is valid for
n = 2 dimensions. We may therefore invoke the theory from Sections
2-4, to establish:

Theorem 5.3. There exists a constant α > 0 such that if u is a
bounded viscosity solution of the infinity Laplacian PDE infinity Lapla-
cian PDE in a open set U ⊆ R2, then

u ∈ C1,α
loc (U).

Furthermore, for each open set V ⊂⊂ U , there exists a constant C,
depending only on V , such that

(5.17) ||u||C1,α(V ) ≤ C||u||L∞(U).
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