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C1 regularity for infinity harmonic

functions in two dimensions

Ovidiu Savin

Abstract

A continuous function u : Ω → R, Ω ⊂ Rn is said to be “infinity
harmonic” if satisfies the PDE

−△∞u := −
n

∑

i,j=1

uiujuij = 0 in Ω (1)

in the viscosity sense. In this paper we prove that infinity harmonic functions
are continuously differentiable when n = 2.

1. Introduction

The equation (1) arises when considering optimal Lipschitz extensions
from ∂Ω to Ω. That is, we want to extend a given Lipschitz function g :
∂Ω → R to a function u : Ω̄ → R, u = g on ∂Ω, that satisfies the following
“absolute minimizing Lipschitz” (AML) property:

for any open set U ⊂ Ω and v : U → R with v = u on ∂U , we have

‖∇u‖L∞(U) ≤ ‖∇v‖L∞(U).

Jensen [6] proved the equivalence between the (AML) property and so-
lutions of (1). He also proved that the Dirichlet equation for (1) is uniquely
solvable.

Crandall, Evans and Gariepy [3] showed that u is infinity harmonic if
and only if u satisfies comparison with cones from above and below. To be
more precise, we say that u satisfies comparison with cones from above in
Ω if given any open set U ⊂⊂ Ω, and a, b ∈ R such that

u(x) ≤ a + b|x− x0| on ∂(U \ x0)
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then

u(x) ≤ a + b|x− x0| in U.

Similarly one can define comparison with cones from below.
An interesting question is to determine whether or not infinity har-

monic functions are continuously differentiable. A result in this direction
was obtained by Crandall and Evans [4] (see also Crandall-Evans-Gariepy
[3]) which showed that at small scales u is close to a plane.

Theorem 1. [Crandall-Evans-Gariepy]
Let u : Ω → R, Ω ⊂ Rn be infinity harmonic. Then for each x ∈ Ω there

exist vectors ex,r ∈ Rn with |ex,r| = S(x) (see section 2 for the definition of
S) such that

max
Br(x)

|u(y) − u(x) − ex,r · (y − x)|

r
→ 0 as r → 0.

In this paper we prove that in 2 dimensions the vectors ex,r converge as
r → 0, and obtain

Theorem 2. Let u : Ω → R, Ω ⊂ R2 be infinity harmonic. Then u ∈
C1(Ω).

The idea of the proof is the following. Suppose that

u(0) = 0, ‖u − e1 · x‖L∞(B1) ≤ ε.

From the theory of elliptic equations in two dimensions (see [5] chapter 12),
heuristically we can find a plane e · x (the tangent plane at 0) such that
{u = e · x} divides R2 into four connected regions. If e and e1 are not close
to each other then, one connected component of {u > e · x} is included in a
narrow strip and we are able to derive a contradiction.

Using a compactness argument we prove

Theorem 3. (Modulus of continuity for the gradient)
There exists a function

ρ : [0, 1] → R+, lim
r→0

ρ(r) = 0

such that for any infinity harmonic function

u : B1 ⊂ R2 → R, ‖∇u‖L∞(B1) ≤ 1

we have

|∇u(x)−∇u(y)| ≤ ρ(|x − y|), if x, y ∈ B1/2 .

As a consequence of Theorem 3 we obtain the following Liouville type
theorem.
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Theorem 4. Let u : R2 → R be a global infinity harmonic function. If u
grows at most linearly at ∞, i.e

|u(x)| ≤ C(1 + |x|),

then u is linear.

Theorem 4 follows easily from Proposition 3.
Suppose u satisfies the hypothesis of Theorem 4. We use Proposition 3

for the rescaled function

w(x) =
1

R
u(Rx), x ∈ B1

and obtain

|∇u(x0) −∇u(0)| = |∇w(x0R
−1) −∇w(0)| ≤ Cρ(|x0|R

−1).

The conclusion follows as we let R → ∞.

2. The Proofs

Notation:

Ω is an open set in R2

Br(x0) denotes the open ball of radius r and center x0

Br = Br(0)
x · y represents the Euclidean inner-product.
{f < g} denotes {x ∈ R2| f(x) < g(x)}
Suppose that u : Ω → R is infinity harmonic. If Br(x) ⊂ Ω we define

S+(x, r) = max
y∈∂Br(x)

u(y) − u(x)

|y − x|

and

S−(x, r) = min
y∈∂Br(x)

u(y) − u(x)

|y − x|

We recall the following result from [3].

Proposition 1. The function S+(x, r) is increasing in r and S−(x, r) is
decreasing in r. Moreover,

S(x) := lim
r→0

S+(x, r) = − lim
r→0

S−(x, r)

Our main goal is to prove

Proposition 2. Suppose u is infinity harmonic in B1 ⊂ R2. Given ε > 0,
there exists δ(ε) such that if

‖u − e1 · x‖L∞(B1) ≤ δ, |e1| = 1, (2)

then u is differentiable at 0 and

|∇u(0)− e1| ≤ ε.
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Theorem 2 clearly follows from Theorem 1 and Proposition 2.

We start with a lemma.

Lemma 1. Let u : Ω → R, Ω ⊂ R2, be infinity harmonic. Assume that Ω
is convex, u(0, 0) = 0 and for some t0 small and c ∈ R we have

u(t, 0) ≥ ct, if t ∈ [−t0, t0]

u(t0, 0) > ct0, u(−t0, 0) > −ct0.

Then there exists a plane P := e · x, |e| = S(0), such that (t0, 0) and
(−t0, 0) belong to distinct connected components of the set {u > P }.

Proof: From Theorem 1 we can find ri → 0 and e = (a1, a2) ∈ R2,
|e| = S(0) such that

‖u(x) − e · x‖L∞(Bri
)

ri
→ 0 as i → ∞ (3)

Notice that a1 = c.

Assume that (−t0, 0) and (t0, 0) can be connected by a polygonal line
included in {u > P } ∩ Ω. Close the polygonal line by connecting (−t0, 0)
and (t0, 0) by a line segment. Denote this polygonal path by Γ . Without
loss of generality we assume that there exists an open set U ⊂⊂ Ω such
that

Γ ⊆ ∂U, Bδ ∩ {x2 > 0} ⊂ U

for some δ > 0 small.

If x ∈ ∂U we can find ε > 0 such that

u(x) ≥ e · x + (0, ε) · x;

hence the inequality is also true for x ∈ U . This contradicts (3) and the
lemma is proved. ⊓⊔

Next we prove

Proposition 3. Suppose that u is infinity harmonic in B6R ⊂ R2 and sat-
isfies

H1)

‖u − e1 · x‖L∞(B6R) ≤ 1, |e1| = 1

H2) There exists a plane P := e · x such that the set {u > P } has at
least two distinct connected components that intersect BR.

Given ε > 0, there exists C(ε) > 0 large such that if R ≥ C(ε) then

|e − e1| ≤ ε.
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Proof: Denote

f := e1 − e

and assume that |f | > ε. We have

{f · x < −1} ∩ B6R ⊂ {u < P }

{f · x > 1} ∩ B6R ⊂ {u > P }.

Thus, from H2, we can find a connected component U of {u > P } that
intersects BR and is included in the strip S := {|f · x| ≤ 1} of width
2|f |−1 < 2ε−1.

Notice that we cannot have U ⊂⊂ B6R since otherwise we contradict
the comparison principle. Consider a polygonal line inside U that starts in
BR and exits B6R. By shifting the origin a distance 3R in the direction
perpendicular to f , one can assume

H1’)

‖u − e1 · x‖L∞(B2R) ≤ 1, |e1| = 1

H2’) The set {u > P } ∩ B2R has a connected component U ⊂ S that
contains a polygonal line connecting the two arcs of S ∩ ∂BR.

Proposition 3 will follow from the next two lemmas.

Let α ∈ [0, π
2 ] denote the angle between the directions of e and f .

Lemma 2. Fix δ1 > 0 small. If |e| ≥ δ1 and R ≥ C(ε, δ1), then

α ≥
π

2
− δ1.

Proof: Assume that α < π
2 − δ1. Denote by x0 the intersection of the

half line {−te, t ≥ 0} with ∂S. Clearly,

|u − e · x| ≤ |u − e1 · x| + |(e1 − e) · x| ≤ 2 in U ∩ BR(x0),

u = e · x on ∂U ∩ BR(x0). (4)
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2/|f|
e

fα

β
α

x0R

0

u>P

U

On the set U ∩ ∂BR(x0), we have

u(x) ≤ e · x + 2 ≤ sup
S∩∂BR(x0)

e · x + 2 (5)

≤ e · x0 + |e|R sin(α + β) + 2

= e · x0 + |e|R

(

sin(α + β) +
2

|e|R

)

,

where

sin β =
2

R|f |
.

If R ≥ C(ε, δ1) is large, then since sin α < 1, we deduce from (4), (5)
that

u(x) ≤ e · x0 + |e||x− x0| on ∂(U ∩BR(x0)).

Hence comparison with cones implies

u(x) ≤ e · x0 + |e||x− x0| on U ∩ BR(x0).

We obtain

u(x) ≤ e · x = P on {x0 + te, t ≥ 0} ∩ U

or
{x0 + te, t ≥ 0} ∩U = ∅.

This contradicts H2’. With this Lemma 2 is proved. ⊓⊔

Lemma 3. Fix δ2 > 0 small. If R ≥ C(δ2), then

|e| ≥ 1 − δ2.
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Proof: Assume that |e| < 1 − δ2 and notice that f · e1 > δ2.

Denote by y0 := −4δ−1
2 e1, and let y1 be the intersection of the half line

{te1, t ≥ 0} with the line {f · x = 1}.
Consider the family of cones with vertex at (y0, e1 · y0 + 1) and slope c;

that is,

Vy0,c(x) := e1 · y0 + 1 + c|x− y0|.

Notice that the vertex of Vy0,c is above the graph of u and below the
graph of P .

For c > |e| we denote by Ec the ellipse which is the intersection of Vy0,c

with P , i.e

Ec := {x| Vy0,c(x) = e · x}.

One has

c0 := 1 −
2

|y1 − y0|
≥ 1 −

δ2

2
> |e|,

and

Vy0,c0
(y1) = e1 · y0 + 1 + |y1 − y0| − 2

= e1 · y1 − 1 = e1 · y1 − f · y1 = e · y1.

Hence

y1 ∈ Ec0
. (6)

Take c large and decrease c continuously until Ec touches for the first
time ∂({u < P } ∩ B2R). Let the first value be c∗ and let

x∗ ∈ Ec∗ ∩ ∂({u < P } ∩ B2R).

y

y

0

e

f

u>P

x*

0

1

Ec

Ec
*

1
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From (6) one can conclude that c∗ ≥ c0. If R is large, then x∗ ∈ BR and
(see Proposition 1)

S(x∗) ≥ c∗ ≥ c0 ≥ 1 −
δ2

2
. (7)

On the other hand we claim that S(x∗) ≤ |e| + 2R−1.
To see this, choose a small r > 0 and let U ′ be the open set defined as

the union of all connected components of {u > P } ∩ BR(x∗) that intersect
Br(x∗).

If U ′ = ∅ then the claim is obvious. So assume U ′ 6= ∅ and from H2’ we
find U ′ ⊂ S provided that r is chosen small enough.

One has

u = e · x on ∂U ′ ∩ BR(x∗);

and for x ∈ U ′ ∩ ∂BR(x∗),

u(x) ≤ e · x + 2 ≤ e · x∗ + |e|R + 2.

This implies

u(x) ≤ e · x∗ +

(

|e|+
2

R

)

|x − x∗| on ∂(U ′ ∩ BR(x∗)).

Hence the inequality is valid also in U ′ ∩ BR(x∗). Now it is clear that

S(x∗) ≤ |e| + 2R−1 ≤ 1 − δ2 + 2R−1.

This contradicts (7) if R ≥ C(δ2) is large. With this Lemma 3 is proved.
⊓⊔

Proposition 3 now follows from Lemma 2 and Lemma 3 by choosing
δ1(ε), δ2(ε) small and R ≥ C(ε) large enough. ⊓⊔

By rescaling Proposition 3 we obtain

Corollary 1. Suppose u : Br → R, Br ⊂ R2 is infinity harmonic and

‖u− e1 · x‖L∞(Br) ≤ δr|e1|.

Suppose also that there exists a plane P := e · x such that {u > P } has at
least two distinct connected components that intersect Br/6. Then, given ε,
there exits δ(ε) such that if δ ≤ δ(ε) we have

|e − e1| ≤ ε|e1|.

Corollary 1 follows by noticing that the rescaled function

w(x) :=
R

r|e1|
u(

rx

R
), R = 6C(ε)

satisfies the hypothesis of Proposition 3 if δR ≤ 1 . ⊓⊔
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Proof of Proposition 2: First we show

lim sup
r→0

|e0,r − e1| ≤ ε if δ ≤ δ(ε) (8)

Case 1: Suppose that u is not identical to a plane in a neighborhood of
0.

Then there exists a line segment [z1, z2] in Br/6 where u is not linear
when restricted to it. On this segment we can find a linear function l of
slope

u(z2) − u(z1)

|z2 − z1|

and an interior point y ∈ (z1, z2) such that either

u ≥ l on [z1, z2]

u(y) = l(y), u(z1) > l(z1), u(z2) > l(z2)

or
u ≤ l on [z1, z2]

u(y) = l(y), u(z1) < l(z1), u(z2) < l(z2).

Without loss of generality assume the first situation holds. Then, by
Lemma 1, there exists ey such that the set

{u > u(y) + ey · (x − y)}

has two distinct connected components in B1.
By Corollary 1 we have

|ey − e1| ≤
ε

4
(9)

if δ is small. From Theorem 1

‖u − u(0) − e0,r · x‖L∞(Br) ≤ rσ(r) (10)

σ(r) → 0 as r → 0,

and we find

|ey| = S(y) ≤ max
∂Br/2(y)

|u(x)− u(y)|

r/2
≤ |e0,r| + 4σ(r).

Similarly one obtains
|e0,r| = S(0) ≤ 1 + 2δ.

The above inequalities and (9) imply

1 − ε/4 − 4σ(r) ≤ |e0,r| ≤ 1 + 2δ.

Now we apply Corollary 1 in Br and obtain

|ey − e0,r| ≤ |e0,r|
ε

4
≤

ε

2
(11)
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provided that r is small enough. Now (8) follows from (9), (11).

Case 2: Suppose that u is identical to a plane P = e·x in a neighborhood
of 0. Denote by U the interior of the set {u = P }. If dist(0, ∂U) > 1/2, then
(8) is obvious. If not, let x0 ∈ ∂U be a point where the distance from 0 to
∂U is realized. From case 1 applied to B1/2(x0) we find

lim sup
r→0

|ex0,r − e1| ≤ ε

hence
|e − e1| ≤ ε.

In conclusion (8) is proved.

It remains to prove that e0,r converges as r → 0.
Let ri → 0 be an arbitrary sequence. By rescaling (8) to the balls Brj

we find that for each ε there exists j large such that

lim sup
i→∞

|e0,ri − e0,rj | ≤ ε

Thus e0,ri is a Cauchy sequence and Proposition 2 is proved. ⊓⊔

Proof of Theorem 3:

The proof is by compactness. Assume by contradiction the statement is
false. Then we can find ε0 > 0, functions uk satisfying the hypothesis of
Proposition 3 and points xk → 0 such that

|∇uk(xk) −∇uk(0)| ≥ ε0 as k → ∞.

We consider the rescaled functions

vk(x) :=
uk(|xk|x) − uk(0)

|xk|
.

The functions vk are infinity harmonic, defined on B|xk|−1 , ‖∇vk‖L∞ ≤ 1
and

|∇vk(xk|xk|
−1) −∇vk(0)| ≥ ε0. (12)

By the Arzela Ascoli Theorem there exists a subsequence (we still de-
note it by vk) that converges uniformly on compact sets to a function v∞.
Obviously v∞ is infinity harmonic, defined on R2 with

‖∇v∞‖L∞ ≤ 1.

As a consequence of Theorem 1 one can find e ∈ R2 and Ri → ∞ such
that

‖v∞ − e · x‖L∞(BRi
) ≤ Riσ(Ri)

σ(Ri) → 0 as i → ∞.

Thus, for every fixed ball BRi we have

lim sup
k→∞

‖vk − e · x‖L∞(BRi
) ≤ Riσ(Ri). (13)
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If e = 0, then for large k and x ∈ B1 we have (see Proposition 1 and(13))

|∇vk(x)| ≤ S+(vk, x) ≤ 2σ(Ri)

which contradicts (12) if Ri is chosen large enough.
If e 6= 0, then there exists Ri large such that

2|e|−1σ(Ri) ≤ δ(ε0/4).

From (13) and Proposition 2 (rescaled to BRi/2(x)) we find

|∇vk(x) − e| ≤ |e|ε0/4

for all x ∈ B1 and k large. This contradicts (12) and the theorem is proved.
⊓⊔
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