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Abstract. We use a localization property of boundary sections for solutions

to the Monge-Ampere equation and obtain global W 2,p estimates under nat-
ural assumptions on the domain and boundary data.

1. Introduction

Interior W 2,p estimates for strictly convex solutions for the Monge-Ampere equa-
tion were obtained by Caffarelli in [C] under the necessary assumption of small
oscillation of the right hand side. The theorem can be stated as follows.

Theorem 1.1 (Interior W 2,p estimates). Let u : Ω→ R,

(1.1) u = 0 on ∂Ω,

be a continuous convex solution to the Monge-Ampere equation

(1.2) detD2u = f(x) in Ω, 0 < λ ≤ f ≤ Λ,

for some positive constants λ, Λ.
For any p, 1 < p <∞ there exists ε(p) > 0 depending on p and n such that if

Bρ ⊂ Ω ⊂ B1/ρ

and

(1.3) sup
|x−y|≤ρ

| log f(x)− log f(y)| ≤ ε(p),

for some small ρ > 0, then

‖u‖W 2,p({u<−ρ}) ≤ C,
and C depends on ρ, λ, Λ, p and n.

In this short paper we answer the natural question of whether this interior esti-
mates can be extended up to the boundary. Precisely, we obtain the following global
W 2,p estimate under natural assumptions on the domain and boundary data.

Theorem 1.2 (Global W 2,p estimates). Let Ω be a convex bounded domain and
u : Ω→ R be a Lipschitz continuous convex solution of the Monge-Ampere equation
(1.2). Assume that

u|∂Ω, ∂Ω ∈ C1,1,

and there exists ρ > 0 small such that f satisfies (1.3). If u separates quadratically
on ∂Ω from its tangent planes i.e

(1.4) u(y)− u(x)−∇u(x) · (y − x) ≥ ρ|x− y|2 ∀x, y ∈ ∂Ω,
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then
‖u‖W 2,p(Ω) ≤ C,

with C depending on ‖∂Ω‖C1,1 , ‖u|∂Ω‖C1,1 , ‖u‖C0,1 , ρ, λ, Λ, p and n.

Remark 1.3. The gradient ∇u(x) when x ∈ ∂Ω is understood in the sense that

yn+1 = u(x) +∇u(x) · (y − x)

is a supporting hyperplane for the graph of u(y) but

yn+1 = u(x) + (∇u(x)− δνx) · (y − x)

is not a supporting hyperplane for any δ > 0, where νx denotes the exterior normal
to ∂Ω at x.

In general the Lipschitz continuity of the solution can be easily obtained from the
boundary data by the use of barriers. Also the quadratic separation assumption
(1.4) can be checked in several situations directly from the boundary data, see
Proposition 3.2 in [S2]. This is the case for example when the boundary data is
more regular i.e

(1.5) u|∂Ω, ∂Ω ∈ C3, and Ω is uniformly convex.

As a consequence of Theorem 1.2 we obtain

Corollary 1.4. Let u : Ω → R be a continuous solution of the Monge-Ampere
equation (1.2) that satisfies (1.3) and (1.5). Then

‖u‖W 2,p(Ω) ≤ C,
with C depending on u|∂Ω, ∂Ω, ρ, λ, Λ, p and n.

In particular, if u solves the Monge-Ampere equation (1.2) with f ∈ C(Ω) and
(1.5) holds, then u ∈W 2,p(Ω) for any p <∞.

The assumptions on the boundary behavior of u and ∂Ω in Theorem 1.2 and
Corollary 1.4 seem to be optimal. Wang in [W] gave examples of solutions u to
(1.2) with f = 1 and either u ∈ C2,1 or ∂Ω ∈ C2,1, that do not belong to W 2,p(Ω)
for large values of p.

The proof of Theorem 1.2 is based on a localization theorem for the Monge-
Ampere equation at boundary points which was proved in [S1], [S2]. It states that
under natural local assumptions on the domain and boundary data, the sections

Sh(x0) = {x ∈ Ω| u(x) < u(x0) +∇u(x0) · (x− x0) + h},
with x0 ∈ ∂Ω are “equivalent” to ellipsoids centered at x0. We give its precise
statement below.

Assume for simplicity that

(1.6) Bρ(ρen) ⊂ Ω ⊂ {xn ≥ 0} ∩B 1
ρ
,

for some small ρ > 0, that is Ω ⊂ (Rn)+ and Ω contains an interior ball tangent to
∂Ω at 0. Let u : Ω→ R be continuous, convex, satisfying

(1.7) detD2u = f, 0 < λ ≤ f ≤ Λ in Ω.

After subtracting a linear function we also assume that

(1.8) xn+1 = 0 is the tangent plane to u at 0,

in the sense that
u ≥ 0, u(0) = 0,
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and any hyperplane xn+1 = δxn, δ > 0, is not a supporting plane for u.
Theorem 1.5 shows that if the boundary data has quadratic growth near {xn = 0}

then, each section of u at 0

Sh := Sh(0) = {x ∈ Ω : u(x) < h},
is equivalent to a half-ellipsoid centered at 0.

Theorem 1.5 (Localization theorem). Assume that Ω, u satisfy (1.6)-(1.8) above
and,

ρ|x|2 ≤ u(x) ≤ ρ−1|x|2 on ∂Ω ∩ {xn ≤ ρ}.
Then, for each h < c0 there exists an ellipsoid Eh of volume ωnh

n/2 such that

c0Eh ∩ Ω ⊂ Sh ⊂ c−1
0 Eh ∩ Ω.

Moreover, the ellipsoid Eh is obtained from the ball of radius h1/2 by a linear
transformation A−1

h (sliding along the xn = 0 plane)

AhEh = h1/2B1

Ah(x) = x− νxn, ν = (ν1, ν2, . . . , νn−1, 0),

with

|ν| ≤ c−1
0 | log h|.

The constant c0 > 0 above depends on ρ, λ,Λ,and n.

We describe the idea of the proof of Theorem 1.2 below.
If the assumptions of Theorem 1.2 hold say for simplicity with f = 1 then, by

rescaling, one can deduce from the Localization theorem above that the second
derivatives can blow-up near ∂Ω in a logarithmic fashion i.e

‖D2u(y)‖ ≤ C| log dist(y, ∂Ω)|2,
thus D2u ∈ Lp(Ω) for any p < ∞. For general f we need to use the interior W 2,p

estimates instead of the estimate above together with a Vitali covering lemma for
sections of u near ∂Ω.

2. Proof of Theorem 1.2

We start by remarking that under the assumptions of Theorem 1.5 above, we
obtain that also the section {u < h1/2xn} has the shape of Eh.

Indeed, since

Sh ⊂ c−1
0 Eh ⊂ {xn ≤ c−1

0 h1/2}
and u(0) = 0, we can conclude from the convexity of u that the set

F := {x ∈ Ω| u < c0h
1/2xn}

satisfies for all small h

(2.1) F ⊂ Sh ∩ Ω,

and F is tangent to ∂Ω at 0. We show that F is equivalent to Eh by bounding its
volume from below.

Lemma 2.1. We have

|F | ≥ c|Eh|
for some c > 0 small depending on ρ, λ, Λ, n.
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Proof. From Theorem 1.5, there exists y ∈ ∂Sθh such that yn ≥ c0(θh)1/2. We
evaluate

v := u− c0h1/2xn,

at y and find

v(y) ≤ θh− c0h1/2c0(θh)1/2 ≤ −δh,
for some δ > 0 provided that we choose θ small depending on c0. Since v = 0 on
∂F and

detD2v ≥ λ
we have

| inf
F
v| ≤ C(λ)|F |2/n,

hence

chn/2 ≤ |F |.
�

Next we prove Theorem 1.2. We denote by c, C positive constants that depend
on ρ, λ, Λ, p, n and ‖∂Ω‖C1,1 , ‖u|∂Ω‖C1,1 , ‖u‖C0,1 . For simplicity of notation, their
values may change from line to line whenever there is no possibility of confusion.

Given y ∈ Ω we denote by

Sh(y) := {x ∈ Ω| u(x) < u(y) +∇u(y) · (x− y) + h}
and let h̄(y) be the maximal value of h such that Sh(y) ⊂ Ω, i.e

h̄(y) := max{h ≥ 0| Sh(y) ⊂ Ω}.

Lemma 2.2. Let y ∈ Ω and denote for simplicity h̄ = h̄(y). If h̄ ≤ c1 then

Sh̄(y) ⊂ DCh̄1/2 := {x ∈ Ω| dist(x, ∂Ω) ≤ Ch̄1/2},
and ∫

Sh̄/2(y)

‖D2u‖p dx ≤ C| log h̄|2p h̄n/2.

Proof. Without loss of generality assume

0 ∈ ∂Sh̄(y) ∩ ∂Ω.

After subtracting a linear function and relabeling ρ if necessary we may also assume
that u satisfies the conditions of Theorem 1.5 at the origin. Since u separates
quadratically from 0 on ∂Ω we deduce that ∇u(y) = αen thus

Sh̄(y) = {x ∈ Ω| u < αxn}, α > 0,

and h̄ > 0. Since (see [C])

ch̄n/2 ≤ |Sh̄(y)| ≤ Ch̄n/2,
we obtain from (2.1) and Lemma 2.1

ch̄1/2 ≤ α ≤ Ch̄1/2,

and that Sh̄(y) is equivalent to an ellipsoid Ẽ := ECh̄. This implies that

y + cẼ ⊂ Sh̄(y) ⊂ CẼ,
with

Ẽ = h̄1/2A−1B1, Ax := x− νxn,
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and

νn = 0, |ν| ≤ C| log h̄|.
The inclusion above implies

Sh̄(y) ⊂ {xn ≤ Ch̄1/2} ⊂ DCh̄1/2 .

The rescaling ũ : Ω̃→ R of u

ũ(x) :=
1

h̄
u(y + h̄1/2A−1x),

satisfies

Ω̃ = h̄−1/2A(Ω− y), S̃1(0) = h̄−1/2A(Sh̄(y)− y) ⊂ Ω̃,

and

Bc ⊂ S̃1(0) ⊂ BC ,
where S̃1(0) represents the section of ũ at the origin at height 1. Moreover,

detD2ũ(x) = f̃(x) := f(y + h̄1/2A−1x)

and (1.3) implies

| log f̃(x)− log f̃(z)| ≤ ε(p) ∀x, z ∈ S̃1(0)

since

|h̄1/2A−1(x− z)| ≤ Ch̄1/2| log h̄| ≤ ρ.
The interior W 2,p estimate for ũ in S̃0(1) gives∫

S̃1/2(0)

‖D2ũ‖p dx ≤ C,

hence ∫
Sh̄/2(y)

‖D2u‖p dx =

∫
S̃1/2(0)

‖AT D2ũ A‖p h̄n/2 dx ≤ C| log h̄|2p h̄n/2.

�

We also need the following covering lemma.

Lemma 2.3 (Vitali covering). There exists a sequence of disjoint sections

Sδh̄i(yi), h̄i = h̄(yi),

such that

Ω ⊂
∞⋃
i=1

Sh̄i/2(yi),

where δ > 0 is a small constant that depends only on λ, Λ and n.

Proof. We choose δ such that if

Sδh̄(y)(y) ∩ Sδh̄(z)(z) 6= ∅ and 2h̄(y) ≥ h̄(z),

then

Sδh̄(z)(z) ⊂ Sh̄(y)/2(y).

The existence of δ follows from the engulfing properties of sections of solutions to
Monge-Ampere equation (1.2) with bounded right hand side (see [CG]).



6 O. SAVIN

Now the proof is identical to the proof of Vitali’s covering lemma for balls. We
choose Sδh̄1

(y1) from all the sections Sδh̄(y)(y), y ∈ Ω such that

h̄(y1) ≥ 1

2
sup
y
h̄(y),

then choose Sδh̄2
(y2) as above but only from the remaining sections Sδh̄(y)(y) that

are disjoint from Sδh̄1
(y1), then Sδh̄3

(y3) etc. We easily obtain

Ω =
⋃
y∈Ω

Sδh̄(y)(y) ⊂
∞⋃
i=1

Sh̄i/2(yi).

�

End of proof of Theorem 1.2∫
Ω

‖D2u‖p dx ≤
∑
i

∫
Sh̄i/2(yi)

‖D2u‖p dx.

There are a finite number of sections with h̄i ≥ c1 and, by the interior W 2,p

estimate, in each such section we have∫
Sh̄i/2(yi)

‖D2u‖p dx ≤ C.

Next we consider the family Fd of sections Sh̄i/2(yi) such that

d/2 < h̄i ≤ d

for some constant d ≤ c1. By Lemma 2.2 in each such section∫
Sh̄i/2(yi)

‖D2u‖p dx ≤ C| log d|2p|Sδh̄i(yi)|,

and since

Sδh̄i(yi) ⊂ DCd1/2

are disjoint we find ∑
i∈Fd

∫
Sh̄i/2(yi)

‖D2u‖p dx ≤ C| log d|2pd1/2.

We add these inequalities for the sequence d = c12−k, k = 0, 1, . . . and obtain the
desired bound.
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