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Abstract

We study the regularity and behavior at the origin of solutions to the two-dimen-
sional degenerate Monge-Ampère equation det D2u D jxj˛ with ˛ > �2. We
show that when ˛ > 0, solutions admit only two possible behaviors near the
origin, radial and nonradial, which in turn implies C 2;ı -regularity. We also show
that the radial behavior is unstable. For ˛ < 0 we prove that solutions admit only
the radial behavior near the origin. c
 2008 Wiley Periodicals, Inc.

1 Introduction

We consider the degenerate two-dimensional Monge-Ampère equation

(1.1) det D2u D jxj˛; x 2 B1;

on the unit disc B1 D fjxj � 1g of R
2 and in the range of exponents ˛ > �2. Our

goal is to investigate the behavior of solutions u near the origin, where the equation
becomes degenerate.

The study of (1.1) is motivated by the Weyl problem with nonnegative cur-
vature, posed in 1916 by Weyl [13] himself: Given a Riemannian metric g on
the 2-sphere S

2 whose Gauss curvature is everywhere positive, does there exist
a global C 2 isometric embedding X W .S2; g/ ! .R3; ds2/, where ds2 is the
standard flat metric on R

3?
H. Lewy [10] solved the problem under the assumption that the metric g is

analytic. The solution to the Weyl problem, under the regularity assumption that g

has continuous fourth-order derivatives, was given in 1953 by L. Nirenberg [12].
P. Guan and Y.Y. Li [6] considered the question: If the Gauss curvature of the

metric g is nonnegative instead of strictly positive and g is smooth, is it still pos-
sible to have a smooth isometric embedding? It was shown in [6] that for any
C 4 Riemannian metric g on S

2 with nonnegative Gaussian curvature, there is al-
ways a C 1;1 global isometric embedding into .R3; ds2/.
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Examples show that for some analytic metrics with positive Gauss curvature
on S

2 except at one point, there exists only a C 2;1 but not a C 3 global isometric
embedding into .R3; ds2/. Note that the phenomenon is global, since C. S. Lin
[11] has shown that for any smooth two-dimensional Riemannian metric with non-
negative Gauss curvature there exists a smooth local isometric embedding into
.R3; ds2/.

This leads to the following question, which was posed in [6]:

Under what conditions on a smooth metric g on S
2 with nonneg-

ative Gauss curvature, is there a C 2;˛ global isometric embedding
into .R3; ds2/, for some ˛ > 0, or even a C 2;1 ?

The problem can be reduced to a partial differential equation of Monge-Ampère
type that becomes degenerate at the points where the Gauss curvature vanishes. It
is well-known that in general one may have solutions to degenerate Monge-Ampère
equations that are at most C 1;1.

One may consider a smooth Riemannian metric g on S
2 with nonnegative

Gauss curvature that has only one nondegenerate zero. In this case, if we rep-
resent the C 1;1 embedding as a graph, answering the above question amounts to
studying the regularity at the origin of the degenerate Monge-Ampère equation

(1.2) det D2u D f on B1;

in the case where the forcing term f vanishes quadratically at x D 0. More pre-
cisely, it suffices to assume that f .x/ D jxj2g.x/, where g is a positive Lipschitz
function. This leads to equation (1.1) when ˛ D 2.

In addition to the results mentioned above, degenerate equations of the form
(1.2) on R

2 were previously considered by P. Guan in [5] in the case where f 2
C 1.B1/ and

(1.3) A�1.x2l
1 C Bx2m

2 / � f .x1; x2/ � A.x2l
1 C Bx2m

2 /

for some constants A > 0, B � 0, and positive integers l � m. The C 1 regularity
of the solution u of (1.2) was shown in [5], under the additional condition that
ux2x2

� C0 > 0. It was conjectured in [5] that the same result must be true under
the weaker condition that �u � C0 > 0. This was recently shown by P. Guan and
I. Sawyer in [8].

Equation (1.1) has also an interpretation in the language of optimal transporta-
tion with quadratic cost c.x; y/ D jx � yj2. In this setting the problem consists in
transporting the density jxj˛ dx from a domain �x into the uniform density dy in
the domain �y in such a way that we minimize the total “transport cost,” namely,

Z

�x

jy.x/ � xj2jxj˛ dx:

Then, by a theorem of Y. Brenier [1], the optimal map x 7! y.x/ is given by the
gradient of a solution of the Monge-Ampère equation (1.1). The behavior of these
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solutions at the origin gives information on the geometry of the optimal map near
the singularity of the measure jxj˛ dx.

We will next state the results of this paper. We assume that u is a solution of
equation (1.1). Then u is C 1 smooth away from the origin. The following results
describe the regularity of u at the origin. We begin with the case when ˛ > 0.

THEOREM 1.1 If ˛ > 0, then u 2 C 2;ı for a small ı depending on ˛.

Theorem 1.1 is a consequence of Theorem 1.2, which shows that there are ex-
actly two types of behavior near the origin.

THEOREM 1.2 If ˛ > 0 and

(1.4) u.0/ D 0; ru.0/ D 0;

then there exist positive constants c.˛/ and C.˛/ depending on ˛ such that either

u has the radial behavior

(1.5) c.˛/jxj2C ˛
2 � u.x/ � C.˛/jxj2C ˛

2 ;

or, in an appropriate system of coordinates, the nonradial behavior

(1.6) u.x/ D a

.˛ C 2/.˛ C 1/
jx1j2C˛ C 1

2a
x2

2 C O
�

.jx1j2C˛ C x2
2/1Cı

�

for some a > 0.

The nonradial behavior (1.6) was first shown by P. Guan in [5] under the con-
dition that ux2x2

� C0 > 0 near the origin, and was recently generalized in [8] to
assume only that �u � C0 > 0.

The next result states that the radial behavior is unstable.

THEOREM 1.3 Suppose ˛ > 0, and let u0 be the radial solution to (1.1),

u0.x/ D c˛jxj2C ˛
2

and consider the Dirichlet problem

det D2u D jxj˛; u D u0 � " cos.2�/ on @B1:

Then u � u.0/ has the nonradial behavior (1.6) for small ".

Subsequences of blowup solutions satisfying (1.5) converge to homogeneous
solutions, as shown next.

THEOREM 1.4 Under the assumptions of Theorem 1.2, if u satisfies (1.5), then for

any sequence of rk ! 0 the blowup solutions

r
�2� ˛

2

k
u.rkx/

have a subsequence that converges uniformly on compact sets to a homogeneous

solution of (1.1).
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In the case �2 < ˛ < 0 solutions have only the radial behavior. Actually, we
prove a stronger result by showing that u converges to the radial solution u0 in the
following sense:

THEOREM 1.5 If �2 < ˛ < 0 and (1.4) holds, then

lim
x!0

u.x/

u0.x/
D 1:

Our results are based on the following argument: assume that a section of u,
say fu < 1g, is “much longer" in the x1-direction compared to the x2-direction. If
v is an affine rescaling of u so that fv < 1g is comparable to a ball, then v is an
approximate solution of

det D2v.x/ � cjx1j˛:

Hence, the geometry of small sections of solutions of this new equation provides
information on the behavior of the small sections of u. For example, if the sections
of v are “much longer” in the x1-direction (case ˛ > 0), then the corresponding
sections of u degenerate more and more in this direction, producing the nonradial
behavior (1.6). If the sections of v are longer in the x2-direction (case ˛ < 0), then
the sections of u tend to become round and we end up with a radial behavior near
the origin.

We close this introduction with the following remarks.

Remark 1.6. From the proofs one can see that the theorems above, with the ex-
ception of the instability result, are still valid for the equation with more general
right-hand side

det D2u D jxj˛g.x/

with g 2 C ı.B1/, g > 0.

Remark 1.7.

(1) We will show in the proof of Theorem 1.1 that solutions of (1.1), with
˛ > 0, which satisfy the radial behavior (1.5) at the origin are of class C 2;˛=2.

(2) Theorems 1.1 and 1.2 and the results of Guan in [5] and Guan and Sawyer
in [8] imply that solutions of (1.1), with ˛ a positive integer, which satisfy the
nonradial behavior (1.6) at the origin are C 1 smooth.

Remark 1.8. Equations of the form

(1.7) det D2w D jrwjˇ ; ˇ D �˛;

for which the set frw D 0g is compactly included in the domain of definition,
can be reduced to (1.1) by defining u to be the Legendre transform of w. Hence
Theorem 1.5 establishes the sharp regularity of solutions w of equation (1.7) when
0 < ˇ < 2:
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The paper is organized as follows. In Section 2 we introduce tools and notation
to be used later in the paper. In Section 3 we prove Theorem 1.2. In Section 4
we establish the radial behavior of solutions when �2 < ˛ < 0, showing Theo-
rem 1.5. In Section 5 we investigate homogeneous solutions and give the proof of
Theorem 1.4. In Section 6 we prove Theorem 1.3. Finally, in Section 7 we show
that Theorem 1.2 implies Theorem 1.1.

2 Preliminaries

In this section we investigate the geometry of the sections of u, namely the sets

Su
t;x0

WD fu.x/ < u.x0/ C ru.x0/ � .x � x0/ C tg:

We omit the indices u and x0 whenever there is no possibility of confusion. We
recall some facts about such sections.

John’s lemma (cf. [9, theorem 1.8.2]) states that any bounded convex set � �
R

n is balanced with respect to its center of mass. That is, if � has center of mass
at the origin, there exists an ellipsoid E (with center of mass 0) such that

E � � � k.n/E

for a constant k.n/ depending only on the dimension n.
Sections Su

t;x0
of solutions to Monge-Ampère equations with doubling measure

� on the right-hand side also satisfy a balanced property with respect to x0. We
recall the following definition:

DEFINITION 2.1 (Doubling Measure) The measure � is doubling with respect to
ellipsoids in � if there exists a constant c > 0 such that for any point x0 2 � and
any ellipsoid x0 C E � �

(2.1) �.x0 C E/ � c�..x0 C 2E/ \ �/:

The following theorem, due to L. Caffarelli [2], holds.

THEOREM 2.2 (Caffarelli) Let u W � ! R be a (Alexandrov) solution of

det D2u D �

with � a doubling measure. Then for each St;x0
� � there exists a unimodular

matrix At such that

(2.2) k�1
0 AtBr � St;x0

� x0 � k0AtBr

with

r D t .�.St;x0
//� 1

n ; det At D 1;

for a constant k0.c; n/ > 0.
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The ellipsoid E D AtBr remains invariant if we replace At with AtO with O

orthogonal; thus we may assume that A is triangular. If (2.2) is satisfied we write

St � At

and say that the eccentricity of St is proportional to jAt j.
The measure that appears in (1.1), namely

� WD jxj˛ dx

is clearly doubling with respect to ellipsoids for ˛ > 0. We will see in Section 4
that this property is still true for �1 < ˛ < 0 but fails for �2 < ˛ � �1.

Next we discuss the case when the right-hand side in the Monge-Ampère equa-
tion depends only on one variable, i.e.,

(2.3) det D2u D h.x1/:

We will show in Section 3 that such equations are satisfied by blowup limits of
solutions to det D2u D jxj˛ at the origin, when ˛ > 0. These equations remain
invariant under affine transformations. Also, by taking derivatives along the x2-
direction, one obtains the Pogorelov-type estimate

u22 � C

in the interior of the sections of u.
Assume that u satisfies equation (2.3) in B1 � R

n, in any dimension n � 2,
and perform the following partial Legendre transformation:

(2.4) y1 D x1; yi D ui .x/; i � 2; u�.y/ D x0 � rx0u � u.x/;

with x0 D .x2; : : : ; xn/. The function u� is obtained by taking the Legendre trans-
form of u on each slice x1 D const. We claim that u� (which is convex in y0 and
concave in y1) satisfies

(2.5) u�
11 C h.y1/ det D2

y0u
� D 0:

To see this, we first notice that by the change of variable

v.x1; x0/ ! u.x1; x0 C x1� 0/

v satisfies the same equation as u and

v�.y/ D u�.y/ � y1 � 0 � y0:

Thus we may assume that D2u is diagonal at x. Now it is easy to check that

u�
1 D �u1; ry0u� D x0;

and
u�

11 D �u11; D2
y0u

� D ŒD2
x0u��1:

Hence u� satisfies (2.5).

Remark 2.3. The following hold:

(1) The partial Legendre transform of u� is u, i.e., .u�/� D u:
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(2) The inequality ju � vj � " implies that ju� � v�j � " on their common
domain of definition.

(3) In dimension n D 2, the partial Legendre transform of the function

p.x1; x2/ D ajx1j2C˛ C bx1x2 C dx2
2

is given by

p�.y1; y2/ D .ajx1j2C˛ C bx1x2 C dx2
1/�

D �ay2C˛
1 C 1

4d
.y2 � by1/2:

(2.6)

Notice that p is a solution of the equation det D2u D cjx1j˛ for an appropriate
constant c, and p� is a solution of the equation w11 C cjy1j˛w22 D 0.

From now on we will restrict our discussion to dimension n D 2 and the special
case where h.x1/ D jx1j˛.

LEMMA 2.4 Assume that for some ˛ > 0, w solves the equation

Lw WD w11 C jy1j˛w22 D 0 in B1 � R
2

with jwj � 1. Then in B1=2, w satisfies

w.y/ D a0 C a1 � y C a2y1y2

C a3

�

1

2
y2

2 � 1

.˛ C 2/.˛ C 1/
jy1j2C˛

�

C O..y2
2 C jy1j2C˛/1Cı/

with jai j and O. � / bounded by a universal constant and ı D ı.˛/ > 0.

PROOF: First we prove that w2 is bounded in the interior. Since Lw2 D 0,
the same argument applied inductively would imply that the derivatives of w with
respect to y2 of any order are bounded in the interior.

To establish the bound on w2, we show that

(2.7) L.C w2 C '2w2
2/ � 0

for a smooth cutoff function ', to be made precise later. Indeed, a direct computa-
tion shows that

L.w2/ D 2 .w2
1 C jy1j˛w2

2/

and

L.'2w2
2/ D L.'2/w2

2 C '2L.w2
2/ C 2.'2/1.w2

2/1 C 2jy1j˛.'2/2.w2
2/2

D L.'2/w2
2 C 2'2.w2

21 C jy1j˛w2
22/ C 8.'1w2/.'w21/

C 8jy1j˛.'2w2/.'w22/I
hence

L.C w2 C '2w2
2/ � 2C jy1j˛w2

2 C 2'2.w2
21 C jy1j˛w2

22/

C L.'2/w2
2 C 8.'1w2/.'w21/ C 8jy1j˛.'2w2/.'w22/:
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By choosing the cutoff function ' such that '1 D 0 for jy1j � 1
4

, then

L.'2/ � �C1jy1j˛; j'1w2j � C1jy1j ˛
2 jw2j;

and we obtain (2.7) if C is large. Therefore w2 is bounded in the interior by the
maximum principle.

The equation w11 C jy1j˛ w22 D 0 and the bound jw22j � C imply the bound

jw11j � C jy1j˛:

Thus w1 is bounded. The same estimates as above show that w12 and w122 are
bounded as well. By Taylor’s formula, namely,

f .t/ D f .0/ C f 0.0/t C
Z t

0

.t � s/f 00.s/ds;

and the equation Lw D 0, we conclude that

w.y1; 0/ D w.0/ C w1.0/y1 � w22.0/

.˛ C 2/.˛ C 1/
y2C˛

1 C O.jy1j3C˛/;

w.y1; y2/ D w.y1; 0/ C w2.y1; 0/ y2 C w22.0/

2
y2

2 C O.jy2j3 C jy1y2
2 j/;

and
w2.y1; 0/ D w2.0/ C w12.0/y1 C O.jy1j2C˛/;

from which the lemma follows. �

Notation. By universal constants we understand positive constants that may
also depend on the exponent ˛. Also, when there is no possibility of confusion, we
use the letters c and C for various universal constants that change from line to line.

3 Proof of Theorem 1.2

Throughout this section we assume that ˛ > 0 and that u satisfies

u.0/ D 0; ru.0/ D 0:

We simply write St for the section Su
t;0.

Let
� WD fjx1j2C˛ C x2

2 < 1g
be the 1-section of jx1j2C˛ C x2

2 at 0. If a set � satisfies

.1 � �/� � � � .1 C �/�

we write
� 2 � ˙ �:

The following approximation lemma constitutes the basic step in the proof of
Theorem 1.2.
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LEMMA 3.1 Assume that u in the section S1 satisfies

(3.1) det D2u D cf .x/; jf .x/ � jx1j˛j � ";

and

(3.2) S1 2 � ˙ �

with " � "0 and "1=8 � � , � < 1 small. Then, for some small universal t0, we

have

St0
2 ADt0

.� ˙ � tı
0 /

where

A WD
�

a11 0

a21 a22

�

; Dt0
WD
 

t
1=.2C˛/
0 0

0 t
1=2
0

!

;

and

jA � I j � C�; C universal.

Moreover, the constant c in (3.1) satisfies

(3.3) jc � 2.1 C ˛/.2 C ˛/j � C�:

PROOF: We consider the solution

(3.4) v WD c1=2

Œ2.1 C ˛/.2 C ˛/�1=2
.jx1j2C˛ C x2

2/

of the equation
det D2v D cjx1j˛

and compute that

(3.5) det D2.v C
p

c" jxj2/ > c.jx1j˛ C "/ � det D2u

and

(3.6) det D2.u C
p

c" jxj2/ > c.f .x/ C "/ � det D2v

because jf .x/ � jx1j˛j � " by assumption.
We first notice that the assumption (3.2) implies that the constant c in equation

(3.1) is bounded from above by a universal constant if "0 is small. This can be
easily seen from equation (3.6), which, with the aid of the maximum principle,
implies that uC

p
c" jxj2 � v on fu D 1g (notice that both v and w D uC

p
c" jxj2

satisfy v.0/ D w.0/ D 0 and rw.0/ D rv.0/ D 0). Since fu D 1g 2 � ˙ � , this
readily gives a bound on c if we assume that � is small.

We will next show that

(3.7) fv < 1g 2 � ˙ 2�;

which implies the bound (3.3). Indeed, if

fv < 1g � .1 � 2�/�;

then v > u C Qc� jxj2 on fu D 1g for a universal Qc; thus

v > u C
p

c" jxj2 on fu D 1g
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since, by the assumptions of the lemma,
p

" < "1=8 � � and " � "0 with "0

sufficiently small. We conclude from the maximum principle (see (3.5)) that v >

u C
p

c" jxj2 in S1. This is a contradiction, since u.0/ D v.0/ D 0. If

.1 C 2�/S1 � fv < 1g;
then similarly we obtain v C

p
c" jxj2 < u in S1, a contradiction.

Let w be the solution of the problem

det D2w D cx2
1 in S1; w D u on @S1:

By the maximum principle

w C
p

c".jxj2 � 2/ � u � w �
p

c".jxj2 � 2/I
thus

jw � uj � C
p

":

Also from (3.7) we obtain
jw � vj � C�:

Hence, by Remark 2.3, the corresponding partial Legendre transforms defined in
Section 2 satisfy in B1=2

jw� � v�j � C�;(3.8)

jw� � u�j � C
p

"; u�.0/ D 0; ru�.0/ D 0;(3.9)

and w� and v� solve the same linear equation

w�
11 C cjy1j˛w�

22 D 0:

Using Lemma 2.4 for the difference w� � v� together with (2.6), (3.4), (3.3), and
(3.8) yields to

w� D �jy1j2C˛ C 1

4
y2

2 C a C b1y1 C b2y2

C �
�

cy1y2 C d1jy1j2C˛ C d2y2
2 C O..jy1j2C˛ C y2

2/1Cı/
�

(3.10)

with the coefficients a, bi , c, and di bounded by a universal constant.
From (3.9) we find that

w�.0; y2/ � �C
p

" and w�.y1; 0/ � C
p

"

since, from the convexity in y2 and concavity in y1 of u�,

u�.0; y2/ � 0 and u�.y1; 0/ � 0:

This and (3.10) imply the bounds

jaj � C "
1
2 ; jb1j � C "

1
4 ; jb2j � C "

1
4 :

Thus, if jy1j2C˛ C y2
2 � 10 t0, then

w� D �.1 � d1�/ jy1j2C˛ C
�

1

4
C d2�

�

y2
2 C c�y1y2 C O."

1
4 C � t1Cı

0 /:
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Hence, by performing the partial Legendre transform on w� (using that .w�/� D w

and (2.6)), we obtain

(3.11)
ˇ

ˇw � Œe1jx1j2C˛ C e2 .x2 C e3 x1/2�
ˇ

ˇ � C."
1
4 C � t1Cı

0 /

for
jx1j2C˛ C 4e2

2 .x2 C e3x1/2 � 10t0

with je1 � 1j, je2 � 1j, and je3j bounded by C� .
We next observe that if p.x/ D e1jx1j2C˛ Ce2 .x2 Ce3 x1/2, then the function

Qp.y/ WD 1

t0
p.Fy/

with F given by

F �1 WD
 

t
�1=.2C˛/
0 0

0 t
�1=2
0

! 

e
1=.2C˛/
1 0

e3e
1=2
2 e

1=2
2

!

D D�1
t0

A�1

satisfies
Qp.y/ D jy1j2C˛ C y2

2 :

Hence, defining

Qw.y/ D 1

t0
w.Fy/;

we conclude from (3.11) that

j Qw.y/ � .jy1j2C˛ C y2
2/j � C."

1
4 t�1

0 C � tı
0 / for jy1j2C˛ C y2

2 � 2:

Since j Qw� Quj � C "1=2t�1
0 (because jw�uj � C "1=2), we find for " < min.�8; "0/,

with "0 small, that
f Qu < 1g 2 � ˙ 


with

 D C."

1
4 t�1

0 C � tı
0 / � � tı 0

0 :

The proof is now complete since St0
D F f Qu < 1g D ADt0

f Qu < 1g. �

The proof given above also proves the following lemma.

LEMMA 3.2 Assume that u satisfies

det D2u D cf .x/ on S1 and B1=k0
� S1 � Bk0

:

Then, given �0, there exist "1.�0; k0/ and t1.�0; k0/ small such that if
ˇ

ˇf .x/ � jx1j˛
ˇ

ˇ � "1; then St1
2 A0Dt1

.� ˙ �0/

with

(3.12) A0 WD
�

a0;11 0

a0;21 a0;22

�

and

c.k0/ � a0;i i � C.k0/; ja0;12j � C.k0/;

for some universal constants c.k0/ and C.k0/.
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The next proposition shows that if the section St has large eccentricity for some
t , then u enjoys the nonradial behavior (1.6) at the origin.

PROPOSITION 3.3 Assume that u solves the equation

det D2u D jxj˛ on S1

and that S1 has large eccentricity, i.e.,

FB1=k0
� S1 � FBk0

; F WD c

�

b 0

0 1=b

�

with b � C0. Then there exists a ´-system of coordinates such that

(3.13) u.´/ D a

.˛ C 2/.˛ C 1/
j´1j2C˛ C 1

2a
´2

2 C O
�

.j´1j2C˛ C ´2
2/1Cı

�

for some a > 0.

Theorem 1.2 readily follows from Proposition 3.3. Indeed, since jxj˛ dx is a
doubling measure, we know from Theorem 2.2 that there exists k0 depending on ˛

such that each section St � B1 satisfies

FtB1=k0
� St � FtBk0

for some symmetric matrix Ft . If for any t > 0 the quotient between the largest
and the smallest eigenvalue of Ft is greater than C 2

0 , then we satisfy the hypothesis
of the proposition above for a rescaling of u, and therefore obtain the nonradial
behavior. In the case when the quotient is bounded from above by C 2

0 for all small
t > 0, then we clearly obtain the radial behavior.

PROOF OF PROPOSITION 3.3: The proof will be based on an inductive argu-
ment, where at each step we use Lemma 3.1.

Define
v1.x/ WD u.F x/;

and compute v1 such that it satisfies the equation

det D2v1.x/ D .det F /2jF xj˛ D c4C˛b˛j.x1; b�2x2/j˛:

Also,
fv1 < 1g D F �1S1:

If b is large, then v1 satisfies the hypothesis of Lemma 3.2. Hence, for some fixed
�0 we obtain

St1
D F fv1 < t1g 2 FA0Dt1

.� ˙ �0/

with A0 satisfying (3.12).
We assume by induction that for t D t1tk

0 we have

St 2 FAkDt .� ˙ �0t
.k�1/ı
0 /

with

Ak WD
�

ak;11 0

ak;21 ak;22

�
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and

(3.14)
c

2
� ak;i i � 2C; jak;21j � 2C:

We will show that

St0t 2 FAkC1Dt0t .� ˙ �0tkı
0 /

where

AkC1 D AkEk and Ek WD
�

ek;11 0

ek;21 ek;22

�

with

(3.15) jek;i i � 1j � C�0t
.k�1/ı
0 ; jek;21jt� ˛

2.2C˛/ � C�0t
.k�1/ı
0 :

Notice that condition (3.15) implies the bound

(3.16) jAkC1 � Akj � C�0t
.k�1/ı
0 :

To prove this inductive step, we observe that the function

vt .x/ WD t�1u.FAkDtx/

satisfies in fvt < 1g the equation

det D2vt D ct j Qxj˛

with

j Qxj˛ D
ˇ

ˇ

�

ak;11t
1

2C˛ x1; b�2.ak;21t
1

2C˛ x1 C ak;22t
1
2 x2/

�ˇ

ˇ

˛ D c0
tft .x/

and
ˇ

ˇft � jx1j˛
ˇ

ˇ � b�2t
˛

2.2C˛/ :

Also,

fvt < 1g 2 � ˙ �0t
.k�1/ı
0

since St 2 FAkDt .� ˙ �0t
.k�1/ı
0 / by the inductive assumption. Hence, if ı D

ı.˛/ is chosen small, then vt satisfies the assumptions of Lemma 3.1, leading to

fvt < t0g 2 QADt0
.� ˙ �0tkı

0 /

with

(3.17) j QA � I j � C�0t
.k�1/ı
0 :

Thus

St0t 2 FAkDt
QADt0

.� ˙ �0tkı
0 /:

Defining Ek such that Dt
QA D EkDt , we see from (3.17) that Ek satisfies (3.15).

We conclude the proof of the induction step by first choosing �0 small so that (3.12)
and (3.16) imply that (3.14) is always satisfied.
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Define

A� WD lim
k!1

Ak :

We will next prove that

(3.18) St 2 FA�Dt .� ˙ C 0tı/:

As before, let t D t1tk
0 . Notice that

A� D AkE�
k ; E�

k WD …1
iDkEi ;

and it is straightforward to check from (3.15) that

(3.19) je�
k;i i � 1j � C1tı ; je�

k;12jt� ˛
2.2C˛/ � C1tı :

We have

AkDt D A�.E�
k /�1Dt D A�Dt

QE

with

j Qek;i i � 1j � C2tı ; j Qek;12j � C2tı :

Now (3.18) follows since

QE.� ˙ C2tı/ � � ˙ C 0tı :

Finally, from (3.18) we see that

u.FA�x/ D jx1j2C˛ C x2
2 C O

�

.jx1j2C˛ C x2
2/1Cı

�

;

which implies that in a ´-system of coordinates

u.´/ D ˇ1j´1j2C˛ C ˇ2´2
2 C O

�

.j´1j2C˛ C ´2
2/1Cı

�

:

The rescaled functions

r�1u
�

r
1

2C˛ ´1; r
1
2 ´2

�

converge, as r ! 0, to

Qu.´/ WD ˇ1j´1j2C˛ C ˇ2´2
2:

Moreover, this function solves the limiting equation

det D2 Qu D j´1j˛:

Hence

2.2 C ˛/.1 C ˛/ˇ1ˇ2 D 1;

which implies (3.13). �
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4 Negative Powers

In this section we consider the equation

(4.1) det D2u D jxj˛ in � � R
2

in the negative range of exponents �2 < ˛ < 0. We will assume, throughout the
section, that 0 2 � and

u.0/ D 0; ru.0/ D 0:

Our goal is to prove the following proposition, which shows that solutions of
equation (4.1) admit radial behavior only near the origin. This is in contrast with
the case 0 < ˛ < 1, where both the radial behavior and the nonradial behavior
(3.13) occur (see Proposition 3.3).

PROPOSITION 4.1 There exist positive constants c and C (depending on u/ such

that

c jxj2C ˛
2 � u.x/ � C jxj2C ˛

2

near the origin.

We distinguish two cases depending on whether the measure jxj˛ dx is dou-
bling with respect to all ellipsoids (see the discussion in Section 2).

Case 1: �1 < ˛ < 0. In this case the measure

� WD jxj˛ dx

is doubling with respect to ellipsoids. Indeed, it suffices to show that there exists
c > 0 such that for any ellipsoid E, we have

(4.2) �.x0 C E/ � c�.x0 C 2E/:

Since �1 < ˛, the density
.x2

1 C x2
2/

˛
2

is doubling on each line x2 D const with the doubling constant independent of x2.
This implies that the density � D jxj˛ dx is doubling with respect to any line in
the plane. From this and the fact that x0 C 2E can be covered with translates of
x0 C E

2
over a finite number of directions, we obtain (4.2).

From Theorem 2.2, there exists a matrix At such that St � At , i.e.,

(4.3) k�1
0 AtBr � St � k0AtBr ;

with
r D t .�.St //

� 1
2 ; det At D 1:

In this case Proposition 4.1 follows from the lemma below.

LEMMA 4.2 There exist universal constants C > 0 large and ı > 0 such that if

St � At with jAt j > C , then

(4.4) Sıt � Aıt with jAıt j � jAt j
2

:

In particular, jAt j � C jAt0
j if t � t0.
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PROOF: We will use a compactness argument. Assume, by contradiction, that
the conclusion of the lemma is not true. Then we can find a sequence of solutions
uk of (4.1) with sections S

uk

tk
at 0 such that S

uk

tk
� A

uk

tk
with jAuk

tk
j ! 1 and

(4.4) does not hold for any ı > 0.
Without loss of generality, we may assume that

(4.5) A
uk

tk
WD
�

ak 0

0 a�1
k

�

; ak ! 1:

We renormalize the functions uk as

(4.6) vk.x/ WD 1

tk
uk.rkA

uk

tk
x/

so that
det D2vk D ckjAuk

tk
xj˛ D c0

kjx2
1 C a�4

k x2
2 j ˛

2

and
k�1

0 B1 � S
vk

1 � k0B1:

Since S
uk

tk
� A

uk

tk
, i.e., rk D tk.�.S

uk

tk
//�1=2, the Monge-Ampère measure

det D2vk dx satisfies

det D2vk.S
vk

1 / D r2
k t�2

k �.S
uk

tk
/ D 1:

Hence, as k ! 1 we can find a subsequence of the vk’s that converge uniformly
to a function v that satisfies

(4.7) det D2v D cjx1j˛ dx

and
k�1

0 B1 � Sv
1 � k0B1; det D2vk.Sv

1 / D 1:

Obviously the constant c in (4.7) is bounded from above and below by univer-
sal constants. Since the right-hand side of (4.7) does not depend on x2 and v is
constant on @Sv

1 , Pogorelov’s interior estimate holds and we obtain the bound

v22 < C1 in .2k0/�1B1:

This implies that the section Sv
ı

contains a segment of size ı1=2 in the x2-direction,
namely,

(4.8) fx1 D 0; jx2j � .ı=C1/
1
2 g � Sv

ı :

From Theorem 2.2 there exists

(4.9) Aı D
�

a 0

b a�1

�

; 0 < a < C.ı/; jbj � C.ı/;

with

(4.10) k�1
0 AıBr � Sv

ı � k0AıBr

and

(4.11) r D ıŒdet D2v.Sv
ı /��

1
2 :
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From (4.8) and (4.10) we have
r

a
� c1ı

1
2

while from (4.9), (4.10), and (4.11) we get

ı2 D r2 det D2v.Sv
ı / � c2r2 r

a
.ar/1C˛:

From the last two inequalities we obtain

(4.12) a � C2ı
�˛

4.2C˛/ � 1

4
for ı small:

Since the vk’s converge uniformly to v, their ı-sections also converge uni-
formly; thus

S
vk

ı
� Aı for k large

and hence
S

uk

ıtk
� A

uk

tk
Aı :

From (4.5), (4.9), and (4.12) we conclude

jAuk

tk
Aı j �

jAuk

tk
j

3
for k large,

which implies that the function uk satisfies (4.4), a contradiction. �

Case 2: �2 < ˛ � �1. In this case the measure � is not doubling with respect
to any convex set but it is still doubling with respect to convex sets that have the
origin as the center of mass.

We proceed as in the first case but replace the sections St with the sections Tt

that have 0 as the center of mass. The existence of these sections follows from the
following lemma, due to L. Caffarelli [3, lemma 2].

LEMMA 4.3 (Centered Sections) Let u W R
n ! R [ f1g be a globally defined

convex function (we set u D 1 outside �/. Also, assume u is bounded in a

neighborhood of 0 and the graph of u does not contain an entire line. Then for

each t > 0, there exists a “t -section” Tt centered at 0; that is, there exists pt such

that the convex set

Tt WD fu.x/ < u.0/ C pt � x C tg
is bounded and has 0 as a center of mass.

Using the lemma above, one can obtain Theorem 2.2 (similarly as in [2]), with
St is replaced by Tt : for every Tt � � as above, there exists a unitary matrix At

such that

(4.13) k�1
0 AtBr � Tt � k0AtBr

with r D t .�.Tt //
�1=2. If (4.13) is satisfied, we write Tt � At :



18 P. DASKALOPOULOS AND O. SAVIN

Next we will show the analogue of Lemma 4.2 for this case.

LEMMA 4.4 There exist universal constants C > 0 large and ı > 0 such that if

Tt � At with jAt j > C , then Tıt � Tt and

(4.14) Tıt � Aıt with jAıt j � jAt j
2

:

PROOF: We argue similarly as in the proof of Lemma 4.2. We assume by
contradiction that the conclusion does not hold for a sequence of functions uk .
Proceeding as in the proof of Lemma 4.2, we work with the renormalizations vk of
uk defined by (4.6), which satisfy

det D2vk D c0
kjx2

1 C a�4
k x2

2 j˛=2 DW �k

and

k�1
0 B1 � T

vk

1 � k0B1; det D2vk.T
vk

1 / D 1:

As k ! 1, we can find a subsequence of the vk’s that converge uniformly
to a function v. Since ak ! 1 and �2 < ˛ � �1, the corresponding mea-
sures �k , when restricted to a line x2 D const, converge weakly to the mea-
sure cjx2j1C˛ıfx1D0g. This implies that the measures �k converge weakly to
cjx2j1C˛ dH1

fx1D0g
, where dH1 is the one-dimensional Hausdorff measure. The

limit function v therefore satisfies

det D2v D cjx2j1C˛ dH1
fx1D0g;(4.15)

k�1
0 B1 � T v

1 � k0B1; det D2vk.T v
1 / D 1:

Clearly c is bounded from above and below by universal constants.
We notice that the measure dH1

fx1D0g
is doubling with respect to any convex

set with the center of mass on the line fx1 D 0g. Using the same methods as in
the case of the classical Monge-Ampère equation, one can show that the graph of v

contains no line segments when restricted to fx1 D 0g (see Lemma 4.5 below).
From this and the fact that v is the convex envelope of its restriction on @T v

1 and
fx1 D 0g (see (4.15)), we conclude that there exist two supporting planes with
slopes ˇe2 ˙
e1 to the graph of v at 0. Moreover, it follows from the compactness
of the equation (4.15) that 
 can be chosen to be universal, and the sections T v

ı
satisfy

T v
ı � .2k0/�1B1

when ı � ı0, a universal constant. We have

(4.16) T v
ı � fjx1j � c.
/ıg:

Let Aı be of the form (4.9) with

k�1
0 AıBr � T v

ı � k0AıBr
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and

(4.17) r D ıŒdet D2v.T v
ı /��

1
2 � ı

�

r

a

�1C ˛
2

:

On the other hand, (4.16) implies

a r � cı;

which together with (4.17) yields

a � cı
2C˛
6C˛ � 1

4

for ı small enough. Now the contradiction follows as in Lemma 4.2. �

LEMMA 4.5 If v satisfies (4.15), then

v0.t/ WD v.0; t/

is strictly convex.

PROOF: Assume that the conclusion does not hold. Then, after subtracting a
linear function, we can assume that

v � 0 in T v
1

and
v0.t/ D 0 for t � 0; v0.t/ > 0 for t > 0:

Let
l" WD "t C a"

be such that

(4.18) 0 2 fv0 < l"g D .b"; c"/ ! 0;
c"

jb"j ! 0 as " ! 0:

We consider the linear function p" in R
2 such that fu < p"g has center of mass

on fx1 D 0g and p" D l" on fx1 D 0g. We claim that for " small, fu < p"g
is compactly included in T v

1 . Otherwise, the graph of v would contain a segment
passing through 0; hence v D 0 is an open set that intersects the line fx1 D 0g
and we contradict (4.15). Since dH1

fx1D0g
is doubling with respect to the center

of mass of fu < p"g, we conclude that this set is also balanced around 0, which
contradicts (4.18). �

We are now in a position to exhibit the final steps of the proof of Proposition 4.1
in the case �2 < ˛ � �1.

PROOF OF PROPOSITION 4.1: We choose t0 small such that Tt0
� �. The

existence of t0 follows from the fact that the graph of u cannot contain any line
segments.
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From Lemma 4.4 we conclude that there exists a large constant K > 0 depend-
ing on the eccentricity of Tt0

such that

Tt � At with jAt j � K for all t � ıt0:

Claim. There exists 
 depending on K such that S
t � Tt :

To show this, first observe that by rescaling we can assume that t D 1. We
use the compactness of the problem for fixed K. If there exist a sequence 
k ! 0

and functions uk for which the conclusion does not hold, then the graph of the
limiting function u1 (of a subsequence of fukg) contains a line segment. This is
a contradiction since u1 solves the Monge-Ampère equation (4.1), which proves
the claim.

If t D 1, then from simple geometrical considerations and the claim above we
obtain


k�1
0 K�1B1 � S
 � k0KB1:

By rescaling, we find that St has bounded eccentricity for t small, and the propo-
sition is proved. �

5 Homogenous Solutions and Blowup Limits

We will consider in this section homogeneous solutions of the equation

det D2w.x/ D jxj˛ in R
2

for ˛ > �2, namely, solutions of the form

w.x/ D r2C ˛
2 g.�/ WD rˇ g; ˇ D 2 C ˛

2
:

In the polar system of coordinates

D2w.x/ D rˇ�2

�

ˇ.ˇ � 1/g .ˇ � 1/g0

.ˇ � 1/g0 g00 C ˇg

�

:

Thus, the function g satisfies the following ODE:

(5.1) ˇg.g00 C ˇg/ � .ˇ � 1/.g0/2 D 1

ˇ � 1
:

We consider g as the new variable in a maximal interval Œa; b� where g is in-
creasing, and define h on Œg.a/; g.b/� as g0 D

p

2h.g/. We have g00 D h0.g/; thus
h satisfies

ˇt.h0.t/ C ˇt/ � 2.ˇ � 1/h.t/ D 1

ˇ � 1
:

Solving for h we obtain

(5.2) 2hc.t/ D ct2.1� 1
ˇ

/ � ˇ2t2 � 1

.ˇ � 1/2

for some c positive.
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The function g on Œa; b� is the inverse of

a C
Z �

g.a/

1
p

2hc.t/
dt;

and the length of the interval Œa; b� is given by

(5.3) b � a D
Z

fhc>0g

1
p

2hc.t/
dt WD Ic :

Solutions of (5.1) are periodic, of period 2.b � a/; thus a global solution g on the
circle exists if and only if Ic equals �

k
for some integer k.

Next we investigate the existence of such solutions. First we notice that for any
quadratic polynomial f .s/ D �l2s2 C d1s C d2 of opening �2l2, we have

(5.4)
Z

ff >0g

1
p

f .s/
ds D �

l
:

Therefore if �.s/ denotes any convex function that intersects the parabola l2s2

at two points, and we set f .s/ D �l2s2 C d1s C d2, with d1s C d2 denoting the
line through the intersection points between �.s/ and l2s2, then

Z

f�.s/�l2s2>0g

1
p

�.s/ � l2s2
ds �

Z

ff >0g

1
p

f .s/
ds D �

l
:

If �.s/ is concave, we obtain the opposite inequality.
Applying the above to hc.s/, we find that depending on the convexity of the

first term in (5.2), we obtain that the integral Ic in (5.3) is less (or greater) than �
ˇ

for ˇ < 2 (or ˇ > 2), i.e.,

(5.5) Ic <
�

ˇ
if ˇ < 2 and Ic >

�

ˇ
if ˇ > 2:

On the other hand, by performing the change of variable t D sˇ=2 in the integral
(5.3), we obtain the integral (5.4) with

f .s/ WD c1s � 4s2 � c2s2�ˇ

for some positive constants c1 and c2 depending on c. Hence, depending on the
convexity of the last term of f , the integral Ic is greater (or less) than �

2
for ˇ < 2

(or ˇ > 2), i.e.,

(5.6) Ic >
�

2
if ˇ < 2 and Ic <

�

2
if ˇ > 2:

Let �2 < ˛ < 0, or equivalently 1 < ˇ < 2. It follows from (5.5) and (5.6)
that �

2
< Ic < �

ˇ
; hence Ic D �

k
for an integral k only when k D 1. This readily

implies that the only homogeneous solution in this case is the radial one.
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Assume next that ˛ > 0. We will now show that in this case, depending on
the value of ˇ, more homogeneous solutions may exist. To this end, denote by
c0 D c0.˛/ the value of c for which the two functions

f1.t/ D ct2.1� 1
ˇ

/ and f2.t/ D ˇ2t2 C 1

.ˇ � 1/2

become tangent. When c < c0, then the set where hc.t/ > 0 is empty. As c ! cC
0

the set ft W hc.t/ > 0g approaches the point t0 at which the two functions f1.t/

and f2.t/ become tangent when c D c0. Since f 0
1.t0/ D f 0

2.t0/ when c D c0, the
point t0 satisfies

2c

�

1 � 1

ˇ

�

t
1�2=ˇ
0 D 2ˇ2t0;

which implies that

c

�

1 � 1

ˇ

�

t
�2=ˇ
0 D ˇ2:

As c ! cC
0 , f1.t/ behaves as its Taylor quadratic polynomial, namely,

f1.t/ � f .t0/ C f 0.t0/ t2 C f 00.t0/

2
t2

and
f 00.t0/

2
D c

�

1 � 1

ˇ

��

1 � 2

ˇ

�

t
�2=ˇ
0 D ˇ2

�

1 � 2

ˇ

�

:

We conclude that, as c ! cC
0 , .hc/C behaves as a quadratic polynomial of opening

�4ˇ, and thus Ic converges to �=
p

2ˇ. Hence
�

�
p

2ˇ
;
�

2

�

� fIc W c > c0g and also fIc W c > c0g �
�

�

ˇ
;
�

2

�

by (5.5) and (5.6).
Summarizing the discussion above yields the following:

PROPOSITION 5.1 Homogenous solutions to (1.1) are periodic on the unit circle.

(i) If �2 < ˛ < 0, then the only homogeneous solution is the radial one.

(ii) If ˛ > 0, then there exists a homogeneous solution of principal period 2�
k

if and only if
�

k
2 fIc ; c > c0.˛/g:

In addition,
�

�
p

2ˇ
;
�

2

�

� fIc ; c > c0g �
�

�

ˇ
;
�

2

�

with ˇ D 2 C ˛

2
:

Using the proposition above, we will now prove Theorem 1.4. We begin with
two useful remarks.
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Remark 5.2. From (5.2) we see that any point in the positive quadrant can be writ-
ten as .t;

p
2hc/ for a suitable c. Hence, given any point x0 2 @B1 and any positive

symmetric unimodular matrix A, there exists a homogeneous solution w in a neigh-
borhood of x0 such that D2w.x0/ D A.

Remark 5.3. Equation (5.2) gives

Œ.h0 C ˇt/ C ˇ.ˇ � 1/t � t
2
ˇ

�1 D c

�

1 � 1

ˇ

�

I

hence �wŒr2wrr �2=ˇ�1 is constant for any local homogeneous solution w. This
quantity will play a crucial role in the proof of Theorem 1.4.

DEFINITION 5.4 For any solution u of equation (1.1), we define

Ju.x/ WD .�u/.r2urr/
 ; 
 WD 2

ˇ
� 1:

Remark 5.5. The quantity Ju.x/ remains invariant under the homogeneous scaling

v.x/ D r�ˇ u.rx/; Jv.x/ D Ju.rx/:

We denote by J0 the constant obtained when we evaluate J on the radial solu-
tion u0 of (1.1).

PROPOSITION 5.6 The function jJu � J0j cannot have an interior maximum in

� n f0g unless it is constant.

PROOF: We compute the linearized operator uij Mij for

M D log Ju D log.�u/ C 
 log.xixj uij /

at a point x 2 � n f0g where Ju.x/ ¤ J0.
By choosing an appropriate system of coordinates and by rescaling, we can

assume that jxj D 1 and D2u is diagonal. By differentiating the equation (1.1)
twice, we obtain

(5.7) ui iukii D ˛xk

and
ui iukli i D ui iujj ukij ulij C ˛.ıl

k � 2xkxl/:

Since the linearized equation of each second derivative of u depends on D3u, D2u,
and x, we see that

(5.8) uij Mij D H.D3u; D2u; x/

where H is a quadratic polynomial in D3u for fixed D2u > 0 and x.
Let w denote the (local) homogeneous solution for which D2u.x/ D D2w.x/.

Since Mw D log Jw is constant, we have

H.D3w; D2w; � / D 0

in a neighborhood of x.
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Claim. We have
kD3u.x/ � D3w.x/k � C jrM j

with the constant C depending on D2u and x.
To prove this claim, we obtain from (5.7) and the equalities

Mk D ui ik

�u
C 


xixj uijk C 2xiuik

xixj uij

the following system for the third derivatives of u:

0

B

B

@

1 0 1 0

0 1 0 1

b1 d1 b2 0

0 b1 d2 b2

1

C

C

A

0

B

B

B

B

@

u111

u11

u112

u11

u221

u22

u222

u22

1

C

C

C

C

A

D

0

B

B

B

@

˛x1

˛x2

M1 � 2
 x1u11

urr

M2 � 2
 x2u22

urr

1

C

C

C

A

and

bi D ui i

�u
C 


x2
i ui i

urr
; di D 2
ui i

x1x2

urr
:

The third-order derivatives of w solve the same system but with no dependence
on M in the right-hand side vector (since the corresponding M for w is constant).

It is enough to show that the determinant of the third-order derivatives coeffi-
cient matrix above is positive. This determinant is equal to

d1d2 C .b1 � b2/2 D 4
2

�

x1x2

urr

�2

C .b1 � b2/2

and can vanish only if one of the coordinates, say, x2 D 0, and b1 D b2, i.e.,

u2
11 D 1 � 


1 C 

D ˇ � 1:

This implies that J.x/ D J0, which is a contradiction. Thus, the determinant is
positive and the claim is proved.

Since H depends quadratically on D3u and D2u D D2w at x, the claim above
implies that

jH.D3u; D2u; x/j D jH.D3u; D2u; x/ � H.D3w; D2u; x/j
� C.x; D2u/.jrM j C jrM j2/:

Hence (5.8) implies that on the set where J.x/ ¤ J0, there exists a smooth function
C.x/ depending on u such that

juij Mij j � C.x/.jrM j C jrM j2/:

From the strong maximum principle, we conclude that M cannot have a local max-
imum or minimum in this set unless it is constant. With this the proposition is
proved. �

Theorem 1.4 will follow from the proposition below.
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PROPOSITION 5.7 Suppose that u is a solution u of (1.1), with ˛ > �2, which

satisfies

(5.9) cjxjˇ � u.x/ � C jxjˇ ; ˇ D 2 C ˛

2
:

Then the limit

Ju.0/ WD lim
x!0

Ju.x/

exists. Moreover, if for a sequence of rk ! 0 the blowup solutions

vrk
WD r

�ˇ

k
u.rkx/

converge uniformly on compact sets to the solution w, then w is homogeneous of

degree ˇ with Jw D Ju.0/.

PROOF: From (5.9) we find that as x ! 0, Ju.x/ is bounded away from 0 and
1 by constants depending on c and C . We will first show that limx!0 Ju.x/ D
J.0/ exists.

We may assume, without loss of generality, that

lim sup
x!0

Ju.x/ WD k > J0:

Let xi be a sequence of points for which lim sup is achieved. The blowup solu-
tions vri

, ri D jxi j, have a subsequence that converges uniformly on compact sets
of R

2 to a solution v. Moreover, there exists a point y on the unit circle for which

Jv.y/ D k � lim sup
x!0

JvI

hence, by Proposition 5.6, Jv is constant.
This argument also shows that if

Ju.´/ � k � " then Ju.x/ � k � ı."/ on the circle jxj D j´j:
Thus, if there exists a sequence of points yj ! 0 with

lim
yj !0

Ju.yj / < k;

then Ju would have an interior maximum in the annulus fx W jyj j � jxj � jyj 0 jg
that contains one of the points xi given above, a contradiction. This shows that
limx!0 Ju.x/ exists.

It remains to prove that if Jv is constant, then v is homogeneous. It suffices to
show that D2v is homogeneous of degree ˇ � 2, or more precisely that for each
second derivative vij , we have

(5.10) x � rvij D .ˇ � 2/vij :

To this end, for a fixed point x, we consider the homogeneous solution w with
D2w.x/ D D2v.x/. Since

rJv.x/ D rJw.x/ D 0;
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the third derivatives of v and w solve the same system. We have seen in the proof
of Proposition 5.6 that this system is solvable provided Jv ¤ J0. Thus D3v.x/ D
D3w.x/ if Jv ¤ J0. Since (5.10) is obviously true for w, this implies that the
equality holds for u as well.

If Jv D J0, we denote by � the set where D2u.x/ does not coincide with the
Hessian of the radial solution. From the proof of Proposition 5.6, we still obtain
D3v.x/ D D3w.x/ if x 2 � , and by continuity (5.10) holds for x 2 N� . If x is in
the open set N�c , then D2v coincides with D2u0 and (5.10) is again satisfied. This
finishes the proof of the proposition. �

PROOF OF THEOREM 1.4: The proof of the theorem readily follows from Pro-
positions 4.1, 5.1, and 5.7. �

6 Proof of Theorem 1.3

We consider the Dirichlet problem

(6.1)

(

det D2u D jxj˛ in B1

u D u0 � " cos.2�/ on @B1

in the range of exponents ˛ > 0. Here

u0.x/ D c˛ jxjˇ ; ˇ D 2 C ˛

2
;

denotes the radial solution of the equation, i.e., det D2u0 D jxj˛. We write the
solution as

(6.2) u D u0 � "v:

Heuristically, if " is small, v satisfies the linearized equation at u0, namely,

.D2u0/�1 W D2v D 0;

where we use the notation A W B D
P

ij aij bij for the Frobenius inner product
between two n � n matrices A and B .

At any point x0 2 B1, we denote by � and � the unit normal (radial) and
unit tangential direction, respectively, to the circle jxj D jx0j at x0. In .�; �/

coordinates,

D2u0 D c˛rˇ�2

�

ˇ.ˇ � 1/ 0

0 ˇ

�

I

hence v satisfies the equation

v�� C .ˇ � 1/v�� D 0:

Solving this equation with boundary data v D cos.2�/, we obtain the solution

v D r� cos.2�/

with
�.� � 1/ C .ˇ � 1/.� � 4/ D 0:



HOMOGENEOUS MONGE-AMPÈRE EQUATIONS 27

Solving the quadratic equation with respect to � gives

� D 2 � ˇ ˙
p

ˇ2 C 12ˇ � 12

2
:

Since ˇ WD 2 C ˛
2

> 2, the only acceptable solution is

� D 2 � ˇ C
p

ˇ2 C 12ˇ � 12

2
;

and it satisfies

(6.3) 2 < � < ˇ;

which suggests that close to the origin the perturbation term "v dominates u0.
We wish to show that the solution u of the Dirichlet problem (6.1) admits at the

origin the nonradial behavior (1.6) if " � "0 with "0 sufficiently small. We will
argue by contradiction.

Assume that u has the radial behavior

c0 jxjˇ � u.x/ � C0jxjˇ

with c0 and C0 universal constants. By rescaling, we deduce that

cI � jxj2�ˇ D2u.x/ � CI

with I denoting the identity matrix.
The function v that is defined by (6.2) satisfies

jvj � 1; v D cos.2�/ on @B1;

and solves the equation aij vij D 0 with

A D .aij / D
Z 1

0

.tD2u0 C .1 � t /D2u/�1 dt

D
Z 1

0

.D2u0 C ".t � 1/D2v/�1 dt:

Hence

(6.4) cI � rˇ�2A � CI:

The solution u has bounded third-order derivatives in B1 n B1=2; thus

jD2v.x/j � C kvkL1 � C in B1 n B1=2:

By rescaling we obtain the bound

jD2v.x/j � C jxj�2:

From this we find that

rˇ�2jA � D2u�1
0 j � C "r�ˇ I
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hence v satisfies the Dirichlet problem

(6.5)

(

f ij vij D 0 in B1

v D cos.2�/ on @B1

with
F WD crˇ�2A:

Hence by (6.4),

cI � F � CI and jF � F0j � C "r�ˇ

with
F0 WD � ˝ � C .ˇ � 1/ � ˝ �:

(As before, we denote by � and � the unit normal (radial) and unit tangential direc-
tions to the circle jxj D jx0j at each point x0 2 B1.)

Also,
jvj � 1 on B1:

From the definitions of A and F we also obtain

(6.6) kr.F � F0/k � C.r0/" for jxj � r0.

Set
w WD r� cos.2�/:

Then w satisfies the equation

F0 W D2w D 0I
thus we have

jf ij wij j � C r��2 minf"r�ˇ ; 1g:
Applying the Aleksandrov maximum principle on v � w (see [4, theorem 9.1]), we
find that

jv � wj � C "ı

and therefore (see (6.6))

(6.7) jD2v � D2wj � C 0.r0/"ı for jxj � r0:

We next compute

Mu.x/ WD log.�u/ C 
 log.r2urr/; 
 WD 2

ˇ
� 1;

in terms of Mu0
for jxj � r0 with r0 small and fixed. We recall that Mu0

is constant
in x. Since u D u0 � "v, we find that

Mu.x/ D Mu0
� "

�

�v

�u0
C 


vrr

u0;rr

�

� "2

2

��

�v

�u0

�2

C 


�

vrr

u0;rr

�2�

C O."3/:
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Because

det D2u D det D2u0;

the function v satisfies the equation

�u0;rr v�� � u0;�� vrr C " det D2v D 0

or, equivalently (since u0.r/ D c˛ rˇ )

vrr C .ˇ � 1/v�� D "
r2�ˇ

c˛ˇ
det D2v:

The last equality implies that

�v

�u0
C 


vrr

u0;rr
D "

r2.2�ˇ/

c2
˛ˇ3.ˇ � 1/

det D2v;

and also that
�

�v

�u0

�2

C 


�

vrr

u0;rr

�2

D
�

1 C 1




��

�v

�u0

�2

C O."/

D � 2r2.2�ˇ/

c2
˛ˇ2.ˇ � 2/

.�v/2 C O."/:

From (6.7) and the above we conclude that

Mu.x/ D Mu0
C "2r2.2�ˇ/Œa1.� det D2w/ C a2.�w/2� C O."2Cı/

for jxj � r0, with O."2Cı/ depending on r0. The constants a1 and a2 are given by

a1 D 1

c2
˛ˇ3.ˇ � 1/

and a2 D 2

c2
˛ˇ2.ˇ � 2/

:

We recall that w.r; �/ D r� cos.2�/. Then, a direct computation shows that
each term in the square brackets above is positive. Thus the "2-term is positive and
homogeneous of degree 2.� � ˇ/ with � < ˇ (as shown in (6.3)). We conclude
from Proposition 5.6 that

lim
x!0

Mu.x/ > Mu0
:

Hence, from Proposition 5.7, the blowup limit of u at the origin cannot be u0.
On the other hand, from the symmetry of the boundary data for u, we conclude that
the function v �v.0/ has exactly two disconnected components where it is positive
(or negative). Thus the blowup limit at the origin for u has period � on the unit
circle, which contradicts Proposition 5.1. �
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7 Proof of Theorem 1.1

In this final section we will present the last steps of the proof of Theorem 1.1.
We distinguish the two different cases of behavior at the origin, (1.5) and (1.6).

Case 1: Radial Behavior. We will show that solutions of (1.1) with the radial
behavior (1.5) are C 2;˛=2.

We begin by observing that solutions of (1.1) satisfy, in B1 n B1=2, the estimate

(7.1) kD2ukC 0;1.B1nB1=2/ � C.˛/

provided that

(7.2) c.˛/jxj2C ˛
2 � u.x/ � C.˛/jxj2C ˛

2 :

For any r > 0, the rescaled functions

(7.3) ur.x/ WD r�2� ˛
2 u.rx/

solve the equation (1.1). Since u has the radial behavior (1.5) at the origin, each
function ur satisfies (7.2). Hence, applying (7.1) to ur , we obtain for x; y 2
B1 n B1=2 the estimates

jD2u.rx/ � D2u.ry/j � r
˛
2 jx � yj; jD2u.rx/j � C r

˛
2 :

The above estimates readily imply that u 2 C 2;˛=2.

Case 2: Nonradial Behavior. In the rest of the section we will show that so-
lutions of (1.1) that satisfy the nonradial behavior (1.6) are also of class C 2;ı for
some ı > 0. The idea is simple: we approximate u with quadratic polynomials in
the x2-direction. However, the proof is quite technical.

In order to simplify the constants, we assume that u solves the equation

(7.4) det D2u D 2.2 C ˛/.1 C ˛/jxj˛

instead of (1.1) and (after rescaling) that

(7.5) u.x/ D jx1j2C˛ C x2
2 C O

�

.jx1j2C˛ C x2
2/1Cı

�

as jxj ! 0:

From now on, we will denote points in R
2 with capital letters, X D .x1; x2/.

The Hölder continuity of the second-order derivatives of u follows easily from
the next proposition.

PROPOSITION 7.1 Let � > 0 be small and

Y 2 �� WD f� � jx1j2C˛ C x2
2 � 2�g:

Then there exist universal constants C and � such that in B WD B.Y; �1C˛/, we

have

kD2ukC �.B/ � C and kD2u � D2u.0/kL1.B/ � ��:
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We will show that in the sections

SX0;t WD fX W u.X/ < u.X0/ C ru.X0/ � .X � X0/ C tg
of u at the point

X0 D .0; x0/; jx0j � 2�
1
2 ;

we can approximate u by quadratic polynomials of opening 2 on vertical segments.
We begin by making the following definition:

DEFINITION 7.2 We say that u 2 Q.e; "; �/ if for any vertical segment l � �

of length less than e, there exists a quadratic polynomial Px1;l.x2/ of opening 2,
namely

Px1;l.x2/ D x2
2 C p.x1; l/x2 C r.x1; l/

such that
ju.x1; x2/ � Px1;l.x2/j � "e2 on l :

Notice that for c < 1 we have

Q.e; "; �/ � Q.ce; c�2"; �/:

The plan of the proof of Theorem 1.1 is as follows: We prove Proposition 7.1
for points Y 2 SX0;t with t � �. We first show that u belongs to some appropriate
Q classes and distinguish two cases one when t � �˛=2C1�ı1 for some fixed
ı1 > 0, and the other when t D �˛=2C1�ı1 . In the first case we use the same
method as in Lemma 3.1 and approximate the right-hand side jf .X/j˛=2 of the
rescaled Monge-Ampère equation with jx1j˛ (see Lemma 7.3). In the second case
we approximate f .X/ with a more general polynomial x2

1 C px1 C q and obtain
a better approximation (Q class) for u (Lemma 7.4).

The Hölder estimates for points Y 2 SX0;t , jx0j � �1=2, are obtained in appro-
priate sections SY;� in which all the values of jxj are comparable. In these sections
the Monge-Ampère equation is nondegenerate and the classical estimates apply.
To obtain the appropriate section SY;� , we distinguish two cases, depending on the
distance from Y to the x2-axis. If jy1j � �1=2, then we take � so that SY;� is at
a distance greater than jy1j=2 from the x2-axis (Lemma 7.5). If jy1j � �1=2, then
we take � D �.2C˛/=2 and SY;� is close enough to the x2-axis so that all its points
are at a distance comparable to �1=2 from the origin (Lemma 7.6).

In what follows we will denote by At and Dt the matrices

At D
�

a11 0

a21 a22

�

; Dt D
�

t1=.2C˛/ 0

0 t1=2

�

:

LEMMA 7.3 Let X0 D .0; x0/ with jx0j � 2�1=2, 0 < � < 1. Then, for any

ı1 > 0 and

(7.6) �
˛
2

C1�ı1 � t � �;
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there exists a small ı2 > 0, depending on ı1, such that

(7.7) SX0;t � X0 2 AtDt .� ˙ tı2/

with

(7.8) jAt � I j � tı2 :

Moreover,

u 2 Q.t
1
2 ; �ı2 ; SX0;t /:

PROOF: We begin by observing that if t D �, then the conclusion of the lemma
follows from the expansion (7.5) with matrix At D I . We will show by induction,
using at each step the approximation Lemma 3.1, that (7.7) and (7.8) hold for every
t D � tk

0 , k 2 N, which satisfies (7.6).

Assume that (7.7) and (7.8) hold for some t D � tk
0 satisfying (7.6), with At

bounded and at;11 bounded from below. Consider the rescaling

(7.9) v.X/ WD 1

t

�

u.X0 C AtDtX/ � u.X0/ � ru.X0/.AtDtX/
�

:

Since u satisfies (7.4), the function v satisfies the equation

(7.10) det D2v D 2.2 C ˛/.1 C ˛/a2
11a2

22t� ˛
2C˛ jX0 C AtDtX j˛:

Since

(7.11) jX0 C AtDtX j2 D .t
1

2C˛ a11x1/2 C .t
1

2C˛ a12x1 C t
1
2 a22x2 C x0/2

and jx0j � 2 �1=2, we conclude from the above that v satisfies

(7.12) det D2v D cjf .X/j ˛
2 ; Sv

0;1 2 � ˙ tı2 ;

with

jf .X/ � x2
1 j � C

�

�
1
2 t� 1

2C˛ C t
˛

2.2C˛/
�

� t
ı1

2.2C˛/ :

Notice that the last inequality holds if (7.6) is satisfied.
Lemma 3.1 with " D tı 0

and ı0.ı1; ˛/ > 0 small yields

Su
X0;t0t � X0 2 At0tDt0t .� ˙ .t0t /ı2/

with
At0t D AtEt ; jEt � I j � C tı2 :

Thus, (7.7) and (7.8) hold for t 0 D t t0. If t 0 � �˛=2C1�ı1 , we stop; otherwise we
continue the induction.

From (7.12) we find that

(7.13)
ˇ

ˇv � .jx1j2C˛ C x2
2/
ˇ

ˇ � C tı2 in Sv
0;1

which, together with (7.9) and (7.8), yields

u 2 Q.t
1
2 ; C �ı2 ; Su

X0;t /:

The lemma is proved by replacing ı2 with ı2=2. �
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We next examine the borderline case t D �˛=2C1�ı1 and show the better ap-
proximation (7.15) of u by quadratic polynomials in the x2-variable.

We begin by observing that the conclusion of the previous lemma implies that

SX0;t � X0 2 AtDt .� ˙ �ı2/; jAt � I j � �ı2 ;

for all �˛=2C1�ı1 � t � �.

LEMMA 7.4 Assume that, for t D �˛=2C1�ı1 and ı2 � ı1, we have

(7.14) SX0;t � X0 2 AtDt .� ˙ �ı2/; jAt � I j � �ı2 :

Then if ı1 is small and universal, we have

(7.15) u 2 Q.e; C �ı2 ; SX0; t
2
/ for all e with �

2C˛
4 � e � t

1
2 :

PROOF: Let v be the rescaling defined in (7.9). It follows from (7.10), (7.11),
and (7.14) that v satisfies

det D2v D cf .X/
˛
2 ; Sv

0;1 2 � ˙ �ı2 ;

with

jf .X/ � x2
1 � px1 � qj � t

˛
2.2C˛/ ; jpj; jqj � �

ı1
2C˛ I

thus
ˇ

ˇf .X/
˛
2 � .x2

1 C px1 C q/
˛
2

ˇ

ˇ � " WD tı0.˛/; ı0.˛/ D ˛ minf˛; 2g
4.2 C ˛/

:

Similarly, as in the proof of Lemma 3.1, we define the function w as the solution
to

det D2w D c.x2
1 C px1 C q/

˛
2 ; w D 1 on @Sv

0;1;

and obtain (see (7.13)) that

jv � wj � C "
1
2 D C t

ı0.˛/

2 and
ˇ

ˇw � .jx1j2C˛ C x2
2/
ˇ

ˇ � C �ı2 :

By considering the partial Legendre transform w�, one can deduce from the
last inequality, the bounds on jpj and jqj, and Lemma 2.4 that

jw22 � 2j � C �ı2 in Sv
0;1=2:

This implies that

w 2 Q.e; C �ı2 ; Sv
0;1=2/ for any eI

hence

v 2 Q.e; C �ı2 ; Sv
0;1=2/ for e � t

ı0.˛/

8 :
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Then, as at the end of the proof of the previous lemma, we obtain that

u 2 Q.t
1
2 e; C �ı2 ; Su

0;t=2/ for e � t
ı0.˛/

8 ;

from which the lemma follows, since

t
1
2 t

ı0.˛/

8 � �
2C˛

4

for ı1 small and universal (depending only on ˛). �

The next lemma proves Proposition 7.1 for a point Y 2 SX0;� at distance greater
than �1=2 from the x2-axis, assuming the conclusions of Lemmas 7.3 and 7.4.

LEMMA 7.5 Assume that for �˛=2C1�ı1 � t � �, we have

(7.16) SX0;t � X0 2 AtDt .� ˙ �ı2/; jAt � I j � �ı2 ;

and

u 2 Q.e; C �ı2 ; SX0; t
2
/ for some e, �

2C˛
4 � e � t

1
2 :

If

Y D .y1; y2/ 2 SX0; t
3
; 1 � jy1je� 2

2C˛ � 2;

then D2u is Hölder-continuous in the ball B WD B.Y; �1C˛/, and for some con-

stant 0 < ˇ < 1, it satisfies

(7.17) kD2ukC 0;ˇ.B/ � C and jD2u.Y / � D2u.0/j � C �ˇ :

PROOF: Consider the section Su
Y;ce2 for a small constant c. By Theorem 2.2

there exists a matrix

F WD
�

a 0

d b

�

; a; b > 0;

such that

(7.18) FB1=C0
� Su

Y;ce2 � Y � FB1; C0.˛/ > 0 universal:

Using the assumptions of the lemma and (7.18), we derive bounds on the coef-
ficients of the matrix F . Clearly

� WD c1=2e

b

satisfies the bound

(7.19)
1

2C0
� c1=2e

b
� 2:
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Since e � t1=2, the corresponding section for the rescaling v (see (7.9), (7.13))
satisfies

Sv
QY ;ce2=t

� fjx1j2C˛ C x2
2 � 3

4
g;

or, more precisely,

Sv
QY ;ce2=t

� QY �
��

e2

t

�
1

2C˛

C �
ı2

2.2C˛/

�

B1:

Thus,

D�1
t A�1

t FB1=C0
�
�

e
2

2C˛ t� 1
2C˛ C �ı3

�

B1:

The last inclusion implies the estimate

(7.20) jd j � 2C0

�

e
2

2C˛ t
˛

2.2C˛/ C �ı3 t
1
2 C a�ı3

�

� 4C0.e
2

2C˛ C a/�ı3 :

The rescaling

w.x/ WD 1

b2
u.Y C F x/

satisfies

(7.21) det D2w D a2

b2
f .x/

˛
2 ; B1=C0

� Sw
0;�2 � B1;

with

(7.22) f .x/ WD .y1 C ax1/2 C .y2 C dx1 C bx2/2

and

(7.23) jw � P 0
x1

.x2/j � �ı3 in Sw
0;�2 :

We claim that if c is chosen small and universal, then

(7.24) 2a � e
2

2C˛ � jy1j:

Indeed, otherwise from (7.21), we would deduce that

det D2w � a2C˛b�2
�

x1 C y1

a

�˛

with

.2a/2C˛b�2 � e2b�2 � c�1�2

and for small c we would contradict B1=C0
� Sw

0;�2 , since � is bounded.
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From (7.19), (7.20), (7.24), and jy2j � 4�1=2 we obtain that f .x/=y2
1 is

bounded away from 0 and 1 by universal constants, and also its derivatives are
bounded by universal constants. From (7.21) we find that

c1 � a2jy1j˛
b2

� C1;

which implies that a2C˛, jy1j2C˛, b2, and e2 are all comparable. Moreover, using
also (7.23), we have

(7.25) kD2wkC 0;1 � C; jw22 � 2j � �ı4 in
S0;�2

2
:

Hence

(7.26) jw22.x/ � w22.y/j � C �
ı4
2 jx � yj 1

2 for x; y 2
S0;�2

2
:

Also, we have

D2u.Y C F x/ D b2.F �1/T D2w.x/F �1

with

b F �1 D
�

b
a

0

�d
a

1

�

D
�

0 0

0 1

�

C O.�ı3/;

which together with (7.25) implies the second part of the conclusion (7.17).
Finally, since

jF xj � bjxj
2

� �1C˛jxj;
we obtain from (7.25) and (7.26) the estimate

jD2u.Y C F x/ � D2u.Y C Fy/j � C �
ı4
2 jx � yj 1

2 � C jF x � Fyjˇ :

This finishes the proof of the lemma. �

The next lemma proves Hölder continuity when Y is �1=2 close to the x2-axis.

LEMMA 7.6 Assume that (7.16) holds for t D �˛=2C1�ı1 ,

u 2 Q.e; �ı2 ; SX0; t
2
/ for e D �

2C˛
4

and

jx0j � �1=2

2
; Y 2 SX0; t

3
; jy1j � e

2
2C˛ :

Then the conclusion of Lemma 7.5 still holds.

PROOF: The proof is very similar to that of Lemma 7.5. The only difference is
that now the second term of f in (7.22) dominates the sum.

Indeed, since �1=2 � jy1j and jy2j � �1=2=4, the function f .x/=y2
2 is bounded

away from 0 and 1 by universal constants, and also its derivatives are bounded by
universal constants. Hence a2C˛ , y2C˛

2 , b2, and e2 are all comparable and the rest
of the proof is the same. �
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PROOF OF PROPOSITION 7.1: For Y 2 �� we consider the section Su
Y;� that

becomes tangent to the x2-axis at X0 D .0; x0/. Since jxj˛ dx is doubling, there
exists a universal constant C1 such that

Y 2 Su
X0;t=3; jx0j � 2�

1
2 ; t WD C1� � C2�:

We distinguish the following three cases:

(1) If t � t0 WD �˛=2C1�ı1 , then the proposition follows from Lemmas 7.3
and 7.5 with

e D jy1j
2C˛

2 � c1t
1
2 :

(2) If t � t0 and jy1j � �1=2, then we apply Lemmas 7.4 and 7.5 for SX0;t0

with e defined as above.
(3) If t � t0 and jy1j � �1=2, then we apply Lemma 7.4 and Lemma 7.6. We

remark that the hypothesis jx0j � �1=2=2 is satisfied because Y 2 ��.

�
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