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1. Introduction

In this expository article we describe various properties in parallel for minimal
surfaces and minimizers of the Ginzburg-Landau energy

J(u) =
ˆ

1
2
|∇u|2 +W (u) dx

where W is a double-well potential with minima at ±1. Our goal is to present sev-
eral results in both settings together with their common underlying ideas. Special
interest is given to flatness theorems and their application to the regularity theory
of minimal surfaces and 1D symmetry of global minimizers.

We start by briefly explaining the close relation between minimal surfaces and
level sets of minimizers of J . Consider a minimizers u of J which is bounded by −1
and 1. The classical double-well potential W to have in mind is W (s) = 1

4 (1−s2)2.
In order for our ideas to become more transparent, later we will consider the dis-
continuous potential W (s) = χ(−1,1)(s), where χ(−1,1) represents the characteristic
function of the interval (−1, 1).

The behavior of u in large domains is given by the behavior of the rescaled
functions uε in B1,

uε(x) := u(
x

ε
).

If u minimizes J in the ball B 1
ε

then uε minimizes the rescaled energy Jε in B1

Jε(v) :=
ˆ

B1

ε

2
|∇v|2 +

1
ε
W (v) dx.

We continue with a heuristic discussion about minimizers of Jε. For a given
function v, the main contribution in Jε(v) comes from the potential energy which
is minimized when v equals either 1 or −1. Instant jumps from a region where
v = 1 to a region where v = −1 are not allowed since the kinetic energy

´
ε
2 |∇v|2

would become infinite. However, it is useful to notice that if instead of the Dirichlet
integral we would have the BV norm

´
ε|∇v| then such jumps are allowed and in

this case the energy is minimized when the jumps occur along a minimal surface.
Clearly ˆ

B1

ε

2
|∇v|2 +

1
ε
W (v) dx ≥

ˆ

B1

√
2W (v)|∇v| dx,

and using the co-area formula

|∇v| dx = dHn−1({v=s})ds
1
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the inequality becomes

Jε(v) ≥
ˆ 1

−1

√
2W (s)Hn−1({v = s})ds.

The energy Jε is then minimized by the function v if every level set is a minimal
surface and we have equality in the inequality above i.e |∇v| = 1

ε

√
2W (v). This

last equality gives

v(x) = g0(
dΓ(x)
ε

),

where dΓ(x) represents the sign distance to the 0 level set Γ := {u = 0} and g0 is
the solution to the ODE

g′0 =
√

2W (g0), g0(0) = 0.

The function g0 is in fact the unique minimizer of J in 1D which is increasing.
In general the level sets of a function v as above cannot be all minimal sur-

faces. However, if for example the 0 level set Γ is minimal then the s-level sets
are essentially minimal as long as s is not too close to ±1 and ε is small. On the
other hand when s is close to ±1 the weight

√
2W (s)ds becomes negligible. Thus

such a function is “almost” a minimizer for Jε. This suggests that the level sets of
minimizers of Jε converge to a minimal surface as ε → 0. The rigorous statement
was proved by Modica in [12].

Theorem [Modica] There exists a subsequence εk → 0 such that

uεk → χE − χCE in L1
loc(B1)

and E is a set with minimal perimeter in B1 (i.e ∂E is a minimal surface).

From the discussion above we see that in general the converse is also true i.e
given a minimal surface ∂E we can find a sequence of minimizers uε converging to
χE − χCE . Therefore minimal surfaces and minimizers of Jε should have similar
properties at least for small ε.

In Section 3 we will obtain as a consequence of the density estimates for mini-
mizers that the convergence in the theorem above is in fact stronger than L1

loc i.e.
the level sets of uεk converge uniformly on compact sets to ∂E. Going back to a
global minimizer u of J , this implies that the blow-down sets εk{u = 0} converge
uniformly to a minimal surface. It is a difficult problem to understand how well the
original level set {u = 0} can be approximated by a minimal surface. For example
in the case when ∂E = {xn = 0} it is not clear wether or not {u = 0} stays at a
bounded distance from ∂E. Also, given a nontrivial global minimal surface ∂E it
is not evident if there exists at least one minimizer for which {u = 0} stays at a
bounded distance from ∂E. Such an example was given by Del Pino, Kowalczyk
and Wei (see [6]) in dimension 9 which is the first dimension for which a nontrivial
global minimal graph exists.

2. Minimal Surfaces

A very good reference for this section is the book of Giusti [11] where minimal
surfaces are discussed in detail. Here we will introduce minimal surfaces and briefly
discuss density estimates and monotonicity formula. Our goal is to give a different
proof of the flatness theorem than the one of De Giorgi that appears in [11].
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The approach of De Giorgi to studying minimal surfaces is to view them as
boundaries of sets. Given a measurable set E we define the perimeter of E in an
open set Ω ⊂ Rn as the total variation of ∇χE in Ω, i.e.

PΩ(E) =
ˆ

Ω

|∇χE | = sup
∣∣∣∣
ˆ

E

div g dx

∣∣∣∣
where the supremum is taken over all vector fields g ∈ C1

0 (Ω) with ‖g‖L∞ ≤ 1.
We simply write P (E) for the perimeter of E in Rn. Clearly, if E is a set with

C1 boundary then P (E) coincides with the classical notion of area of ∂E. A set E
which has locally finite perimeter is called a Caccioppoli set.

We say that a Caccioppoli set E has minimal perimeter in B1 if

PB1(E) ≤ PB1(F )

for any set F which coincides with E outside B1. The Plateau problem of finding
a minimal surface in B1 subject to boundary conditions can be thought in the
following way:

Minimize P (E) among all sets E with E ∩ CB1 = L ∩ CB1

where L is a given Caccioppoli set. This set L gives the boundary condition for
the minimal surface and its shape outside a neighborhood of ∂B1 clearly does not
affect the minimizer E in B1. Existence of a minimizer follows easily from the
compactness of BV functions in L1. Below we give some important properties of
such minimizers.

Compactness of minimizers. If En is a sequence of minimal sets in B1 then
there exists a subsequence Enk that converges to a minimal set E i.e

χEnk → χE in L1
loc(B1).

Density estimates. Assume that E has minimal perimeter in B1 and 0 ∈ ∂E.
Since E is merely a measurable set by 0 ∈ ∂E we understand that for any ε > 0 we
have |Bε∩E| > 0 and |Bε∩CE| > 0. Then there exists a constant c > 0 depending
only on the dimension n such that for all r ∈ (0, 1)

|E ∩Br|
|Br| > c,

|CE ∩Br|
|Br| > c.

We sketch the proof. Minimality implies

PB1(E) ≤ PB1(E \Br)
or

PBr (E) ≤ Hn−1(E ∩ ∂Br)
hence

P (E ∩Br) ≤ 2Hn−1(E ∩ ∂Br).
We denote V (r) = |Br ∩ E| and we use the isoperimetric inequality

cV (r)
n−1
n ≤ P (E ∩Br)

to obtain
cV (r)

n−1
n ≤ V ′(r)

or
c ≤ (V

1
n (r))′

from which the first density estimate follows.
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Monotonicity formula. Assume E is minimal and 0 ∈ ∂E. Then

ΦE(r) =
PBr (E)
rn−1

is increasing in r. Moreover, ΦE is constant if and only if E is a cone, i.e λE = E
for any λ > 0. For simplicity we sketch the proof in the case when ∂E is smooth.

Notice that Φ is invariant under dilations i.e

ΦλE(λr) = ΦE(r)

thus it suffices to show that Φ′E(1) ≥ 0 and that E minimizes the perimeter in a set
that contains B1. Consider the set F which coincides with E outside B1, contains
a dilation of E in B 1

1+ε
and is radial between B1 and B 1

1+ε
, i.e

χF (x) =





χE(x) 1 < |x|,
χE( x

|x| )
1

1+ε ≤ |x| ≤ 1,

χE((1 + ε)x) |x| < 1
1+ε .

The inequality P (E) ≤ P (F ) gives

PB1(E) ≤ (1 + ε)−(n−1)PB1(E) + PB1\B 1
1+ε

(F ).

We let ε→ 0 and obtain

(n− 1)PB1(E) ≤ Hn−2(∂E ∩ ∂B1).

On the other hand

Φ′(1) =
ˆ

1√
1− (x · ν(x))2

dHn−2
∂E∩∂B1

− (n− 1)PB1(E),

where ν(x) represents the normal to E at x. Clearly we obtain Φ′(1) ≥ 0 with
equality if and only if x · ν(x) = 0 for all x ∈ ∂E ∩ ∂B1.

Minimal cones. Assume E is a minimal set and 0 ∈ ∂E. Using compactness
we see that there exists a sequence of blowup sets

Ek :=
1
εk
E

with εk → 0 that converges in L1
loc to a global minimal set C. From density

estimates it follows that 0 ∈ ∂C. Monotonicity formula implies that ΨC is constant
with value limr→0 ΨE(r), hence C is a minimal cone. We say that C is a tangent
cone to E at 0.

The minimal surfaces ∂Ek converge in any compact set to ∂C in the Hausdorff
distance. Indeed, if x0 ∈ ∂Ek is at distance δ from ∂C, then from the density
estimates we find ˆ

Bδ(x0)

|χEk − χC | ≥ c|Bδ|.

Now the claim follows from the convergence of Ek to C in L1
loc.

Simons proved that up to dimension n ≤ 7 the only global minimal cones ∂C
(and in fact the only global minimal surfaces) are the hyperplanes. Also it turns
out that except on a small set of Hausdorff dimension n− 8, the points of ∂E have
hyperplanes as tangent cones.
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Flatness theorems. In the remaining of this section we show how to “recover”
smoothness of ∂E near a point that has a half-space as a tangent cone at 0 ∈ ∂E.
At this point it is not clear wether different sequences of blow-ups of E converge
or not to the same limit. In view of the discussion above it suffices to prove the
following flatness theorem.

Theorem [De Giorgi] Assume E is minimal in B1, 0 ∈ ∂E and

∂E ∩B1 ⊂ {|xn| ≤ ε0}
with ε0(n) small depending only on n. Then ∂E is an analytic surface in B1/2.

The difficulty of the theorem lies in the fact that ∂E cannot be written as a
graph. De Giorgi’s proof used monotonicity formula and approximation of ∂E by
harmonic functions. We will give a proof based on Harnack inequality and viscosity
solutions methods. First we give a different version of the theorem above known as
improvement of flatness.

Theorem [Improvement of flatness] Assume E is minimal in B1, 0 ∈ ∂E and

∂E ∩B1 ⊂ {|xn| ≤ ε}
with ε ≤ ε0(n). Then there exists a unit vector ν1 such that

∂E ∩Br0 ⊂ {|x · ν1| ≤ ε

2
r0},

where r0 is a small universal constant.

This theorem implies that ∂E is a C1,α graph in B3/4. To see this we apply the
theorem inductively and we obtain unit vectors νk such that

∂E ∩Brk0 ⊂ {|x · νk| ≤
ε

2k
rk0}.

This gives
|νk+1 − νk| ≤ C(r0)

ε

2k
hence νk → ν(0) and moreover

|νk − ν(0)| ≤ C ε

2k
.

We obtain
∂E ∩Brk0 ⊂ {x · ν(0) ≤ C ε

2k
rk0 = Cεr

k(1+α)
0 },

which implies that ∂E is a differentiable surface at 0 with normal ν(0). Applying
this argument at all points in ∂E ∩B3/4 we see that ∂E is in fact a C1,α surface.

Once the surface is a C1,α graph, then we can apply Schauder’s estimates for
the minimal surface equation satisfied by the graph and obtain that in B1/2, ∂E is
smooth and in fact analytic.

The flat setting allows us to obtain the improvement of flatness theorem from
the following weaker result.

Theorem [Harnack inequality] Assume E is minimal in B1 and

∂E ∩B1 ⊂ {|xn| ≤ ε}
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with ε ≤ ε1(n). Then ∂E ∩ B1/2 is either included in {xn ≤ ε(1 − η)} or in
{xn ≥ −ε(1− η)}, where η > 0 is a small universal constant.

Assume for the moment that Harnack inequality holds. We will prove the im-
provement of flatness theorem by compactness.

Assume by contradiction the statement is not true. Then we can find a sequence
of minimal surfaces ∂Ek which satisfy the hypothesis with εk → 0 for which the
conclusion does not hold. At each point x0 ∈ ∂Ek ∩ B1/2 we apply Harnack in-
equality and obtain that the oscillation of the set ∂Ek∩B1/2(x0) in the xn direction
is less than 2εk(1 − η/2). We apply Harnack inequality repeatedly as long as the
hypothesis is satisfied. We obtain that for all m such that

εk2m(1− η)m−1 < ε1(n)

the oscillation of the set
∂Ek ∩B2−m(x0)

in the xn direction is less than 2εk(1− η/2)m. Clearly, m→∞ as εk → 0.
We dilate this picture by a factor 1

εk
in the xn direction. The sets

Ak := {(x′, xn
εk

)| (x′, xn) ∈ ∂Ek ∩B1}

are included in {|xn| ≤ 1}. Moreover, for each m as above the oscillation of Ak in
|x′−x′0| ≤ 4−m is less than 2(1−η/2)m. By Arzela-Ascoli theorem we can assume,
by passing if necessary to a subsequence, that Ak converges in Hausdorff distance
to the graph of a Hölder continuous function (x′, w(x′)) in {|x′| ≤ 1/2}.

Next we show that w is harmonic in the viscosity sense. Assume P (x′) is a
quadratic polynomial whose graph touches by below the graph of w at some point.
Then Ak touches a translation of P which implies that ∂Ek touches the graph
of εkP (x′) + c at some interior point. Clearly ∂Ek satisfies the minimal surface
equation in the viscosity sense hence

εk4P + ε3
k(|∇P |2∆P − (∇P )T D2P ∇P ) ≤ 0

at the contact point. We let εk → 0 and obtain 4P ≤ 0.
Since w is harmonic, w(0) = 0 (since 0 ∈ Ak) and |w| ≤ 1, we find that

|w(x′)− x′ · ∇w(0)| ≤ r0

4
if |x′| ≤ 2r0,

provided that r0 is chosen small, universal. This easily implies that ∂Ek satisfies
the conclusion of the Theorem for large k, contradiction.

Now it remains to prove Harnack inequality. This will follow easily from the
next lemma. We denote points in Rn as x = (x′, xn) with x′ ∈ Rn−1. Also the
n− 1 dimensional ball of center x′0 and radius r are denoted by Br(x′0).

Lemma . Assume ∂E ∩B1 ⊂ {xn ≥ 0}, (0, ε) ∈ ∂E and fix δ > 0. There exist
constants C universal, and C(δ), ε(δ) depending on δ such that if ε ≤ ε(δ) then the
set

∂E ∩ {x′ ∈ B1/3, |xn| < C(δ)ε}
projects along en into a set of Hn−1 measure greater than Hn−1(B1/3)− Cδ.

We sketch the proof of the lemma in two steps.
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Step 1: We show that in each cylinder {x′ ∈ Bδ(x′0)}, with x′0 ∈ B1/3 there exists
a point of ∂E that stays at distance less than C(δ)ε from {xn = 0}.

It is easy to construct an explicit Lipschitz function ϕ : B2/3 → R such that
ϕ = 0 on ∂B2/3, ϕ = C(δ) in Bδ, ϕ is strictly subharmonic in B2/3 \ Bδ and ϕ > 1
in B1/3. Notice that if ε < ε(δ) is small then εϕ is a strict subsolution to the
minimal surface equation in B2/3 \ Bδ. Consider translations of the graph Φε of εϕ
by vectors y with y′ = x′0. If all points of ∂E in the cylinder {x′ ∈ Bδ(x′0)} were
above {xn = C(δ)ε} then, by sliding these graphs from below, we find that Φε +x′0
also lies below ∂E. This contradicts (0, ε) ∈ ∂E, and our claim is proved.

Step 2: We obtain the measure estimate by sliding balls Br(y) with y′ ∈ B 1
3−4δ

from below in the vertical direction till they touch ∂E. By choosing the radius

r :=
2δ2

C(δ)ε

it follows from Step 1 that all contact points occur in the set

{x′ ∈ B1/3, 0 ≤ xn ≤ 2C(δ)ε}.
We study the map that associates to each contact point x ∈ ∂E its corresponding

center y(x). Assume for simplicity that ∂E is smooth in a neighborhood of such a
contact point x. Since y(x) = x− rν(x), where ν(x) denotes the normal to ∂E at
x we see that the differential of this map equals

Dxy(x) = I − rII(x)

where II(x) is the second fundamental form of ∂E at x. On the other hand the
mean curvature at x is 0, i.e tr II(x) = 0 and moreover, since ∂E has a tangent
ball of radius r from below at x we have II(x) ≥ − 1

r I. This gives

| detDxy(x)| ≤ 1.

This implies that infinitesimally the Hn−1 measure of the contact points is less
than the Hn−1 measure of their corresponding centers. Finally we remark that the
tangent plane to ∂E at x is parallel to the tangent plane to the surface of centers at
y(x). Therefore the statement above remains valid if we project the sets along the
en direction. In conclusion the Hn−1 measure of the en-projection of the contact
points is greater than Hn−1(B 1

3−4δ) and the lemma is proved.

Now we can prove Harnack inequality. If we assume by contradiction that in
B1/2, ∂E comes εη close from both constraint planes {xn = ±ε} then we can apply
the lemma above a number of times (with εη instead of ε) and conclude that both
the en-projections of

∂E ∩ {x ∈ B1/2, xn ≥ −ε(1− C(δ)η)}, ∂E ∩ {x ∈ B1/2, xn ≤ ε(1− C(δ)η)}
have Hn−1 measure greater than Hn−1(B1/2)− Cδ. If C(δ)η < 1 then the sets are
disjoint and this implies that

PB1/2(E) ≥ 2Hn−1(B1/2)− Cδ.
On the other hand minimality of E and ∂E ∩B1 ⊂ {|xn| ≤ ε} clearly implies

PB1/2(E) ≤ Hn−1(B1/2) + Cε.

We reach a contradiction by choosing δ small universal.
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Remarks: Our proof is based on the fact that ∂E satisfies the mean curvature
equation in the viscosity sense. The only place where we used minimality of ∂E is
in the last argument.

The same ideas can be applied to obtain estimates for flat solutions to more
general elliptic equations or free boundary problems (see [14]). Roughly speaking,
this method gives that flat solutions are as regular as the solutions of the linearized
equation.

3. Minimizers of J

We consider minimizers of the energy functional

JΩ(u) =
ˆ

Ω

1
2
|∇u|2 + χ{|u|<1} dx

for functions u that take values in the set [−1, 1]. If Br+2 ⊂ Ω then we can compare
u with the compact perturbation

w = min{u, h} with h(x) := min{(|x| − r)+ − 1, 1}.
We easily obtain

JBr (u) ≤ Crn−1,

which implies that the set {|u| < 1} ∩Br has measure less than Crn−1.
From the classical results of Alt and Caffarelli on the one-phase problem (see

[3]) it follows that minimizers are uniformly Lipschitz in Br,

4u = 0 in {|u| < 1},
and u satisfies the free boundary condition

|∇u| = 1 on ∂{|u| < 1}.
This last condition is understood in the viscosity sense, i.e. at any free boundary

point x0 ∈ ∂{|u| < 1} that can be touched by a tangent ball included either in
{|u| < 1} or in its complement, u has a linear expansion of the form

u(x) = ((x− x0) · νx0)+ + o(|x− x0|), for some |νx0 | = 1.

Density estimates. We present the density estimates obtained by Cordoba
and Caffarelli [4]. Assume u(0) = 0. There exists c universal such that

|{u > 0} ∩Br|
|Br| ≥ c,

for any ball Br ⊂ Ω, with r ≥ C universal.
For each r ≥ 1 denote by

V (r) := |{u > 0} ∩Br|, a(r) := |{|u| < 1} ∩Br|.
We use the comparison function w from the beginning of the section and denote by
K the closure of the open set {u > w}. Clearly

JK(u) ≤ JK(w),

and, as in the introduction, the coarea formula gives
√

2
ˆ 1

−1

Hn−1({v = s} ∩K) ≤ JK(v),
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for any function v with values in [−1, 1]. For each s ∈ (−1, 1) we have

∂{w < s < u} = ({u = s} ∪ {w = s}) ∩K
and by the isoperimetric inequality

|{w < s < u}|n−1
n ≤ Hn−1({u = s} ∩K) +Hn−1({w = s} ∩K).

Since for s < 0,
V (r) = |{u > 0} ∩Br| ≤ |{w < s < u}|

the inequalities above imply

cV (r)
n−1
n ≤ JK(w).

Also JK(u) ≤ JK(w) gives
a(r) ≤ JK(w).

On the other hand
1
2
JK(w) ≤ |{w > −1} ∩K| ≤ |{u > −1} ∩ (Br+2 \Br)|

≤ V (r + 2)− V (r) + a(r + 2)− a(r).
In conclusion

c(a(r) + V (r)
n−1
n ) ≤ V (r + 2) + a(r + 2)− (V (r) + a(r)).

From the universal Lipschitz estimate we have a(r) ≥ a(1) ≥ c0 universal, hence
the function

f(r) = V (r) + a(r)
satisfies

cf(r)
n−1
n ≤ f(r + 2)− f(r), f(1) ≥ c0,

which clearly implies
f(r) ≥ crn.

Now the density estimate follows from the inequality a(r) ≤ Crn−1 deduced at the
beginning of the section.

Asymptotic behavior. As a consequence of the density estimates we obtain
that the level sets of u are asymptotically flat at ∞ at least in low dimensions. If
u : Rn → [−1, 1] is a minimizer then, by Modica’s theorem, the rescalings uεk(x) =
u(x/εk) satisfy

uεk → χE − χCE in L1
loc(Rn).

Then the density estimates imply, as in the minimal surface case, that the level sets

{uεk = 0} = εk{u = 0}
converge uniformly on compact sets to ∂E. Since ∂E is a global minimal surface,
then ∂E is a hyperplane if n ≤ 7, say ∂E = {xn = 0}. Then {u = 0} is asymp-
totically flat at ∞, i.e. there exist sequences θk, lk with lk → ∞, θk/lk → 0 such
that

{u = 0} ∩Blk ⊂ {|xn| ≤ θk}.
We obtain the same conclusion for other n under various extra assumptions on

the 0 level set. For example, if n = 8 it suffices to assume that {u = 0} is a graph
over Rn−1 in the en direction. Moreover, if we assume that this graph grows at
most linearly at ∞ then the conclusion holds in any dimension n.
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Flatness theorems. Next we present the flatness theorems for level sets of
minimizers of J . The corresponding Harnack inequality is the following:

Theorem [Harnack inequality] Assume that u is a minimizer of J in the cylinder
{|x′| < l, |xn| < l} and the 0 level set satisfies

0 ∈ {u = 0} ⊂ {|xn| < θ}.
For any θ0 > 0 there exists ε(θ0) such that if

θ

l
< ε, θ ≥ θ0

then
{u = 0} ∩ {|x′| < l/2} ⊂ {|xn| < θ(1− η)},

where η is a small constant depending only on n.

The difference with the minimal surface case is the appearance of new constants
θ0 and ε(θ0). This is because in our setting the problem is no longer invariant under
dilations. For example by taking ε < θ0/C we can always assume that l > C and
therefore the level sets of u are long enough to capture the behavior of minimal
surfaces.

The proof of Harnack inequality is similar to the one for minimal surfaces. We
just point out the main ideas leaving out most of the details. The key step is to
have a parallel version for the Lemma in Section 2.

We first introduce a family of sliding surfaces that replace the spheres ∂Br(y) of
Step 2. Consider the parabola

Py,a := {xn+1 =
1
2r
|x− y|2 + a}

and define its center

Y = (y, yn+1) ∈ Rn+1, yn+1 :=
r

2
+ a.

Whenever yn+1 ∈ (−1, 1) we define

S(Y, r) := Py,a ∩ {|xn+1| < 1}
the surface obtained by intersecting the parabola with the strip |xn+1| ≤ 1.

Notice that the plane xn+1 = yn+1 intersects S(Y, r) on the n-dimensional sphere
∂Br(y) and the slope of S(Y, r) on this sphere equals 1. Since the slope of S(Y, r)
on the −1 (1) level set is less (greater) than 1 it follows that whenever we slide
these surfaces by below in the en direction, the first contact point with the graph
of u cannot occur at an interior free boundary point.

Let’s denote such a contact point by X = (x, u(x)) and by Y (X) its correspond-
ing center. Then

Y (X) = X − r
(
∇u(x),

|∇u(x)|2 − 1
2

)
.

The surface described by the centers Y (X) is parallel to the surface of the X’s,
hence

| detDXY (X)| = |detDxy(x)| = | det(I − rD2u(x))| ≤ 1
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where for the last inequality we used

4u = 0, D2u(x) ≤ 1
r
I.

This implies that infinitesimally the Hn measure of the contact points X is
greater than the Hn measure of the corresponding centers Y (X). Since the two
surfaces X and Y (X) are parallel, the same statement holds for their projections
along the en direction. We are in the same situation as in Step 2 of the Lemma in
Section 2. Thus, if we start with a family S(Y, r) with (y′, yn+1) ∈ A ⊂ Rn and
slide them in the en direction then the set of contact points projects along en in a
set of Hn measure greater than Hn(A).

In order to reproduce Step 1 of the Lemma we first need to obtain bounds for
all level sets of u from the location of the 0 level set. For example if u < 0 below
{xn = 0} in the cylinder {|x′| < l, |xn| < l} then the results of Caffarelli (see [3]) for
the one-phase problem imply that the free boundary where u = −1 (and therefore
any level sets) is above {xn = −C}. In fact we can bound u by a small translation
of the 1D solution that has xn = 0 as 0 level set :

{u = s} is above {xn = s− C
l } in the cylinder |x′| < l/2.

To see this one needs to construct an explicit function h which is radially sym-
metric and defined in an annulus around the sphere of radius l/4 with the following
properties:

a) h increases in the radial direction from −1 to 1 and is continuous
b) h is smooth except on the 0 level set where ∇h has a jump discontinuity
c) 4h < 0 at all points where h 6= 0
d) |∇h| < 1 when h = −1 and |∇h| > 1 when h = 1
e) h = 0 is a sphere of radius l/4 and h = s is in a C/l neighborhood of the

sphere of radius l/4 + s.
Clearly, when we slide the graph of h from below in the en direction, the first

contact point with the graph of u occurs on the 0 level set. Since {u = 0} is above
{xn = 0} we obtain the desired bounds.

Now one can argue the same as in Section 2 provided that l is large enough so
that the error above C/l � θ0 ≤ θ and θ/l is small. We simply take as a sliding
barrier the signed distance to a surface {xn = ϕ̃(x′)} and then truncate it at the
−1 and 1 level sets. Here ϕ̃ is a rescaling of the function ϕ from Step 1.

Next we want to obtain an improvement of flatness theorem for level sets of
minimizers by using compactness and Harnack inequality.

If {u = 0} is trapped in a flat cylinder {|x′| < l, |xn| < θ}, then we map it in the
fixed cylinder {|y′| < 1, |yn| < θ} by the linear map

y′ = x′/l, yn = xn/θ.

Harnack inequality gives compactness of these rescalings for sequences with θ/l→ 0
and θ ≥ θ0. As before, it suffices to show that any limiting set (y′, w(y′)) is the
graph of a harmonic function. Thus we need a “viscosity version” of the theorem
of Modica: given δ and a quadratic polynomial P with 4P > δ, {u = 0} cannot be
touched from below by xn = θP (x′/l), say at the origin, in the cylinder |x′| < δl.
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To see this let

P̃ := P − δ

4n
|y′|2

and define the function ψ to be the signed distance (positive above and negative
below) to the graph

Γ := {xn = θP̃ (x′/l)}
truncated at the levels ±1. Since

4ψ(x) = −κ(x)

where κ(x) is the mean curvature of the parallel surface to Γ passing through x,
and 4P̃ > δ/2 we see that ψ is superharmonic if θ/l is sufficiently small.

On the other hand, since xn = θP (x′/l) is below {u = 0}, one can obtain bounds
for all the other level sets as in the proof of Harnack inequality and conclude that

u < ψ on |x′| = δl

provided that C/(δl)� δθ0. This implies that when we slide the graph of ψ from
below in the en direction in the cylinder |x′| ≤ δl, the first contact point cannot
occur neither on its boundary |x′| = δl nor in the interior since 4ψ < 0 and
moreover |∇ψ| = 1 on the ±1 level sets.

In conclusion we obtain:

Theorem [Improvement of flatness] Let u be a minimizer of J in {|x′| < l} ×
{|xn| < l}, and assume that

0 ∈ {u = 0} ⊂ {|xn| < θ}.
Then there exist small constants 0 < η1 < η2 < 1 depending only on n such that:
For θ0 > 0 there exists ε(θ0) > 0 depending on n, θ0 such that if

θ

l
≤ ε, θ ≥ θ0

then
{u = 0} ∩ {|πξx| < η2l} ⊂ {|x · ξ| < η1θ}

for some unit vector ξ (πξ denotes the projection along ξ).

As a consequence we obtain that global minimizers with asymptotically flat level
sets at∞ are one-dimensional i.e. their level sets are hyperplanes. Indeed, fix θ0 > 0
and choose l, θ large such that the hypotheses above are satisfied and

θ

l
= ε < ε(θ0).

We can apply the theorem repeatedly and stop when the height of the cylinder
becomes less than θ0. Then the {u = 0} is trapped in a flat cylinder of height θ0

and radius l0 with
θ0

l0
<

ε

η1
.

Since ε can be taken arbitrary small we find that {u = 0} is trapped in an infinite
strip of height θ0. We let θ0 → 0 and reach the desired result. Following the
discussion on the asymptotic behavior of minimizers we obtain

Theorem. Minimizers u : Rn → [−1, 1] of J are one-dimensional if n ≤ 7.
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Theorem. Assume {u = 0} is a graph over Rn−1 in the en direction for a
minimizer u : Rn → [−1, 1]. Then

a) u is one-dimensional if n = 8.
b) u is one-dimensional for any n if the graph has at most linear growth at ∞.

In the last theorem it suffices to assume that u is only a critical point for the
energy J . This together with the graph assumption for {u = 0} imply that u is
monotone in the en direction and u is in fact a minimizer.

4. Concluding remarks

The problem of investigating one-dimensional symmetry for bounded solutions
to the semilinear equation

4u = W ′(u)

was proposed by De Giorgi in 1978. He conjectured that en-monotone solutions
are one-dimensional at least in dimension n ≤ 8 (with W (s) = (1 − s2)2/4). The
conjecture was proved by Ghoussoub and Gui [10] for n = 2 and Ambrosio and
Cabre [1] for n = 3.

Our approach gives one-dimensional symmetry of minimizers for n ≤ 7. We also
obtain one-dimensional symmetry for solutions of the semilinear equation above for
n ≤ 8 if we assume that {u = 0} is a graph over whole Rn−1 instead of simply a
graph as the en-monotonicity gives. However the proofs are more involved when
the potential W is different than χ(−1,1) (see [13]). Then the surfaces S(Y, r) are
harder to construct and the measure estimate for | detDXY | holds with a constant
smaller than 1.

As we mentioned in the introduction Del Pino, Kowalczyk and Wei [6] provided
a counterexample to De Giorgi’s conjecture in dimensions n ≥ 9.

There are further analogies between the two theories. Caffarelli and Cordoba
proved in the context of minimizers the classical result of De Giorgi which states
that Lipschitz minimal graphs are C1,α. As a consequence they obtain a result
that was first proved by Barlow, Bass and Gui: De Giorgi’s conjecture holds in any
dimension if {u = 0} is a Lipschitz graph.

The proofs we presented use both variational techniques (density estimates,
monotonicity formula, Γ-convergence) and non-variational techniques (sub and su-
persolutions, measure estimates). They are quite general and can be applied to
more complicated settings such as the p-Laplace equation (see [16]), or for quasi-
minimizers (see [9]).

We also mention that one-dimensional symmetry was obtained in 2D for mono-
tone solutions of fully nonlinear equations (see [7] , [8]). If we assume furthermore
that one level set is Lipschitz then the result holds in any dimension (see [15]).
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