REGULARITY OF NONLOCAL MINIMAL CONES IN DIMENSION 2

OVIDIU SAVIN AND ENRICO VALDINOCI

Abstract

We show that the only nonlocal s-minimal cones in \mathbb{R}^{2} are the trivial ones for all $s \in(0,1)$. As a consequence we obtain that the singular set of a nonlocal minimal surface has at most $n-3$ Hausdorff dimension.

1. Introduction

Nonlocal minimal surfaces were introduced in [2] as boundaries of measurable sets E whose characteristic function χ_{E} minimizes a certain $H^{s / 2}$ norm. More precisely, for any $s \in(0,1)$, the nonlocal s-perimeter functional $\operatorname{Per}_{s}(E, \Omega)$ of a measurable set E in an open set $\Omega \subset \mathbb{R}^{n}$ is defined as the Ω-contribution of χ_{E} in $\left\|\chi_{E}\right\|_{H^{s / 2}}$, that is

$$
\begin{equation*}
\operatorname{Per}_{s}(E, \Omega):=L\left(E \cap \Omega, \mathbb{R}^{n} \backslash E\right)+L(E \backslash \Omega, \Omega \backslash E) \tag{1}
\end{equation*}
$$

where $L(A, B)$ denotes the double integral

$$
L(A, B):=\int_{A} \int_{B} \frac{d x d y}{|x-y|^{n+s}}, \quad A, B \text { measurable sets. }
$$

A set E is s-minimal in Ω if $\operatorname{Per}_{s}(E, \Omega)$ is finite and

$$
\operatorname{Per}_{s}(E, \Omega) \leqslant \operatorname{Per}_{s}(F, \Omega)
$$

for any measurable set F for which $E \backslash \Omega=F \backslash \Omega$.
We say that E is s-minimal in \mathbb{R}^{n} if it is s-minimal in any ball B_{R} for any $R>0$. The boundary of s-minimal sets are referred to as nonlocal s-minimal surfaces.

The theory of nonlocal minimal surfaces developed in [2] is similar to the theory of standard minimal surfaces. In fact as $s \rightarrow 1^{-}$, the s-minimal surfaces converge to the classical minimal surfaces and the functional in (1) (after a multiplication by a factor of the order of $(1-s)$) Gamma-converges to the classical perimeter functional (see $[3,1]$).

In [2] it was shown that nonlocal s-minimal surfaces are $C^{1, \alpha}$ outside a singular set of Hausdorff dimension $n-2$. The precise dimension of the singular set is determined by the problem of existence in low dimensions of a nontrivial global s-minimal cones (i.e. an s-minimal set E such that $t E=E$ for any $t>0$). In the case of classical minimal surfaces Simons theorem states that the only global minimal cones in dimension $n \leqslant 7$ must be half-planes, which implies that the Hausdorff dimension of the singular set of a minimal surface in \mathbb{R}^{n} is $n-8$. In [4], the authors used these results to show that if s is sufficiently close to 1 the same holds for s-minimal surfaces i.e. global s-minimal cones must be half-planes if $n \leqslant 7$ and the Hausdorff dimension of the singular set is $n-8$.

Given the nonlocal character of the functional in (1), it seems more difficult to analyze global s minimal cones for general values of $s \in(0,1)$. The purpose of this short paper is to show that that there are no nontrivial s-minimal cones in the plane. Our theorem is the following.

Theorem 1. If E is an s-minimal cone in \mathbb{R}^{2}, then E is a half-plane.

From Theorem 1 above and Theorem 9.4 of [2], we obtain that s-minimal sets in the plane are locally $C^{1, \alpha}$.
Corollary 1. If E is a s-minimal set in $\Omega \subset \mathbb{R}^{2}$, then $(\partial E) \cap \Omega$ is a $C^{1, \alpha}$-curve.
In higher dimensions, the result of Theorem 1 and the dimensional reduction performed in [2] imply that any nonlocal s-minimal surface in \mathbb{R}^{n} is locally $C^{1, \alpha}$ outside a singular set of Hausdorff dimension $n-3$.
Corollary 2. Let ∂E be a nonlocal s-minimal surface in $\Omega \subset \mathbb{R}^{n}$ and let $\Sigma_{E} \subset \partial E \cap \Omega$ denote its singular set. Then $\mathcal{H}^{d}\left(\Sigma_{E}\right)=0$ for any $d>n-3$.

The idea of the proof of Theorem 1 is the following. If $E \subset \mathbb{R}^{2}$ is a s-minimal cone then we construct a set \tilde{E} as a translation of E in $B_{R / 2}$ which coincides with E outside B_{R}. Then the difference between the energies (of the extension) of \tilde{E} and E tends to 0 as $R \rightarrow \infty$. This implies that also the energy of $E \cap \tilde{E}$ is arbitrarily close to the energy of E. On the other hand if E is not a half-plane the set $\tilde{E} \cap E$ can be modified locally to decrease its energy by a fixed small amount and we reach a contradiction.

In the next section we introduce some notation and obtain the perturbative estimates that are needed for the proof of Theorem 1 in Section 3.

2. Perturbative estimates

We start by introducing some notation.
Notation.
We denote points in \mathbb{R}^{n} by lower case letters, such as $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and points in $\mathbb{R}_{+}^{n+1}:=$ $\mathbb{R}^{n} \times(0,+\infty)$ by upper case letters, such as $X=\left(x, x_{n+1}\right)=\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}_{+}^{n+1}$.

The open ball in \mathbb{R}^{n+1} of radius R and center 0 is denoted by B_{R}. Also we denote by $B_{R}^{+}:=B_{R} \cap \mathbb{R}_{+}^{n+1}$ the open half-ball in \mathbb{R}^{n+1} and by $S_{+}^{n}:=S^{n} \cap \mathbb{R}_{+}^{n+1}$ the unit half-sphere.

The fractional parameter $s \in(0,1)$ will be fixed throughout this paper; we also set

$$
a:=1-s \in(0,1) .
$$

The standard Euclidean base of \mathbb{R}^{n+1} is denoted by $\left\{e_{1}, \ldots, e_{n+1}\right\}$. Whenever there is no possibility of confusion we identify \mathbb{R}^{n} with the hyperplane $\mathbb{R}^{n} \times\{0\} \subset \mathbb{R}^{n+1}$.

The transpose of a square matrix A will be denoted by A^{T}, and the transpose of a row vector V is the column vector denoted by V^{T}. We denote by I the identity matrix in \mathbb{R}^{n+1}.

We introduce the functional

$$
\begin{equation*}
\mathcal{E}_{R}(u):=\int_{B_{R}^{+}}|\nabla u(X)|^{2} x_{n+1}^{a} d X . \tag{2}
\end{equation*}
$$

which is related to the s-minimal sets by an extension problem, as shown in Section 7 of [2]. More precisely, given a set $E \subseteq \mathbb{R}^{n}$ with locally finite s-perimeter, we can associate to it uniquely its extension function $u: \mathbb{R}_{+}^{n+1} \rightarrow \mathbb{R}$ whose trace on $\mathbb{R}^{n} \times\{0\}$ is given by $\chi_{E}-\chi_{\mathbb{R}^{n} \backslash E}$ and which minimizes the energy functional in (2) for any $R>0$.

We recall (see Proposition 7.3 of [2]) that E is s-minimal in \mathbb{R}^{n} if and only if its extension u is minimal for the energy in (2) under compact perturbations whose trace in $\mathbb{R}^{n} \times\{0\}$ takes the values ± 1. More precisely, for any $R>0$,

$$
\begin{equation*}
\mathcal{E}_{R}(u) \leqslant \mathcal{E}_{R}(v) \tag{3}
\end{equation*}
$$

for any v that agrees with u on $\partial B_{R}^{+} \cap\left\{x_{n+1}>0\right\}$ and whose trace on $\mathbb{R}^{n} \times\{0\}$ is given by $\chi_{F}-\chi_{\mathbb{R}^{n} \backslash F}$ for any measurable set F which is a compact perturbation of E in B_{R}.

Next we estimate the variation of the functional in (2) with respect to horizontal domain perturbations. For this we introduce a standard cutoff function

$$
\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n+1}\right) \text {, with } \varphi(X)=1 \text { if }|X| \leqslant 1 / 2 \text { and } \varphi(X)=0 \text { if }|X| \geqslant 3 / 4 .
$$

Given $R>0$, we let

$$
\begin{equation*}
Y:=X+\varphi(X / R) e_{1} . \tag{4}
\end{equation*}
$$

Then we have that $X \mapsto Y=Y(X)$ is a diffeomorphism of \mathbb{R}_{+}^{n+1} as long as R is sufficiently large (possibly in dependence of φ).

Given a measurable function $u: \mathbb{R}_{+}^{n+1} \rightarrow \mathbb{R}$, we define

$$
\begin{equation*}
u_{R}^{+}(Y):=u(X) . \tag{5}
\end{equation*}
$$

Similarly, by switching e_{1} with $-e_{1}$ (or φ with $-\varphi$ in (4)), we can define $u_{R}^{-}(Y)$.
In the next lemma we estimate a discrete second variation for the energy $\mathcal{E}_{R}(u)$.
Lemma 1. Suppose that u is homogeneous of degree zero and $\mathcal{E}_{R}(u)<+\infty$. Then

$$
\begin{equation*}
\left|\mathcal{E}_{R}\left(u_{R}^{+}\right)+\mathcal{E}_{R}\left(u_{R}^{-}\right)-2 \mathcal{E}_{R}(u)\right| \leqslant C R^{n-3+a}, \tag{6}
\end{equation*}
$$

for a suitable $C \geqslant 0$, depending on φ and u.
Proof. We start with the following observation. Let $a=\left(a_{1}, \ldots, a_{n+1}\right) \in \mathbb{R}^{n+1}$ and

$$
A:=\left(\begin{array}{cccc}
a_{1} & \ldots & \ldots & a_{n+1} \\
0 & \ldots & \ldots & 0 \\
& \ddots & & \\
0 & \ldots & \ldots & 0
\end{array}\right)
$$

with $1+a_{1} \neq 0$. Then a direct computation shows that

$$
\begin{equation*}
(I+A)^{-1}=I-\frac{1}{1+a_{1}} A=I-\frac{A}{\operatorname{det}(I+A)} \tag{7}
\end{equation*}
$$

Now, we define

$$
\chi_{R}(X):=\left\{\begin{array}{cc}
1 & \text { if } R / 2 \leqslant|X| \leqslant R, \\
0 & \text { otherwise }
\end{array}\right.
$$

and

$$
\mathcal{M}(X):=\frac{1}{R}\left(\begin{array}{cccc}
\partial_{1} \varphi(X / R) & \ldots & \ldots & \partial_{n+1} \varphi(X / R) \\
0 & \ldots & \ldots & 0 \\
& \ddots & & \\
0 & \ldots & \ldots & 0
\end{array}\right)
$$

Notice that

$$
\begin{equation*}
\mathcal{M}=O(1 / R) \chi_{R} . \tag{8}
\end{equation*}
$$

Let now

$$
\kappa(X):=\left|\operatorname{det} D_{X} Y(X)\right|=\operatorname{det}(I+\mathcal{M}(X))=1+\frac{\partial_{1} \varphi(X / R)}{R}=1+\operatorname{tr} \mathcal{M}(X) .
$$

By (7), we see that

$$
\begin{equation*}
\left(D_{X} Y\right)^{-1}=(I+\mathcal{M})^{-1}=I-\frac{\mathcal{M}}{\kappa} . \tag{9}
\end{equation*}
$$

Also, $1 / \kappa=1+O(1 / R)$, therefore, by (8),

$$
\begin{equation*}
\frac{\mathcal{M} \mathcal{M}^{T}}{\kappa}=O\left(1 / R^{2}\right) \chi_{R} \tag{10}
\end{equation*}
$$

Now, we perform some chain rule differentiation of the domain perturbation. For this, we take X to be a function of Y and the functions $u, Y, \chi_{R}, \mathcal{M}$ and κ will be evaluated at X, while u_{R}^{+}will be evaluated at Y (e.g., the row vector $\nabla_{X} u$ is a short notation for $\nabla_{X} u(X)$, while $\nabla_{Y} u_{R}^{+}$stands for $\nabla_{Y} u_{R}^{+}(Y)$). We use (5) and (9) to obtain

$$
\nabla_{Y} u_{R}^{+}=\nabla_{X} u D_{Y} X=\nabla_{X} u\left(D_{X} Y\right)^{-1}=\nabla_{X} u\left(I-\frac{\mathcal{M}}{\kappa}\right) .
$$

Also, by changing variables,

$$
d Y=\left|\operatorname{det} D_{X} Y\right| d X=\kappa d X
$$

Accordingly

$$
\begin{aligned}
\left|\nabla_{Y} u_{R}^{+}\right|^{2} y_{n+1}^{a} d Y & =\nabla_{X} u\left(I-\frac{\mathcal{M}}{\kappa}\right)\left(I-\frac{\mathcal{M}}{\kappa}\right)^{T}\left(\nabla_{X} u\right)^{T} x_{n+1}^{a} \kappa d X \\
& =\nabla_{X} u\left(\kappa I-\mathcal{M}-\mathcal{M}^{T}+\frac{\mathcal{M} \mathcal{M}^{T}}{\kappa}\right)\left(\nabla_{X} u\right)^{T} x_{n+1}^{a} d X \\
& =\nabla_{X} u\left((1+\operatorname{tr} \mathcal{M}) I-\mathcal{M}-\mathcal{M}^{T}+\frac{\mathcal{M} \mathcal{M}^{T}}{\kappa}\right)\left(\nabla_{X} u\right)^{T} x_{n+1}^{a} d X
\end{aligned}
$$

Hence, from (10),

$$
\begin{aligned}
& \left|\nabla_{Y} u_{R}^{+}\right|^{2} y_{n+1}^{a} d Y \\
& \quad=\nabla_{X} u\left((1+\operatorname{tr} \mathcal{M}) I-\mathcal{M}-\mathcal{M}^{T}+O\left(1 / R^{2}\right) \chi_{R}\right)\left(\nabla_{X} u\right)^{T} x_{n+1}^{a} d X .
\end{aligned}
$$

The similar term for $\nabla_{Y} u_{R}^{-}$may be computed by switching φ to $-\varphi$ (which makes \mathcal{M} switch to $-\mathcal{M}$): thus we obtain

$$
\begin{aligned}
& \left|\nabla_{Y} u_{R}^{-}\right|^{2} y_{n+1}^{a} d Y \\
& \quad=\nabla_{X} u\left((1-\operatorname{tr} \mathcal{M}) I+\mathcal{M}+\mathcal{M}^{T}+O\left(1 / R^{2}\right) \chi_{R}\right)\left(\nabla_{X} u\right)^{T} x_{n+1}^{a} d X .
\end{aligned}
$$

By summing up the last two expressions, after simplification we conclude that

$$
\begin{equation*}
\left(\left|\nabla_{Y} u_{R}^{+}\right|^{2}+\left|\nabla_{Y} u_{R}^{-}\right|^{2}\right) y_{n+1}^{a} d Y=2\left(1+O\left(1 / R^{2}\right) \chi_{R}\right)\left|\nabla_{X} u\right|^{2} x_{n+1}^{a} d X \tag{11}
\end{equation*}
$$

On the other hand, the function $g(X):=\left|\nabla_{X} u(X)\right|^{2} x_{n+1}^{a}$ is homogeneous of degree $a-2$, hence

$$
\begin{aligned}
& \int_{B_{R}^{+}} \chi_{R}\left|\nabla_{X} u\right|^{2} x_{n+1}^{a} d X=\int_{B_{R}^{+} \backslash B_{R / 2}^{+}} g d X=\int_{R / 2}^{R}\left[\int_{S_{+}^{n}} g(\vartheta \varrho) d \vartheta\right] \varrho^{n} d \varrho \\
& \quad=\int_{R / 2}^{R} \varrho^{n+a-2}\left[\int_{S_{+}^{n}} g(\vartheta) d \vartheta\right] d \varrho=C R^{n+a-1},
\end{aligned}
$$

for a suitable C depending on u. This and (11) give that

$$
\begin{aligned}
\int_{B_{R}^{+}} & \left(\left|\nabla_{Y} u_{R}^{+}\right|^{2}+\left|\nabla_{Y} u_{R}^{-}\right|^{2}\right) y_{n+1}^{a} d Y-2 \int_{B_{R}^{+}}\left|\nabla_{X} u\right|^{2} x_{n+1}^{a} d X \\
& =O\left(1 / R^{2}\right) \int_{B_{R}^{+}} \chi_{R}\left|\nabla_{X} u\right|^{2} x_{n+1}^{a} d X \\
& =O\left(1 / R^{2}\right) \cdot C R^{n+a-1}
\end{aligned}
$$

which completes the lemma.
Lemma 1 turns out to be particularly useful when $n=2$. In this case (6) implies that

$$
\begin{equation*}
\mathcal{E}_{R}\left(u_{R}^{+}\right)+\mathcal{E}_{R}\left(u_{R}^{-}\right)-2 \mathcal{E}_{R}(u) \leqslant \frac{C}{R^{s}}, \tag{12}
\end{equation*}
$$

and the right hand side becomes arbitrarily small for large R. As a consequence, we also obtain the following corollary.
Corollary 3. Suppose that E is an s-minimal cone in \mathbb{R}^{2} and that u is the extension of $\chi_{E}-\chi_{\mathbb{R}^{2} \backslash E}$. Then

$$
\begin{equation*}
\mathcal{E}_{R}\left(u_{R}^{+}\right) \leqslant \mathcal{E}_{R}(u)+\frac{C}{R^{s}} . \tag{13}
\end{equation*}
$$

Proof. Since E is a cone, we know that u is homogeneous of degree zero (see Corollary 8.2 in [2]): thus, the assumptions of Lemma 1 are fulfilled and so (12) holds true.

From the minimality of u (see (3)), we infer that

$$
\mathcal{E}_{R}(u) \leqslant \mathcal{E}_{R}\left(u_{R}^{-}\right),
$$

which together with (12) gives the desired claim.

3. Proof of Theorem 1

We argue by contradiction, by supposing that $E \subset \mathbb{R}^{2}$ is an s-minimal cone different than a halfplane. By Theorem 10.3 in [2], E is the disjoint union of a finite number of closed sectors. Then, up to a rotation, we may suppose that a sector of E has angle less than π and is bisected by e_{2}. Thus, there exist $M \geqslant 1$ and $p \in E \cap B_{M}$ (on the e_{2}-axis) such that $p \pm e_{1} \in \mathbb{R}^{2} \backslash E$.

Let $R>4 M$ be sufficiently large. Using the notation of Lemma 1 we have

$$
\begin{align*}
& u_{R}^{+}(Y)=u\left(Y-e_{1}\right), \text { for all } Y \in B_{2 M}^{+}, \text {and } \\
& u_{R}^{+}(Y)=u(Y) \text { for all } Y \in \mathbb{R}_{+}^{n+1} \backslash B_{R}^{+}, \tag{14}
\end{align*}
$$

where u is the extension of $\chi_{E}-\chi_{\mathbb{R}^{2} \backslash E}$. We define

$$
v_{R}(X):=\min \left\{u(X), u_{R}^{+}(X)\right\} \quad \text { and } \quad w_{R}(X):=\max \left\{u(X), u_{R}^{+}(X)\right\}
$$

Denote $P:=(p, 0) \in \mathbb{R}^{3}$. We claim that

$$
\begin{align*}
& u_{R}^{+}<w_{R}=u \text { in a neighborhood of } P, \text { and } \\
& u<w_{R}=u_{R}^{+} \text {in a neighborhood of } P+e_{1} . \tag{15}
\end{align*}
$$

Indeed, by (14)

$$
u_{R}^{+}(P)=u\left(P-e_{1}\right)=\left(\chi_{E}-\chi_{\mathbb{R}^{2} \backslash E}\right)\left(p-e_{1}\right)=-1
$$

while

$$
u(P)=\left(\chi_{E}-\chi_{\mathbb{R}^{2} \backslash E}\right)(p)=1 .
$$

Similarly, $u_{R}^{+}\left(P+e_{1}\right)=u(P)=1$ while $u\left(P+e_{1}\right)=-1$. This and the continuity of the functions u and u_{R}^{+}at P, respectively $P+e_{1}$, give (15).

We point out that $\mathcal{E}_{R}(u) \leqslant \mathcal{E}_{R}\left(v_{R}\right)$, thanks to (14) and the minimality of u. This and the identity

$$
\mathcal{E}_{R}\left(v_{R}\right)+\mathcal{E}_{R}\left(w_{R}\right)=\mathcal{E}_{R}(u)+\mathcal{E}_{R}\left(u_{R}^{+}\right),
$$

imply that

$$
\begin{equation*}
\mathcal{E}_{R}\left(w_{R}\right) \leqslant \mathcal{E}_{R}\left(u_{R}^{+}\right) . \tag{16}
\end{equation*}
$$

Now we observe that w_{R} is not a minimizer for $\mathcal{E}_{2 M}$ with respect to compact perturbations in $B_{2 M}^{+}$. Indeed, if w_{R} were a minimizer we use $u \leqslant w_{R}$ and the first fact in (15) to conclude $u=w_{R}$ in $B_{2 M}^{+}$ from the strong maximum principle. However this contradicts the second inequality in (15).

Therefore, we can modify w_{R} inside a compact set of $B_{2 M}$ and obtain a competitor u_{*} such that

$$
\mathcal{E}_{2 M}\left(u_{*}\right)+\delta \leqslant \mathcal{E}_{2 M}\left(w_{R}\right),
$$

for some $\delta>0$, independent of R (since w_{R} restricted to $B_{2 M}^{+}$is independent of R, by (14)).
The inequality above implies

$$
\begin{equation*}
\mathcal{E}_{R}\left(u_{*}\right)+\delta \leqslant \mathcal{E}_{R}\left(w_{R}\right), \tag{17}
\end{equation*}
$$

since u_{*} and w_{R} agree outside $B_{2 M}^{+}$. Thus, we use (16), (13) and (17) to conclude that

$$
\mathcal{E}_{R}\left(u_{*}\right)+\delta \leqslant \mathcal{E}_{R}\left(w_{R}\right) \leqslant \mathcal{E}_{R}\left(u_{R}^{+}\right) \leqslant \mathcal{E}_{R}(u)+\frac{C}{R^{s}} .
$$

Accordingly, if R is large enough we have that $\mathcal{E}_{R}\left(u_{*}\right)<\mathcal{E}_{R}(u)$, which contradicts the minimality of u. This completes the proof of Theorem 1.

Acknowledgments

OS has been supported by NSF grant 0701037. EV has been supported by MIUR project "Nonlinear Elliptic problems in the study of vortices and related topics", ERC project " ε : Elliptic Pde's and Symmetry of Interfaces and Layers for Odd Nonlinearities" and FIRB project "A\&B: Analysis and Beyond". Part of this work was carried out while EV was visiting Columbia University.

References

[1] L. Ambrosio, G. de Philippis, L. Martinazzi, Gamma-convergence of nonlocal perimeter functionals, Manuscripta Math. 134 (2011), no. 3-4, 377-403.
[2] L. A. Caffarelli, J.-M. Roquejoffre and O. Savin, Nonlocal minimal surfaces, Comm. Pure Appl. Math. 63 (2010), no. 9, 1111-1144.
[3] L. A. Caffarelli and E. Valdinoci, Uniform estimates and limiting arguments for nonlocal minimal surfaces, Calc. Var. Partial Differential Equations 41 (2011), no. 1-2, 203-240.
[4] L. A. Caffarelli and E. Valdinoci, Regularity properties of nonlocal minimal surfaces via limiting arguments, Preprint, http://www.ma.utexas.edu/mp_arc/c/11/11-69.pdf

Ovidiu Savin
Mathematics Department, Columbia University, 2990 Broadway, New York, NY 10027, USA.
Email: savin@math.columbia.edu

Enrico Valdinoci

Dipartimento di Matematica, Università degli Studi di Milano, Via Cesare Saldini 50, 20133 Milano, Italy.
Email: enrico.valdinoci@unimi.it

