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Abstract

In this paper, we prove if n ≥ 2 and x0 is an isolated singularity of a noneg-
ative infinity harmonic function u, then either x0 is a removable singularity
or u(x) = u(x0) + c|x − x0| + o(|x − x0|) near x0 for some fixed constant c.
Especially, if x0 is not removable, it implies that x0 is either a local maximum
or local minimum. We will also prove an a closely related Bernstein type result
which says that if u a uniformly Lipschitz continuous, one-side bounded infinity
harmonic function in Rn\{0}, then it must be a cone centered at 0.

1 Introduction

Let Ω be an open subset of Rn. Throughout this paper, we assumet that n ≥ 2. We
say that u ∈ C(Ω) is an infinity harmonic function in Ω if it is a viscosity solution
of the following infinity Laplacian equation.

∆∞u = uxiuxjuxixj = 0 in Ω. (1.1)

See Appendix I for the definition of viscosity supersolution, subsolution and solution
of an elliptic equation. It is well-known that an infinity harmonic in Ω is a local
minimizer of the supremum norm of the gradient in the sense that for any open set
V ⊂ Ω and v ∈ W 1,∞(V ),

u|∂V = v|∂V

implies that
esssupV|Du| ≤ esssupV|Dv|.

An infinity harmonic function is also an absolute Lipschitz extension in Ω, i.e, for
for any open set V ⊂ V̄ ⊂ Ω,

sup
x 6=y∈∂V

|u(x)− u(y)|
|x− y|

= sup
x 6=y∈V̄

|u(x)− u(y)|
|x− y|

. (1.2)

The infinity Laplacian equation can be viewed as the limiting equation of p-
Laplacian equations as p → +∞. Precisely speaking, for p > 0, assume that up is a
p-harmonic function in Ω, i.e, up is a solution of the p-Laplacian equation

∆pup = div(|Dup|p−2Dup) = 0 in Ω. (1.3)

If up → u∞ uniformly in Ω as p → +∞, then u∞ is an infinity harmonic function
in Ω. We refer to a nice survey note by Crandall [C] for more backgrounds and
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information of equation (1.1). For 0 < p ≤ +∞, if up is a p-harmonic function
in Ω\{x0}, then x0 is called an isolated singularity of up. x0 is called a removable
singularity if up can be extended to be a p-harmonic function in Ω. Otherwise x0 is
called a nonremovable singularity. When 1 < p ≤ n, a classical result of Serrin [SE]
says that a nonnegative p-harmonic function up is comparable to the fundamental
solution of p-Laplacian equation near its nonremovable isolated singularity. When
n = 2 and 2 < p < +∞, Manfredi[M] derived an asymptotic representation of up

near the singularity. In this paper, we will show that a nonegative infinity harmonic
function is asymptotically a cone near its nonremovable isolated singularity. Espe-
cially, it implies that an infinity harmonic function has local maximum or minimum
value at nonremovable isolated singularity. This is quite surprising and is largely
due to the high nonlinearity of the mysterious infinity Laplacian equation. Note that
cones are fundamental solutions of the infinity Laplacian equation. The following is
our main result.

Theorem 1.1 Suppose that n ≥ 2 and u ∈ C(B1(x0)\{0}) is a nonegative infinity
harmonic function in B1(x0)\{x0}. Then u ∈ W 1,∞

loc (B1(x0)) and one of the follow-
ing holds:
(i) x0 is a removable singularity; or
(ii) there exists a fixed constant c 6= 0 such that

u(x) = u(x0) + c|x− x0|+ o(|x− x0|),

i.e,

lim
x→x0

|u(x)− u(x0)− c|x− x0||
|x− x0|

= 0.

Especially in case (ii), u has local maximum or local minimum value at x0. Moreover,
we have that

|c| = esssupV |Du|,

where V is some neighbourhood of x0.

We want to remark here that the above theorem is not correct when n = 1. For
example, for any t ∈ (0, 1], ut = t(−|x|) + (1 − t)x is an infinity harmonic function
on (−1, 1)\{0} and 0 is an isolated singularity. When t 6= 1, (ii) in Theorem 1.1 is
not satisfied.

As an application of Theorem 1.1, we can construct a family of nonclassical
infinity harmonic functions in R2. Precisely speaking,

Corollary 1.2 Suppose that Ω is an bounded open subset of R2 and x0 ∈ Ω. Assume
that u ∈ C(Ω̄) is an infinity harmonic function in Ω\{x0} and satisfies u|∂Ω = 0 and
u(x0) = 1. Then u ∈ C2(Ω\{x0}) if and only if Ω = Br(x0) and u(x) = 1 − |x−x0|

r
for some r > 0.

We will also prove a closely related Bernstein type theorem about uniformly
Lipschtz continuous infinity harmonic functions in Rn\{0}.
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Theorem 1.3 If u satisfies the following:
(i) esssupRn |Du| = 1;
(ii) for some M ∈ R and ε > 0, u(x) ≤ M + (1− ε)|x| for all x ∈ Rn;
(iii) u is an infinity harmonic function in Rn\{0}.
Then

u(x) = u(0)− |x|.

The first author proved in [SA] that if u is a uniformly Lipschitz continuous infinity
harmonic function in R2, then u must be linear, i.e, u = p · x + c for some p ∈ R2

and c ∈ R. In general, a uniformly Lipschitz continuous infinity harmonic function
in Rn\{0} might be neither be linear nor a cone. The following is a family of such
functions. For R > 0 and 0 < α < 1, let uR,α be the solution of the following
equation

∆∞uR,α = 0 on BR(0)\{0},

uR,α(0) = 0

and
uR,α|∂BR(0) = αxn − (1− α)R.

It is clear that
uR,0(x) = −|x|

and
uR,1(x) = xn.

Hence for each R, there exists 0 < α(R) < 1 such that

uR,α(R)(0, .., 0, 1) = 0.

Now suppose u = limR→+∞ uR,α(R). Then u is an infinity harmonic function in
Rn\{0} and esssupRn |Du| = 1. Moreover, u is neither linear nor a cone since
u(0, ..., 0, 1) = 0 and u(0, ..., 0, t) = t for t ≤ 0. Using Theorem 1.1 and the fact
that u(x′, xn) = u(−x′, xn), it is not hard to see that the u constructed above is not
C2 in Rn\{0}. See Corollary 3.2 for the proof. When n = 2, using some techniques
developed by the first author in [SA], we can show that any uniformly Lipschitz
continuous infinity harmonic function in R2\{0} must be bounded by a linear func-
tion and a cone. We conjecture that if u is C2 in Rn\{0}, then it must be linear
or a cone. We say that u is an entire infinity harmonic function if it is a viscosity
solution of equation (1.1) in Rn. Here we want to mention that Aronsson proved in
[A] that a C2 entire infinty harmonic function must be linear when n = 2. Estimates
derived by Evans [E] implies that this conclusion is true for a C4 entire infinity har-
monic function in any dimension. It remains an interesting question whether the C4

assumption in [E] can be reduced to C2.
Outline of the paper. In section 2, we will review some preliminary facts

of infinity harmonic functions. In section 3, we will prove our results listed in the
introduction. In Appendix I, we will prove a simple lemma of isolated singularities
of viscosity solutions of fully non-linear elliptic equations. Similar arguments can
also be found in [D]. In Appendix II, we will present the tightness argument which
is well kown to specialists.

3



2 Preliminary

For x0 ∈ Ω and 0 < r < d(x0, ∂Ω), we denote

Br(x0) = {x ∈ Rn| |x− x0| < r}.

and
S1 = {x ∈ Rn| |x| = 1}.

Also, we set

S+
u,r(x0) = max

x∈∂B1(x0)

u(x)− u(x0)
r

and

S−u,r(x0) =
u(x0)−minx∈∂B1(x0) u(x)

r
.

It is obvious that

max{S+
u,r(x0), S−u,r(x0)} ≤ esssupBr(x0)|Du|. (2.1)

The following theorem is due to Crandall-Evans-Gariepy [CEG].

Theorem 2.1 ([CEG]). If u ∈ C(Ω) is a viscosity subsolution of equation (1.1),
S+

u,r(x0) is nondecreasing with respect to r. We denote

S+
u (x0) = lim

r→0+
S+

u,r(x0).

For xr ∈ ∂Br(x0) such that u(xr) = max∂Br(x0) u, the following endpoint estimate
holds

S+
u (xr) ≥ S+

u,r(x0) ≥ S+
u (x0). (2.2)

If u ∈ C(Ω) is a viscosity supersolution of equation (1.1), S−u,r(x0) is nondecreas-
ing with respect to r. We denote

S−u (x0) = lim
r→0+

S−u,r(x0).

For xr ∈ ∂Br(x0) such that u(xr) = min∂Br(x0) u, the following endpoint estimate
holds

S−u (xr) ≥ S−u,r(x0) ≥ S−u (x0). (2.3)

If u ∈ C(Ω) is a viscosity solution of equation (1.1), then S+
u (x0) = S−u (x0). We

denote
Su(x0) = S+

u (x0) = S−u (x0).

If u is differentiable at x0, then

|Du(x0)| = S+
u (x0) = S−u (x0). (2.4)
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Owing to the above theorem, if u is a viscosity subsolution, then S+
u (x) is upper-

semicontinuous. Combining (2.1) and (2.4), we immediately have that

S+
u (x) = lim

r→+∞
esssupBr

|Du|. (2.5)

Similar conclusion holds for S−u (x) when u is a viscosity supersolution. Moreover,
the following is a well known result which follows immediately from (2.1) , Theorem
2.1 and Lemma 5.2 in Appendix II.

Theorem 2.2 Suppose that u ∈ W 1,∞(B1(0)) is a viscosity subsolution of equation
(1.1) in B1(0). Assume that

S+
u (0) = esssupB1(0)|Du|;

Then there exists some e ∈ ∂B1(0) such that for t ∈ [0, 1),

u(te) = u(0) + tS+
u (0).

Also Du(te) exists and Du(te) = eS+
u (0) for t ∈ (0, 1).

When n = 2, Savin proved in [SA] that any infinity harmonic function is C1.
Moreover, the following uniform estimate holds.

Theorem 2.3 ([SA]) Suppose that n = 2. If u is infinity harmonic function in
B1(0) and for some e ∈ B1(0)

max
B̄1(0)

|u− e · x| ≤ ε.

Then for any δ > 0, there exists ε(δ) > 0 such that if ε < ε(δ), then

|Du(0)− e| ≤ δ.

According to Theorem 2.1, it is easy to see that if u ∈ C(B1(0)) is a viscosity
subsolution or supersolution of equation (1.1) in B1(0), then, for 0 < r < 1

2 ,

esssupBr(0)|Du| ≤ 2
1− r

sup
B1(0)

|u|.

Hence by Theorem 2.3, a simple compactness argument implies the following result
which we will use in the proof of Corollary 1.2.

Theorem 2.4 Let n = 2. Suppose that u and v are two infinity harmonic functions
in B1(0) satisfying |u|, |v| ≤ 1 and

max
B̄1(0)

|u− v| ≤ ε.

Then for any δ > 0, there exists ε(δ) > 0 such that if ε < ε(δ), then

|Du(0)−Dv(0)| ≤ δ.
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3 Proofs

Lemma 3.1 Assume that u : Rn → R satisfies the following:
(i) esssupRn |Du| ≤ 1;
(ii) u(0) = 0 and u(x) ≤ (1− ε)|x| for some ε > 0
(iii) u is a viscosity subsolution of equation (1.1) in Rn\{0}.
(iv) There exists e ∈ S1 such that

u(−te) = −t for all t ≥ 0.

Then
u(x) = −|x|.

Proof. Note that (i) and (iv) imply that esssupRn |Du| = 1. Without loss of gener-
ality, we assume that e = (0, ..., 0, 1). Let

S = {all the functions satisfying (i)-(iv)}.

Denote
w = sup

v∈S
v.

It is clear that w ∈ S. For any λ > 0. We have wλ = w(λx)
λ ∈ S. Hence for all λ > 0

w ≥ wλ.

This implies that w = wλ for all λ > 0, i.e, w is homogeneous of degree 1. Owing to
(i), (iv) and Lemma 5.1 in Appendix II, we have that for x = (x′, xn) ∈ Rn−1 × R,

w(x′, xn) ≤ xn. (3.1)

If there exists a point (x̄′, 0) such that |x̄′| = 1 and w(x̄′, 0) = 0, then owing to (i)
and (3.1), for all t ≥ 0.

w(x̄′,−t) = −t.

I claim that all t ∈ R,
w(x̄′, t) = t.

In fact, denote T = sup{t| w(x̄′, s) = s for all s ≤ t}. It is clear that T ≥ 0. If
T < +∞, by (i) and (2.5), We have that

S+
w (x̄′, T − 1

2
) = 1.

Hence by (i), Theorem 2.2 and triangle inequality

w(x̄′, t) = t for T − 1
2
≤ t ≤ T +

1
2
.

This contradicts to the definiton of T . So T = +∞. Hence our claim holds. There-
fore by (i) and Lemma 5.1,

w(x) = e · x.
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This contradicts to (ii). Hence

max
{(x′,0)| |x′|=1}

w < 0.

So combining with the homogeneity of w, there exists ε > 0 such that

w ≤ 0 on Γε, (3.2)

where
Γε = {(x′, xn)| xn ≤ 0 or x2

n ≤ ε|x′|2}.

Denote
Cε = {(x′, xn)| xn ≤ 0 and x2

n >
1
ε
|x′|2}.

Geometrically, it is clear that for all x ∈ Cε, B|x|(x) ⊂ Γε. Therefore for x ∈ Cε,
owing to (3.2) and Theorem 2.1,

S+
w (x) ≤ −w(x)

|x|
. (3.3)

Suppose that u is differentiable at x0 ∈ Cε. By the homogeneity,

Dw(x0) · x0 = w(x0).

Hence by (2.4) and (3.3),

Dw(x0) =
w(x0)
|x0|2

x0.

Since w is Lipschitz continuous, we derive that w ∈ C∞(Cε) and

Dw(x) =
w(x)
|x|2

x. (3.4)

Hence
|Dw(x)| = −w(x)

|x|
in Cε. (3.5)

Owing to (3.4),
D(|Dw(x)|) = 0 in Cε

By (i) and (iv), |Dw(x)| ≡ 1 in Cε. So by (3.5),

w(x) = −|x| in Cε

Since
−|x| ≤ u(x) ≤ w(x),

we have that
u(x) = −|x| in Cε.

Now we denote
A = {α ∈ S1| u(−tα) = −t for all t ≥ 0}.
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Obviously, A is closed and nonempty. Owing to the above proof, A is an open set
of S1. For n ≥ 2, S1 is connected. Hence A = S1. So

u(x) = −|x|.

2

Proof of Theorem 1.1. According to [B], limx→x0 u(x) exists. Hence by
defining u(x0) = limx→x0 u(x), u ∈ C(B1). Suppose that x0 is a nonremovable
singularity. Owing to Lemma 4.2 in Appendix I, we may assume that u is viscosity
supersolution in B1(x0). Hence u ∈ W 1,∞

loc (B1(0)). Without loss of generality, we
assume that x0 = 0 and u(0) = 0. Since u is not a subsolution at x0, According to
(4.4) and Remark 4.3 in the Appendix I, there exists a 0 6= p ∈ Rn and ε > 0 such
that in a neighborhood of 0,

u(x) ≤ p · x− ε|x|.

Hence there exists δ > 0 and a smaller neighborhood V ⊂ V̄ ⊂ B1(0) of 0 such that

u(x) ≥ p · x− δ in V

and
u(x) = p · x− δ on ∂V .

Denote
t̄ = sup{t ≥ 0|[0,−tp] ⊂ V },

where [0,−tp] denote the line segment connecting 0 and −tp. Hence

c = esssupV |Du| ≥ u(0)− u(−t̄p)
|t̄p|

=
δ

|t̄p|
+ |p| > |p|.

Denote
K = sup

x 6=y∈∂(V \{0})

|u(x)− u(y)|
|x− y|

.

Since u is an absolute Lipschitz extension in B1(0)\{0}, owing to (1.2), we have that

K ≥ c > |p|. (3.6)

Also,
u(x) ≤ p · x− ε|x| ≤ |p||x| in V. (3.7)

Combining (3.6) and (3.7), we derive that

K = max
x∈∂V

u(0)− u(x)
|x|

.

Choose x̄ ∈ ∂V such that

−u(x̄) = u(0)− u(x̄) = K|x̄|.
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Since K > |p|, by the triangle inequality and the definition of K, we have

{tx̄| 0 ≤ t < 1} ⊂ V.

This implies K ≤ c. Therefore K = c and

u(tx̄) = −tu(x̄) = −tc|x̄| for 0 ≤ t ≤ 1. (3.8)

Note that |p| < c = K. Now suppose that λm → 0+ as m → +∞ and

lim
m→+∞

u(λmx)
λm

= w(x).

Owing to (3.7) and (3.8), it is easy to see that w(x)
c satisfies the assumptions in

Lemma 3.1 with e = −x̄
|x̄| . So

w(x) = −c|x|.

Since this is true for any sequence {λm}, we derive that

lim
λ→0+

u(λx)
λ

= −c|x|.

Hence Theorem 1.1 holds. 2

Proof of Theorem 1.3. It is clear that when R is large enough, by (ii), we
have that

u(x) ≤ M + (1− ε)R ≤ u(0) + (1− ε

2
)R.

Hence, by comparison with cones, we have

u(x) ≤ u(0) + (1− ε

2
)|x| on BR(0).

Sending R → +∞, we derive that for all x ∈ Rn,

u(x) ≤ u(0) + (1− ε

2
)|x|.

Without loss of generality, we may assume that u(0) = 0. Therefore by Lemma 3.1,
to prove Theorem 1.3, it suffices to show that there exists e ∈ ∂B1(0) such that for
all t ≥ 0,

u(−te) = −t. (3.9)

We claim that
lim
r→0

esssupBr(0)|Du| = 1. (3.10)

If not, let us assume that there exists r > 0 and δ ∈ (0, ε) such that

esssupBr(0)|Du| ≤ 1− δ. (3.11)

Choose x0 ∈ Rn such that

Su(x0) ≥ 1− δ

2
.
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Owing to (2.5), x0 /∈ B̄ r
2
(0). Hence by endpoint estimate (2.2), there exists a

sequence {xm}m≥0 such that
(1)

|xm − xm−1| =
r

2
;

(2)
u(xm)− u(xm−1) ≥ Su(x0)

r

2
.

(3)

Su(xm) ≥ 1− δ

2
.

Therefore limm→+∞ |xm| = +∞ and

u(xm) ≥ u(x0) + (1− δ

2
)|xm − x0| ≥ u(x0) + (1− ε

2
)|xm − x0|.

This contradicts to (ii) when m is sufficiently large. Hence (3.10) holds. Owing to
Lemma 4.2 in Appendix I, u is either a viscosity supersolution or viscosity subsolu-
tion in Rn. If u is a viscosity subsolution in Rn, then

S+
u (0) = 1.

Hence by Theorem 2.2, there exists e ∈ S1 such that for all t ≥ 0,

u(te) = t.

This contradicts to (ii) when t is suffcienty large. So u must by a viscosity superso-
lution in Rn. Then

S−u (0) = 1.

Hence by considering −u and Theorem 2.2, there exists e ∈ S1 such that for all
t ≥ 0,

u(−te) = −t.

2

Proof of Corollary 1.2. Without loss of generality, we assume that x0 = 0.
Choose x̄ ∈ ∂Ω such that |x̄| = d(0, ∂Ω) = r. Then by (1.2)

esssupΩ|Du| = 1
r

and for 0 ≤ t ≤ 1,

u(tx̄) = 1− t

r
.

Owing to Theorem 1.1,

lim
λ→0+

u(λx)− u(0)
λ

= −|x|
r

.

Therefore by Theorem 2.4,

lim
x→0

|Du(x)− x

r|x|
| = 0.
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Especially,

lim
x→0

|Du(x)| = 1
r
. (3.12)

Choose y0 ∈ Ω\{0} such that Du(y0) 6= 0. Then there exists δ > 0 and ξ :
[0, δ] → Ω such that

ξ̇(t) = Du(ξ(t))

and
ξ(0) = y0, ξ(δ) = 0.

Since |Du(ξ(t))| ≡ |Du(y0)|, (3.12) implies that

|Du(y0)| =
1
r
.

Hence for x ∈ Ω\{0},
|Du(x)| ≡ 1

r
.

So u(x) = 1− 1
r |x|. Since u|∂Ω = 0, Ω = Br(0). 2

Corollary 3.2 The uniformly Lipschitz continuous function constructed in the in-
troduction is not C2 in Rn\{0}.

Proof. By the construction and comparison principle, u satisfies the following
(1)

esssupRn |Du| = 1,

(2) for t ≥ 0,
u(0,−t) = −t.

(3)
u(x′, xn) = u(−x′, xn).

Owing to (1), (2) and Theorem 1.1, for x near 0,

u(x) = −|x|+ o(|x|). (3.13)

Assume that u ∈ C2(Rn\{0}). Since |Du| is preserved along the gradient follow,
due to (3), u is linear along the half line {(0, ..., 0, t)| t ≥ 0}. Since u(0, ..., 0, 1) =
u(0), we have that for t > 0,

u(0, ..., 0, t) ≡ 0.

This is contradictory to (3.13). 2

Definition 3.3 Let F be a closed set and g a uniformly Lipschtz continuous function
on F , we say that u is an absolute Lipschitz extension of (F, g) if u|F = g and for
any open subset U ⊂ Rn\F ,

sup
x,y∈Ū ,x 6=y

u(x)− u(y)
|x− y|

= supx,y∈∂U,x 6=y
u(x)− u(y)
|x− y|

. (3.14)
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In general, the uniqueness of absolute Lipschitz extension is an open problem.
In the following, as an application of Lemma 3.1, we will prove the uniqueness of
Lipschitz extension for a special pair of (F, g). Fix e ∈ S1, we choose F = {te||t ≤ 0}
and g(x) = e · x. When n ≥ 2, we can see that u(x) = −|x| is an absolute Lipschitz
extension of (F, g). Moreover, Definition 3.3 implies that any absolute Lipschitz
extension u of (F, g) satisfies
(1) esssupRn |Du| = 1;
(2) u ≤ 0;
(3) u is an infinity harmonic function in Rn\{0}.
(4) u(−te) = −t for t ≥ 0.
(1) and (4) are obvious. (2) follows form applying (3.14) to the open set Uε = {x ∈
Rn| u(x) > ε} for any ε > 0. We want to say a little bit about (3). It is clear that
u is an infinity harmonic function in Rn\F . Owing to Lemma 5.2 in Appendix II,
for x ∈ F\{0}, Du(x) = e. Hence by the definition of viscosity solutions and (4), u
is an infinity harmonic function on F\{0}. The following corollary is an immediate
result of Lemma 3.1.

Corollary 3.4 u(x) = −|x| is the unique absolute Lipschitz extension of (F, g).

4 Appendix I: A simple lemma of isolated singularity
of fully nonlinear elliptic equations

Denote Sn×n as the collection of all symmetric matrices. Suppose that F ∈ C(Sn×n×
Rn × R× Ω) and satisfies that

F (M1, p, z, x) ≥ F (M2, p, z, x)

if all the eigenvalues of M1 −M2 are nonnegative.

Definition 4.1 We say that u ∈ C(Ω) is a viscosity supersolution (subsolution) of

F (D2u, Du, u, x) = 0

if for any φ ∈ C2(Ω) and x0 ∈ Ω,

φ(x)− u(x) ≤ (≥)φ(x0)− u(x0) = 0

implies that
F (D2φ(x0), Dφ(x0), φ(x0), x0) ≤ (≥)0.

u is viscosity solution if it is both a supersolution and a subsolution.

The following is a simple lemma. Similar argument can be found in [D].

Lemma 4.2 Suppose that u ∈ C(B1) and is viscosity solution of the equation

F (D2u, Du, u, x) = 0 in B1(0)\{0}.

Then u is either a viscosity supersolution or a viscosity subsolution in the entire ball.
Especially, if u is differentiable at 0, then u is solution in the entire ball, i.e, 0 is a
removable singularity.
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Proof. I claim that if u is not a viscosity supersolution then there exists ε > 0 and
p ∈ Rn such that

u(x) ≥ p · x + ε|x| in B̄ε(0). (4.1)

In fact, if u is not a viscosity supersolution in the entire ball, then there exists
φ ∈ C2(B1(0)) such that

φ(x)− u(x) < φ(0)− u(0) = 0 for x ∈ B1(0)\{0} (4.2)

and
F (D2φ(0), Dφ(0), u(0), 0) > 0.

Let us choose p = Dφ(0). If (4.1) is not true, then for any m ∈ N, there exists
xm ∈ B 1

m
(0) such that

u(xm) < φ(xm) +
1
m
|xm|. (4.3)

It is clear that xm 6= 0. Denote

φm(x) = φ(x) +
xm

m|xm|
· x.

Choose ym ∈ B̄1(0) such that

u(ym)− φm(ym) = min
B̄1(0)

(u− φm).

Owing to (4.2) and (4.3), ym 6= 0 and limm→+∞ ym = 0. Hence

F (D2φ(ym), Dφ(ym) +
xm · ym

m|xm|
, u(ym), ym) ≤ 0.

Sending m → +∞, we derive that

F (D2φ(0), Dφ(0), u(0), 0) ≤ 0.

This is a contradiction. Hence (4.1) holds. Similarly, we can show that if u is not a
viscosity subsolution at 0 then there exists ε > 0 and p ∈ ·Rn such that

u(x) ≤ p · x− ε|x| in B̄ε(0). (4.4)

Note that (4.1) and (4.4) can not happen simultaneously. Especially, if u is differ-
entiable at 0, neither can happen. Hence Lemma 4.2 holds. 2

Remark 4.3 If F is the infinity Laplacian operator, i.e, F = p · M · p, then the
vector p ∈ Rn in (4.1) and (4.4) is not 0 since p = Dφ(0).
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5 Appendix II: Tightness argument and conclusions

The results in the section are well known. We present here for reader’s convenience.

Lemma 5.1 Suppose that u ∈ W 1,∞(Rn) and satisfies that
(1) esssupRn |Du| ≤ 1;
(2) for t ≥ 0,

u(0, ..., 0,−t) = −t.

Then for x = (x′, xn) ∈ Rn−1 × R,

u(x) ≤ xn. (5.1)

Especially, if (2) is true for all t ∈ R, then u = xn.

Proof. Note that (1) and (2) imply that esssupRn |Du| = 1. Owing to (1) and (2),
for t > 0,

|u(x) + t| = |u(x)− u(0, ...0,−t)| ≤
√
|x′|2 + (xn + t)2.

Hence
(u(x))2 + 2tu(x) ≤ |x′|2 + x2

n + 2txn.

So
(u(x))2

2t
+ u(x) ≤ |x′|2 + x2

n

2t
+ xn.

Sending t → +∞, we derive (5.1). 2

Lemma 5.2 Suppose that u ∈ W 1,∞(B1(0)) and satisfies that
(1)

esssupB1(0)|Du| ≤ 1; (5.2)

(2) for some e ∈ ∂B1(0),
u(e)− u(0) = 1 (5.3)

Then for 0 < t < 1,
u(te) = u(0) + t (5.4)

and
Du(te) = e. (5.5)

Proof Owing to (5.2), for any x, y ∈ B1(0),

|u(x)− u(y)| ≤ |x− y|.

Hence (5.4) follows from (5.3) and triangle inequality. Now choose x0 ∈ {te| 0 < t <
1}. Suppose that λm → 0 as m → +∞ and

lim
m→+∞

u(λmx + x0)− u(x0)
λm

= w(x).

By (5.2) and (5.4), w(x) satisfies that

esssupRn |Dw| ≤ 1

14



and for all t ∈ R
w(te) = t.

Hence by Lemma 5.1, w(x) = e ·x. Since this is true for sequence {λm}, we get that

lim
λ→0

u(λx + x0)− u(x0)
λ

= e · x.

Therefore (5.5) holds. 2
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