ARMA manuscript No.

(will be inserted by the editor)

C^{1} regularity for infinity harmonic functions in two dimensions

Ovidiu Savin

Abstract

A continuous function $u: \Omega \rightarrow R, \Omega \subset R^{n}$ is said to be "infinity harmonic" if satisfies the PDE $$
\begin{equation*} -\triangle_{\infty} u:=-\sum_{i, j=1}^{n} u_{i} u_{j} u_{i j}=0 \quad \text { in } \Omega \tag{1} \end{equation*}
$$ in the viscosity sense. In this paper we prove that infinity harmonic functions are continuously differentiable when $n=2$.

1. Introduction

The equation (1) arises when considering optimal Lipschitz extensions from $\partial \Omega$ to Ω. That is, we want to extend a given Lipschitz function g : $\partial \Omega \rightarrow R$ to a function $u: \bar{\Omega} \rightarrow R, u=g$ on $\partial \Omega$, that satisfies the following "absolute minimizing Lipschitz" (AML) property:
for any open set $U \subset \Omega$ and $v: U \rightarrow R$ with $v=u$ on ∂U, we have

$$
\|\nabla u\|_{L^{\infty}(U)} \leq\|\nabla v\|_{L^{\infty}(U)}
$$

Jensen [6] proved the equivalence between the (AML) property and solutions of (1). He also proved that the Dirichlet equation for (1) is uniquely solvable.

Crandall, Evans and Gariepy [3] showed that u is infinity harmonic if and only if u satisfies comparison with cones from above and below. To be more precise, we say that u satisfies comparison with cones from above in Ω if given any open set $U \subset \subset \Omega$, and $a, b \in R$ such that

$$
u(x) \leq a+b\left|x-x_{0}\right| \quad \text { on } \partial\left(U \backslash x_{0}\right)
$$

then

$$
u(x) \leq a+b\left|x-x_{0}\right| \quad \text { in } U
$$

Similarly one can define comparison with cones from below.
An interesting question is to determine whether or not infinity harmonic functions are continuously differentiable. A result in this direction was obtained by Crandall and Evans [4] (see also Crandall-Evans-Gariepy [3]) which showed that at small scales u is close to a plane.

Theorem 1. [Crandall-Evans-Gariepy]
Let $u: \Omega \rightarrow R, \Omega \subset R^{n}$ be infinity harmonic. Then for each $x \in \Omega$ there exist vectors $e_{x, r} \in R^{n}$ with $\left|e_{x, r}\right|=S(x)$ (see section 2 for the definition of S) such that

$$
\max _{B_{r}(x)} \frac{\left|u(y)-u(x)-e_{x, r} \cdot(y-x)\right|}{r} \rightarrow 0 \quad \text { as } r \rightarrow 0 .
$$

In this paper we prove that in 2 dimensions the vectors $e_{x, r}$ converge as $r \rightarrow 0$, and obtain

Theorem 2. Let $u: \Omega \rightarrow R, \Omega \subset R^{2}$ be infinity harmonic. Then $u \in$ $C^{1}(\Omega)$.

The idea of the proof is the following. Suppose that

$$
u(0)=0, \quad\left\|u-e_{1} \cdot x\right\|_{L^{\infty}\left(B_{1}\right)} \leq \varepsilon
$$

From the theory of elliptic equations in two dimensions (see [5] chapter 12), heuristically we can find a plane $e \cdot x$ (the tangent plane at 0) such that $\{u=e \cdot x\}$ divides R^{2} into four connected regions. If e and e_{1} are not close to each other then, one connected component of $\{u>e \cdot x\}$ is included in a narrow strip and we are able to derive a contradiction.

Using a compactness argument we prove
Theorem 3. (Modulus of continuity for the gradient)
There exists a function

$$
\rho:[0,1] \rightarrow R^{+}, \quad \lim _{r \rightarrow 0} \rho(r)=0
$$

such that for any infinity harmonic function

$$
u: B_{1} \subset R^{2} \rightarrow R, \quad\|\nabla u\|_{L^{\infty}\left(B_{1}\right)} \leq 1
$$

we have

$$
|\nabla u(x)-\nabla u(y)| \leq \rho(|x-y|), \quad \text { if } x, y \in B_{1 / 2}
$$

As a consequence of Theorem 3 we obtain the following Liouville type theorem.

Theorem 4. Let $u: R^{2} \rightarrow R$ be a global infinity harmonic function. If u grows at most linearly at ∞, i.e

$$
|u(x)| \leq C(1+|x|)
$$

then u is linear.
Theorem 4 follows easily from Proposition 3.
Suppose u satisfies the hypothesis of Theorem 4. We use Proposition 3 for the rescaled function

$$
w(x)=\frac{1}{R} u(R x), \quad x \in B_{1}
$$

and obtain

$$
\left|\nabla u\left(x_{0}\right)-\nabla u(0)\right|=\left|\nabla w\left(x_{0} R^{-1}\right)-\nabla w(0)\right| \leq C \rho\left(\left|x_{0}\right| R^{-1}\right)
$$

The conclusion follows as we let $R \rightarrow \infty$.

2. The Proofs

Notation:

Ω is an open set in R^{2}
$B_{r}\left(x_{0}\right)$ denotes the open ball of radius r and center x_{0}
$B_{r}=B_{r}(0)$
$x \cdot y$ represents the Euclidean inner-product.
$\{f<g\}$ denotes $\left\{x \in R^{2} \mid \quad f(x)<g(x)\right\}$
Suppose that $u: \Omega \rightarrow R$ is infinity harmonic. If $B_{r}(x) \subset \Omega$ we define

$$
S^{+}(x, r)=\max _{y \in \partial B_{r}(x)} \frac{u(y)-u(x)}{|y-x|}
$$

and

$$
S^{-}(x, r)=\min _{y \in \partial B_{r}(x)} \frac{u(y)-u(x)}{|y-x|}
$$

We recall the following result from [3].
Proposition 1. The function $S^{+}(x, r)$ is increasing in r and $S^{-}(x, r)$ is decreasing in r. Moreover,

$$
S(x):=\lim _{r \rightarrow 0} S^{+}(x, r)=-\lim _{r \rightarrow 0} S^{-}(x, r)
$$

Our main goal is to prove
Proposition 2. Suppose u is infinity harmonic in $B_{1} \subset R^{2}$. Given $\varepsilon>0$, there exists $\delta(\varepsilon)$ such that if

$$
\begin{equation*}
\left\|u-e_{1} \cdot x\right\|_{L^{\infty}\left(B_{1}\right)} \leq \delta, \quad\left|e_{1}\right|=1 \tag{2}
\end{equation*}
$$

then u is differentiable at 0 and

$$
\left|\nabla u(0)-e_{1}\right| \leq \varepsilon
$$

Theorem 2 clearly follows from Theorem 1 and Proposition 2.
We start with a lemma.
Lemma 1. Let $u: \Omega \rightarrow R, \Omega \subset R^{2}$, be infinity harmonic. Assume that Ω is convex, $u(0,0)=0$ and for some t_{0} small and $c \in R$ we have

$$
u(t, 0) \geq c t, \quad \text { if } t \in\left[-t_{0}, t_{0}\right]
$$

$$
u\left(t_{0}, 0\right)>c t_{0}, \quad u\left(-t_{0}, 0\right)>-c t_{0}
$$

Then there exists a plane $P:=e \cdot x,|e|=S(0)$, such that $\left(t_{0}, 0\right)$ and $\left(-t_{0}, 0\right)$ belong to distinct connected components of the set $\{u>P\}$.

Proof: From Theorem 1 we can find $r_{i} \rightarrow 0$ and $e=\left(a_{1}, a_{2}\right) \in R^{2}$, $|e|=S(0)$ such that

$$
\begin{equation*}
\frac{\|u(x)-e \cdot x\|_{L^{\infty}\left(B_{r_{i}}\right)}}{r_{i}} \rightarrow 0 \quad \text { as } i \rightarrow \infty \tag{3}
\end{equation*}
$$

Notice that $a_{1}=c$.
Assume that $\left(-t_{0}, 0\right)$ and $\left(t_{0}, 0\right)$ can be connected by a polygonal line included in $\{u>P\} \cap \Omega$. Close the polygonal line by connecting $\left(-t_{0}, 0\right)$ and $\left(t_{0}, 0\right)$ by a line segment. Denote this polygonal path by Γ. Without loss of generality we assume that there exists an open set $U \subset \subset \Omega$ such that

$$
\Gamma \subseteq \partial U, \quad B_{\delta} \cap\left\{x_{2}>0\right\} \subset U
$$

for some $\delta>0$ small.
If $x \in \partial U$ we can find $\varepsilon>0$ such that

$$
u(x) \geq e \cdot x+(0, \varepsilon) \cdot x
$$

hence the inequality is also true for $x \in U$. This contradicts (3) and the lemma is proved.

Next we prove
Proposition 3. Suppose that u is infinity harmonic in $B_{6 R} \subset R^{2}$ and satisfies

H1)

$$
\left\|u-e_{1} \cdot x\right\|_{L^{\infty}\left(B_{6 R}\right)} \leq 1, \quad\left|e_{1}\right|=1
$$

H2) There exists a plane $P:=e \cdot x$ such that the set $\{u>P\}$ has at least two distinct connected components that intersect B_{R}.

Given $\varepsilon>0$, there exists $C(\varepsilon)>0$ large such that if $R \geq C(\varepsilon)$ then

$$
\left|e-e_{1}\right| \leq \varepsilon
$$

Proof: Denote

$$
f:=e_{1}-e
$$

and assume that $|f|>\varepsilon$. We have

$$
\begin{aligned}
& \{f \cdot x<-1\} \cap B_{6 R} \subset\{u<P\} \\
& \{f \cdot x>1\} \cap B_{6 R} \subset\{u>P\}
\end{aligned}
$$

Thus, from H2, we can find a connected component U of $\{u>P\}$ that intersects B_{R} and is included in the $\operatorname{strip} \mathcal{S}:=\{|f \cdot x| \leq 1\}$ of width $2|f|^{-1}<2 \varepsilon^{-1}$.

Notice that we cannot have $U \subset \subset B_{6 R}$ since otherwise we contradict the comparison principle. Consider a polygonal line inside U that starts in B_{R} and exits $B_{6 R}$. By shifting the origin a distance $3 R$ in the direction perpendicular to f, one can assume

H1')

$$
\left\|u-e_{1} \cdot x\right\|_{L^{\infty}\left(B_{2 R}\right)} \leq 1, \quad\left|e_{1}\right|=1
$$

H2') The set $\{u>P\} \cap B_{2 R}$ has a connected component $U \subset \mathcal{S}$ that contains a polygonal line connecting the two arcs of $\mathcal{S} \cap \partial B_{R}$.

Proposition 3 will follow from the next two lemmas.
Let $\alpha \in\left[0, \frac{\pi}{2}\right]$ denote the angle between the directions of e and f.

Lemma 2. Fix $\delta_{1}>0$ small. If $|e| \geq \delta_{1}$ and $R \geq C\left(\varepsilon, \delta_{1}\right)$, then

$$
\alpha \geq \frac{\pi}{2}-\delta_{1}
$$

Proof: Assume that $\alpha<\frac{\pi}{2}-\delta_{1}$. Denote by x_{0} the intersection of the half line $\{-t e, \quad t \geq 0\}$ with $\partial \mathcal{S}$. Clearly,

$$
|u-e \cdot x| \leq\left|u-e_{1} \cdot x\right|+\left|\left(e_{1}-e\right) \cdot x\right| \leq 2 \quad \text { in } U \cap B_{R}\left(x_{0}\right)
$$

$$
\begin{equation*}
u=e \cdot x \quad \text { on } \partial U \cap B_{R}\left(x_{0}\right) \tag{4}
\end{equation*}
$$

On the set $U \cap \partial B_{R}\left(x_{0}\right)$, we have

$$
\begin{gather*}
u(x) \leq e \cdot x+2 \leq \sup _{S \cap \partial B_{R}\left(x_{0}\right)} e \cdot x+2 \tag{5}\\
\leq e \cdot x_{0}+|e| R \sin (\alpha+\beta)+2 \\
=e \cdot x_{0}+|e| R\left(\sin (\alpha+\beta)+\frac{2}{|e| R}\right)
\end{gather*}
$$

where

$$
\sin \beta=\frac{2}{R|f|}
$$

If $R \geq C\left(\varepsilon, \delta_{1}\right)$ is large, then since $\sin \alpha<1$, we deduce from (4), (5)
that

$$
u(x) \leq e \cdot x_{0}+|e|\left|x-x_{0}\right| \quad \text { on } \partial\left(U \cap B_{R}\left(x_{0}\right)\right)
$$

Hence comparison with cones implies

$$
u(x) \leq e \cdot x_{0}+\left|e \| x-x_{0}\right| \quad \text { on } U \cap B_{R}\left(x_{0}\right)
$$

We obtain

$$
u(x) \leq e \cdot x=P \quad \text { on }\left\{x_{0}+t e, \quad t \geq 0\right\} \cap U
$$

or

$$
\left\{x_{0}+t e, \quad t \geq 0\right\} \cap U=\emptyset
$$

This contradicts H2'. With this Lemma 2 is proved.
Lemma 3. Fix $\delta_{2}>0$ small. If $R \geq C\left(\delta_{2}\right)$, then

$$
|e| \geq 1-\delta_{2}
$$

Proof: Assume that $|e|<1-\delta_{2}$ and notice that $f \cdot e_{1}>\delta_{2}$.
Denote by $y_{0}:=-4 \delta_{2}^{-1} e_{1}$, and let y_{1} be the intersection of the half line $\left\{t e_{1}, \quad t \geq 0\right\}$ with the line $\{f \cdot x=1\}$.

Consider the family of cones with vertex at $\left(y_{0}, e_{1} \cdot y_{0}+1\right)$ and slope c; that is,

$$
V_{y_{0}, c}(x):=e_{1} \cdot y_{0}+1+c\left|x-y_{0}\right| .
$$

Notice that the vertex of $V_{y_{0}, c}$ is above the graph of u and below the graph of P.

For $c>|e|$ we denote by E_{c} the ellipse which is the intersection of $V_{y_{0}, c}$ with P, i.e

$$
E_{c}:=\left\{x \mid \quad V_{y_{0}, c}(x)=e \cdot x\right\} .
$$

One has

$$
c_{0}:=1-\frac{2}{\left|y_{1}-y_{0}\right|} \geq 1-\frac{\delta_{2}}{2}>|e|
$$

and

$$
\begin{aligned}
& V_{y_{0}, c_{0}}\left(y_{1}\right)=e_{1} \cdot y_{0}+1+\left|y_{1}-y_{0}\right|-2 \\
& =e_{1} \cdot y_{1}-1=e_{1} \cdot y_{1}-f \cdot y_{1}=e \cdot y_{1}
\end{aligned}
$$

Hence

$$
\begin{equation*}
y_{1} \in E_{c_{0}} . \tag{6}
\end{equation*}
$$

Take c large and decrease c continuously until E_{c} touches for the first time $\partial\left(\{u<P\} \cap B_{2 R}\right)$. Let the first value be c_{*} and let

$$
x_{*} \in E_{c_{*}} \cap \partial\left(\{u<P\} \cap B_{2 R}\right) .
$$

From (6) one can conclude that $c_{*} \geq c_{0}$. If R is large, then $x_{*} \in B_{R}$ and (see Proposition 1)

$$
\begin{equation*}
S\left(x_{*}\right) \geq c_{*} \geq c_{0} \geq 1-\frac{\delta_{2}}{2} \tag{7}
\end{equation*}
$$

On the other hand we claim that $S\left(x_{*}\right) \leq|e|+2 R^{-1}$.
To see this, choose a small $r>0$ and let U^{\prime} be the open set defined as the union of all connected components of $\{u>P\} \cap B_{R}\left(x_{*}\right)$ that intersect $B_{r}\left(x_{*}\right)$.

If $U^{\prime}=\emptyset$ then the claim is obvious. So assume $U^{\prime} \neq \emptyset$ and from H2' we find $U^{\prime} \subset \mathcal{S}$ provided that r is chosen small enough.

One has

$$
u=e \cdot x \quad \text { on } \partial U^{\prime} \cap B_{R}\left(x_{*}\right)
$$

and for $x \in U^{\prime} \cap \partial B_{R}\left(x_{*}\right)$,

$$
u(x) \leq e \cdot x+2 \leq e \cdot x_{*}+|e| R+2
$$

This implies

$$
u(x) \leq e \cdot x_{*}+\left(|e|+\frac{2}{R}\right)\left|x-x_{*}\right| \quad \text { on } \partial\left(U^{\prime} \cap B_{R}\left(x_{*}\right)\right)
$$

Hence the inequality is valid also in $U^{\prime} \cap B_{R}\left(x_{*}\right)$. Now it is clear that

$$
S\left(x_{*}\right) \leq|e|+2 R^{-1} \leq 1-\delta_{2}+2 R^{-1}
$$

This contradicts (7) if $R \geq C\left(\delta_{2}\right)$ is large. With this Lemma 3 is proved.

Proposition 3 now follows from Lemma 2 and Lemma 3 by choosing $\delta_{1}(\varepsilon), \delta_{2}(\varepsilon)$ small and $R \geq C(\varepsilon)$ large enough.

By rescaling Proposition 3 we obtain
Corollary 1. Suppose $u: B_{r} \rightarrow R, B_{r} \subset R^{2}$ is infinity harmonic and

$$
\left\|u-e_{1} \cdot x\right\|_{L^{\infty}\left(B_{r}\right)} \leq \delta r\left|e_{1}\right|
$$

Suppose also that there exists a plane $P:=e \cdot x$ such that $\{u>P\}$ has at least two distinct connected components that intersect $B_{r / 6}$. Then, given ε, there exits $\delta(\varepsilon)$ such that if $\delta \leq \delta(\varepsilon)$ we have

$$
\left|e-e_{1}\right| \leq \varepsilon\left|e_{1}\right| .
$$

Corollary 1 follows by noticing that the rescaled function

$$
w(x):=\frac{R}{r\left|e_{1}\right|} u\left(\frac{r x}{R}\right), \quad R=6 C(\varepsilon)
$$

satisfies the hypothesis of Proposition 3 if $\delta R \leq 1$.

Proof of Proposition 2: First we show

$$
\begin{equation*}
\limsup _{r \rightarrow 0}\left|e_{0, r}-e_{1}\right| \leq \varepsilon \quad \text { if } \delta \leq \delta(\varepsilon) \tag{8}
\end{equation*}
$$

Case 1: Suppose that u is not identical to a plane in a neighborhood of 0.

Then there exists a line segment $\left[z_{1}, z_{2}\right]$ in $B_{r / 6}$ where u is not linear when restricted to it. On this segment we can find a linear function l of slope

$$
\frac{u\left(z_{2}\right)-u\left(z_{1}\right)}{\left|z_{2}-z_{1}\right|}
$$

and an interior point $y \in\left(z_{1}, z_{2}\right)$ such that either

$$
\begin{gathered}
u \geq l \quad \text { on }\left[z_{1}, z_{2}\right] \\
u(y)=l(y), \quad u\left(z_{1}\right)>l\left(z_{1}\right), \quad u\left(z_{2}\right)>l\left(z_{2}\right)
\end{gathered}
$$

or

$$
\begin{gathered}
u \leq l \quad \text { on }\left[z_{1}, z_{2}\right] \\
u(y)=l(y), \quad u\left(z_{1}\right)<l\left(z_{1}\right), \quad u\left(z_{2}\right)<l\left(z_{2}\right) .
\end{gathered}
$$

Without loss of generality assume the first situation holds. Then, by Lemma 1, there exists e_{y} such that the set

$$
\left\{u>u(y)+e_{y} \cdot(x-y)\right\}
$$

has two distinct connected components in B_{1}.
By Corollary 1 we have

$$
\begin{equation*}
\left|e_{y}-e_{1}\right| \leq \frac{\varepsilon}{4} \tag{9}
\end{equation*}
$$

if δ is small. From Theorem 1

$$
\begin{gather*}
\left\|u-u(0)-e_{0, r} \cdot x\right\|_{L^{\infty}\left(B_{r}\right)} \leq r \sigma(r) \tag{10}\\
\sigma(r) \rightarrow 0 \quad \text { as } r \rightarrow 0
\end{gather*}
$$

and we find

$$
\left|e_{y}\right|=S(y) \leq \max _{\partial B_{r / 2}(y)} \frac{|u(x)-u(y)|}{r / 2} \leq\left|e_{0, r}\right|+4 \sigma(r)
$$

Similarly one obtains

$$
\left|e_{0, r}\right|=S(0) \leq 1+2 \delta
$$

The above inequalities and (9) imply

$$
1-\varepsilon / 4-4 \sigma(r) \leq\left|e_{0, r}\right| \leq 1+2 \delta
$$

Now we apply Corollary 1 in B_{r} and obtain

$$
\begin{equation*}
\left|e_{y}-e_{0, r}\right| \leq\left|e_{0, r}\right| \frac{\varepsilon}{4} \leq \frac{\varepsilon}{2} \tag{11}
\end{equation*}
$$

provided that r is small enough. Now (8) follows from (9), (11).
Case 2: Suppose that u is identical to a plane $P=e \cdot x$ in a neighborhood of 0 . Denote by U the interior of the set $\{u=P\}$. If $\operatorname{dist}(0, \partial U)>1 / 2$, then (8) is obvious. If not, let $x_{0} \in \partial U$ be a point where the distance from 0 to ∂U is realized. From case 1 applied to $B_{1 / 2}\left(x_{0}\right)$ we find

$$
\limsup _{r \rightarrow 0}\left|e_{x_{0}, r}-e_{1}\right| \leq \varepsilon
$$

hence

$$
\left|e-e_{1}\right| \leq \varepsilon
$$

In conclusion (8) is proved.
It remains to prove that $e_{0, r}$ converges as $r \rightarrow 0$.
Let $r_{i} \rightarrow 0$ be an arbitrary sequence. By rescaling (8) to the balls $B_{r_{j}}$ we find that for each ε there exists j large such that

$$
\limsup _{i \rightarrow \infty}\left|e_{0, r_{i}}-e_{0, r_{j}}\right| \leq \varepsilon
$$

Thus $e_{0, r_{i}}$ is a Cauchy sequence and Proposition 2 is proved.

Proof of Theorem 3:

The proof is by compactness. Assume by contradiction the statement is false. Then we can find $\varepsilon_{0}>0$, functions u_{k} satisfying the hypothesis of Proposition 3 and points $x_{k} \rightarrow 0$ such that

$$
\left|\nabla u_{k}\left(x_{k}\right)-\nabla u_{k}(0)\right| \geq \varepsilon_{0} \quad \text { as } k \rightarrow \infty
$$

We consider the rescaled functions

$$
v_{k}(x):=\frac{u_{k}\left(\left|x_{k}\right| x\right)-u_{k}(0)}{\left|x_{k}\right|}
$$

The functions v_{k} are infinity harmonic, defined on $B_{\left|x_{k}\right|^{-1}},\left\|\nabla v_{k}\right\|_{L^{\infty}} \leq 1$ and

$$
\begin{equation*}
\left|\nabla v_{k}\left(x_{k}\left|x_{k}\right|^{-1}\right)-\nabla v_{k}(0)\right| \geq \varepsilon_{0} \tag{12}
\end{equation*}
$$

By the Arzela Ascoli Theorem there exists a subsequence (we still denote it by v_{k}) that converges uniformly on compact sets to a function v_{∞}. Obviously v_{∞} is infinity harmonic, defined on R^{2} with

$$
\left\|\nabla v_{\infty}\right\|_{L^{\infty}} \leq 1
$$

As a consequence of Theorem 1 one can find $e \in R^{2}$ and $R_{i} \rightarrow \infty$ such that

$$
\begin{gathered}
\left\|v_{\infty}-e \cdot x\right\|_{L^{\infty}\left(B_{R_{i}}\right)} \leq R_{i} \sigma\left(R_{i}\right) \\
\sigma\left(R_{i}\right) \rightarrow 0 \quad \text { as } i \rightarrow \infty
\end{gathered}
$$

Thus, for every fixed ball $B_{R_{i}}$ we have

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left\|v_{k}-e \cdot x\right\|_{L^{\infty}\left(B_{R_{i}}\right)} \leq R_{i} \sigma\left(R_{i}\right) \tag{13}
\end{equation*}
$$

If $e=0$, then for large k and $x \in B_{1}$ we have (see Proposition 1 and(13))

$$
\left|\nabla v_{k}(x)\right| \leq S^{+}\left(v_{k}, x\right) \leq 2 \sigma\left(R_{i}\right)
$$

which contradicts (12) if R_{i} is chosen large enough.
If $e \neq 0$, then there exists R_{i} large such that

$$
2|e|^{-1} \sigma\left(R_{i}\right) \leq \delta\left(\varepsilon_{0} / 4\right)
$$

From (13) and Proposition 2 (rescaled to $B_{R_{i} / 2}(x)$) we find

$$
\left|\nabla v_{k}(x)-e\right| \leq|e| \varepsilon_{0} / 4
$$

for all $x \in B_{1}$ and k large. This contradicts (12) and the theorem is proved.

Acknowledgements. I would like to thank L. C. Evans for many helpful comments and valuable discussions related to the subject. Also I thank the referee for pointing out a mistake in the proof of Lemma 2.6.

References

1. Aronsson, G. Extension of functions satisfying Lipschitz conditions. Ark. Mat. 6 (1967) 551-561.
2. Aronsson, G. On the partial differential equation $u_{x}{ }^{2} u_{x x}+2 u_{x} u_{y} u_{x y}+u_{y}{ }^{2} u_{y y}=$ 0. Ark. Mat. 7 (1968) 395-425.
3. Crandall, M. G.; Evans, L. C.; Gariepy, R. F. Optimal Lipschitz extensions and the infinity Laplacian. Calc. Var. Partial Differential Equations 13 (2001), no. 2, 123-139.
4. Crandall, Michael G.; Evans, L. C. A remark on infinity harmonic functions. Proceedings of the USA-Chile Workshop on Nonlinear Analysis (Via del MarValparaiso, 2000), 123-129 (electronic), Electron. J. Differ. Equ. Conf., 6, Southwest Texas State Univ., San Marcos, TX, 2001.
5. Gilbarg D., Trudinger N., Elliptic Partial Differential Equations of second order, Springer-Verlag, New York, 1983.
6. Jensen, R. Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient. Arch. Rational Mech. Anal. 123 (1993), no. 1, 51-74.

Dept. of Mathematics
UC Berkeley
Berkeley, CA 94720
e-mail: osavin@math.berkeley.edu

