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DIFFEOMORPHISMS AND NONLINEAR HEAT FLOWS∗

L. C. EVANS† , O. SAVIN† , AND W. GANGBO‡

Abstract. We show that the gradient flow u on L2 generated by the energy functional I[u] :=∫
U Φ(detDu) dx for vector-valued mappings is in some sense “integrable,” meaning that (i) the

inverse Jacobian β := (detDu)−1 satisfies a scalar nonlinear diffusion equation, and (ii) we can
recover u by solving an ODE determined by β.
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1. Introduction.

1.1. Gradient flows for quasi-convex energies. This paper is a contribution
to the mostly unsolved problem of understanding the gradient flow dynamics on L2

generated by integral functionals having the form

I[v] :=

∫
U

F (Dv) dx,(1.1)

defined for functions v : U → R
m, where U is an open subset of R

n. The gradient
Dv belongs to M

m×n, the space of m×n matrices, and we are given the nonlinearity
F : M

m×n → (−∞,+∞].

Quasi convexity. As is well known, the critical assumption for the existence of
minimizers of I[·], subject to appropriate boundary conditions, is that F be quasi-
convex in the sense of C. B. Morrey, Jr. This is the condition that∫

U

F (A) dx ≤
∫
U

F (A + Dv) dx(1.2)

for all matrices A ∈ M
m×n and all C1 functions v : U → R

m vanishing on ∂U .

Dynamics. As the existence and (partial) regularity theories for minimizers are
fairly well understood, it has long seemed natural to turn attention to related dy-
namical problems. The corresponding flow on L2 generated by I[·] is the initial-value
problem for the system of PDEs{

ut = div(DF (Du)) (t > 0),

u = u0 (t = 0),
(1.3)
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with appropriate boundary conditions.
Given the quasi-convexity hypothesis (1.2), the system (1.3) is parabolic, at least

in some weak sense. However, it is extremely nonlinear, so much so that it remains
to date a challenging open problem to prove existence of even weak solutions, to
understand uniqueness issues, and/or to show partial regularity.

Time-step approximations. One obvious approach is to approximate by an
implicit time-step approximation. For this, we fix a step size h > 0 and recursively
find uk+1 to minimize

Ik[v] :=
1

2

∫
U

|v − uk|2 dx + h

∫
U

F (Dv) dx,(1.4)

with appropriate boundary conditions, given uk. The Euler–Lagrange equations read{
uk+1−uk

h = div(DF (Duk+1)) (k = 0, 1, . . . ),

u0 = u0.
(1.5)

This procedure generates a strong candidate for an approximation to the full dynamics
(1.3). The fundamental point is that under our quasi-convexity assumption we can in
fact iteratively find minimizers of (1.4).

The really hard task is passing to limits as h → 0. Since our approximations
uk are minimizers, and not just critical points, of Ik[·], the expectation and hope is
that we obtain in the limit some sort of reasonable weak solution of (1.3). It has,
however, proved in practice impossible to carry out this program in general, owing to
the usual problem in nonlinear PDE that we do not have very good uniform estimates
on the approximate solutions uk. (The paper [E] demonstrates a completely different
minimization principle, but we have not been able to exploit this usefully.)

1.2. Nonlinearities depending only on the determinant. This paper doc-
uments some progress in this matter for the case m = n and nonlinearities F with
the special structure

F (P ) = Φ(detP ) (P ∈ M
n×n),(1.6)

where Φ is a convex function and “det” means determinant. Such a nonlinearity is
quasi-convex, and it has long been known that for the static calculus of variations the
particular hypothesis (1.6) has strong implications; see, for instance, Dacorogna [D].

We begin by reviewing the issue of minimizing the functional

I[v] :=

∫
U

F (Dv) dx =

∫
U

Φ(detDv) dx(1.7)

among mappings v = (v1, . . . , vn) from a connected, open set U ⊂ R
n into R

n. We
write the gradient matrix of v as

Dv =

⎛
⎜⎝
v1
x1

. . . v1
xn

...
. . .

...
vnx1

. . . vnxn

⎞
⎟⎠ .

If u = (u1, . . . , un) is a smooth minimizer of I[·], subject to boundary conditions
which for the moment we do not specify, then u solves the Euler–Lagrange system
of PDEs

div(DF (Du)) = div(Φ′(detDu)(cof Du)T ) = 0,(1.8)
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where cof Du is the cofactor matrix formed from Du. To derive (1.8) we employed
the formula

∂ detP

∂pki
= (cof P )ki (1 ≤ i, k ≤ n)(1.9)

for the n × n matrix P , whose (i, k) entry is denoted pki . Likewise, (cof P )ki means
the (i, k) entry of cof P . Formula (1.9) is a consequence of the matrix identity

(cof P )TP = I detP,(1.10)

but for any C2 function w = (w1, . . . , wn) we have

div((cof Dw)T ) ≡ 0;(1.11)

that is,

(cof Dw)ki,xi
= 0 (k = 1, . . . , n).

Therefore (1.8) implies

0 = Φ′′(detDu)D(detDu)(cof Du)T .(1.12)

In view of (1.10), our multiplying (1.10) by Du gives

0 = Φ′′(detDu)D(detDu)(detDu) =
1

2
Φ′′(detDu)D(detDu)2.

Assuming next the strict convexity condition that Φ′′ > 0, we deduce that (detDu)2

is constant within U . Thus, if u is smooth, we conclude that

detDu ≡ C within U(1.13)

for some constant C.

1.3. A gradient flow. We study in this paper the corresponding “heat flow”
governed by the function I[·], that is, the system of PDEs

ut = div(DF (Du)) = div(Φ′(detDu)(cof Du)T ),(1.14)

plus appropriate initial and boundary conditions, detailed later.
We are especially interested in the case that Φ(d) < ∞ for d > 0, Φ(d) = ∞ for

d < 0, and limd→0+ Φ(d) = +∞. Then (1.14) enforces the constraint

detDu > 0.

We can hope therefore that for each time t the mapping x �→ y = u(x, t) is a diffeo-
morphism, with inverse y �→ x = v(y, t). And since the static problem, recalled in
section 1.1, is so simple, we hope as well that the analysis of the system (1.14) may
not be so complicated.

This is in fact so, for as we will see in section 2, the quantity

β := (detDu)−1 > 0,(1.15)
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regarded as a function of y and t, solves the nonlinear parabolic PDE

βt = div

(
Φ′′

(
1

β

)
Dβ

β2

)
= div (βΨ′(β)Dβ)(1.16)

with Neumann boundary conditions, where

Ψ(d) := dΦ

(
1

d

)
for d > 0.

Now (1.16) is singular in regimes where β → 0 or ∞, but the maximum principle
implies that if the initial data β0 is bounded away from 0 and ∞, then so is the
solution.

We will show furthermore that given β, the solution of (1.16) with appropriate
initial conditions, we can then recover the mappings u by solving a system of ODEs
governed by β and proving then that the PDE (1.14) holds. In this sense, we can
regard the parabolic system of PDEs (1.14) as being somehow “integrable.”

1.4. Outline. Our paper introduces in section 2 the formal computations show-
ing how (1.16) results from (1.14). Section 3 then reverses this process to provide
careful proofs: we start with the solution β of the nonlinear diffusion equation and
build from it the mappings u(·, t) for t > 0.

Section 4 introduces some interesting variants of our construction, the first for
more general integrands than in (1.7). We discuss also a situation when the range of
the initial mapping u0 is a proper subset W0 of the target V . In this case we can
design Φ so that the flow “fills up” V in finite time. Interesting complications occur
if U and V are not in fact diffeomorphic.

The concluding section 5 introduces and analyzes a related “time-stepping” dy-
namic variational principle. This discussion will make much clearer the connections
between our PDE (1.16) and (1.14).

2. Calculations for smooth solutions. Suppose now U is a smooth, open,
bounded, connected subset of R

n, and

u : Ū × [0,∞) → R
n

is smooth, u = (u1, . . . , un). In this section we suppose as well that u solves the
system (1.14). Let u0 = u(·, 0) denote the initial mapping.

2.1. Changing variables. Suppose that for each time t ≥ 0, the mapping

u(·, t) : Ū → V̄

is a diffeomorphism, where V ⊂ R
n is a fixed open subset of R

n. We can then invert
the relationship

y = u(x, t) (x ∈ Ū , y ∈ V̄ )(2.1)

to give

x = v(y, t) for v := u−1.(2.2)

Set

β(y, t) := detDv(y, t) = (detDu(x, t))−1.(2.3)
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2.2. A PDE for β. Our main observation is that β solves a scalar, nonlinear
diffusion equation.

Theorem 2.1. We have{
βt = div

(
Φ′′

(
1
β

)
1
β2Dβ

)
in V × (0,∞),

∂β
∂ν = 0 on ∂V × (0,∞),

(2.4)

ν denoting the unit outward-pointing normal vectorfield to ∂V .
Proof. 1. Fix any time T > 0 and select a smooth function ζ : V̄ × [0, T ] → R

such that

ζ(·, 0) ≡ ζ(·, T ) ≡ 0.(2.5)

Then, employing (2.1), we compute∫ T

0

∫
V

βζt + Dy

(
Φ′

(
1

β

))
·Dyζ dydt

=

∫ T

0

∫
U

[
β(u, t)ζt(u, t) + Dx

(
Φ′

(
1

β

))
(Du)−1 ·Dyζ

]
dx

β(u, t)
dt(2.6)

=

∫ T

0

∫
U

∂

∂t
(ζ(u, t)) −Dyζ · ut + Dx

(
Φ′

(
1

β

))
(Du)−1

β
·Dyζ dxdt

= −
∫ T

0

∫
U

Dyζ ·
[
ut −Dx

(
Φ′

(
1

β

))
(Du)−1

β

]
dxdt.

Now our PDE (1.14) reads

ut = divx(Φ′(detDu) detDu(Du)−1) = Dx

(
Φ′

(
1

β

))
(Du)−1

β
,

since div((detDu)(Du)−1) = div(cof DuT ) ≡ 0. Consequently the expression within
the square brackets in the last term of (2.6) vanishes. So∫ T

0

∫
V

βζt + Dy

(
Φ′

(
1

β

))
·Dyζ dydt = 0

for all test functions ζ as above.
2. If also ζ ≡ 0 on ∂V × [0, T ], we may integrate by parts to deduce

βt + divy

(
DyΦ

′
(

1

β

))
≡ 0,(2.7)

and this is the PDE in (2.4). Now drop the assumption that ζ = 0 on the boundary
and again integrate by parts:∫ T

0

∫
∂V

∂

∂ν

(
Φ′

(
1

β

))
ζ dHn−1 dt = 0.

It follows that

∂

∂ν

(
Φ′

(
1

β

))
= −Φ′′

(
1

β

)
∂β

∂ν
≡ 0 on ∂V × (0, T ).

Since Φ′′ > 0, the proof is done.
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2.3. Recovering the mapping u from β. We next address the question of
how to recover the mapping u from knowledge of β. One possibility is for each time
t to try to find x �→ u(x, t) solving{

β(u(x, t), t) detDu(x, t) ≡ 1 in Ū ,

u(·, t) ∈ Diff(Ū , V̄ ),
(2.8)

where Diff(Ū , V̄ ) denotes the set of all diffeomorphisms of Ū onto V̄ . As we will
discuss later in section 5, this approach works, provided U and V are convex sets.

However, there is a simpler construction available. First, define the new nonlin-
earity

Ψ(d) := dΦ

(
1

d

)
(d > 0).(2.9)

Then

Ψ′(d) = Φ

(
1

d

)
− 1

d
Φ′

(
1

d

)
, Ψ′′(d) =

1

d3
Φ′′

(
1

d

)
;(2.10)

and so Ψ : (0,∞) → R is convex.
Next, perform these calculations:

ut = divx(Φ′(detDu) detDu(Du)−1)

= Dx(Φ′(detDu)) · (detDu(Du)−1)

= Φ′′(detDu)Dx(detDu) · (detDu(Du)−1)

= Φ′′
(

1

β

)
1

β
Dx

(
1

β

)
(Du)−1(2.11)

= −Φ′′
(

1

β

)
1

β3
Dxβ(Du)−1

= −Ψ′′(β)Dyβ = −DyΨ
′(β).

This computation suggests that we fix a point x ∈ Ū and then solve the ODE{ .
y(t) = −Ψ′′(β(y(t), t))Dβ(y(t), t) for t > 0,

y(0) = y = u0(x),
(2.12)

where . = d
dt . Then by uniqueness of solutions we have u(x, t) = y(t) for t ≥ 0.

3. Building diffeomorphisms. The formal calculations from the previous sec-
tion done with, we turn now to building rigorously a smooth solution

u : Ū × [0,∞) → V̄

of our system ⎧⎪⎨
⎪⎩

ut = div(Φ′(detDu)(cof Du)T ) in Ū × (0,∞),

u = u0 on Ū × {t = 0},
u(·, t) ∈ Diff(Ū , V̄ )

(3.1)

under some additional assumptions.
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3.1. Hypotheses. We require that the initial mapping u0 : Ū → V̄ be a diffeo-
morphism, mapping ∂U onto ∂V . We write

β0 := detDv0(3.2)

for v0 := (u0)−1 and assume that there exist positive constants 0 < C1 ≤ C2 such
that

(H1) C1 ≤ β0 ≤ C2 on V̄ .

We ask also that the following compatibility condition hold:

(H2)
∂β0

∂ν
= 0 on ∂V.

Finally we require that Φ be smooth and convex on (0,∞), with the lower bound

(H3) Φ′′
(

1

β

)
> 0 for C1 ≤ β ≤ C2.

3.2. Solving PDE and ODE. In view of (H1), (H2), the initial/boundary-
value problem ⎧⎪⎪⎨

⎪⎪⎩
βt = div

(
Φ′′

(
1
β

)
Dβ
β2

)
in V × (0,∞),

∂β
∂ν = 0 on ∂V × [0,∞),

β = β0 on V̄ × {t = 0}

(3.3)

has a unique, smooth solution β, with

0 < C1 ≤ β ≤ C2 in V̄ × [0,∞).(3.4)

Next, for each y ∈ V̄ , solve the ODE (2.12):{ .
y(t) = −Ψ′′(β(y(t), t))Dβ(y(t), t) for t > 0,

y(0) = y.
(3.5)

We write y(t) = y(t, y) to display dependence on the initial point y.
Theorem 3.1. (i) For each given x ∈ Ū , the ODE (3.5) has a unique solution

y : [0,∞) → V̄ , existing for all times t ≥ 0.
(ii) If y ∈ ∂V , then y(t) ∈ ∂V for all times t ≥ 0.
(iii) For each t ≥ 0, the mapping

u(x, t) := y(t,u0(x)) (x ∈ Ū , t ≥ 0)(3.6)

is a smooth diffeomorphism from Ū to V̄ , mapping ∂U onto ∂V .
Proof. Since ∂β

∂ν = 0 on ∂V , Dβ is tangent to ∂V and consequently the flow does
not leave V̄ . In particular, if u0(x) ∈ ∂V , then x(t) ∈ ∂V for times t ≥ 0.

Assertion (iii) is standard.
Define u : Ū × [0,∞) → V̄ by (3.6) and set v(·, t) := u−1(·, t) for each time t ≥ 0.
Theorem 3.2. (i) We have

β ≡ detDv.(3.7)
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(ii) Furthermore, u solves the system of PDEs (2.1), and the mapping

t �→
∫
U

Φ(detDu)(x, t) dx

is nonincreasing.
Proof. 1. As before, set α = detDu, α = α(x, t). Then

αt = αDxut(Du)−1.(3.8)

Now

ut = −DyΨ
′(β)

and so

Dxut = −D2
yΨ

′(β)(Dxu).

Hence

αt = −αΔyΨ
′(β).(3.9)

Next, regarding β = β(u, t) as a function of (x, t), we have

(αβ)t = αtβ + αβt + αDyβ · ut

= −αβΔyΨ
′(β) + α div(Ψ′′(β)βDyβ) − αDyβ · (Ψ′′(β)Dyβ)

= 0.

Since αβ ≡ 1 at t = 0, we deduce that

β = α−1 = detDv.

2. We have shown that β ≡ detDv, where v = u−1 and u is defined by (3.6).
We then return to the computation (2.11) to deduce that

ut =
.
x = −Ψ′′(β)Dβ = div(Φ′(detDu)(cof Du)T ).(3.10)

Finally let us calculate

d

dt

∫
U

Φ(detDu) dx =
d

dt

∫
V

Φ

(
1

β

)
β dy

=

∫
V

(
Φ

(
1

β

)
− 1

β
Φ′

(
1

β

))
βt dy

=

∫
V

Ψ′(β) div(βΨ′′(β)Dβ) dy

= −
∫
V

Ψ′′(β)2β|Dβ|2 dy ≤ 0.

4. Some variants.

4.1. More general nonlinearities. Our methods extend with little difficulty
to the functional

I[v] :=

∫
U

Φ(f(v) detDv) dx(4.1)

for Φ as before and f : V̄ → (0,∞).
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Euler–Lagrange equation. The corresponding Euler–Lagrange equation is

−div(Φ′(f detDu)f(cof Du)T ) + Φ′(f detDu)(detDu)Df = 0,

which simplifies to read

Φ′′(f detDu)D(f detDu)f(cof Du)T = 0.(4.2)

As in section 1.1 this implies that

f(u) detDu ≡ C within U

for some constant C.

A gradient flow. The evolution associated with (4.1) is

ut − div(Φ′(f detDu)f(cof Du)T ) + Φ′(f detDu)(detDu)Df = 0,(4.3)

plus initial and boundary conditions.
As before, assume v := u−1 exists and write

β := detDv.

Theorem 4.1. We have⎧⎨
⎩
βt = −div

(
Φ′′

(
f
β

)
fD

(
f
β

))
in V × (0,∞),

∂
∂ν

(
f
β

)
= 0 on ∂V × (0,∞).

(4.4)

Proof. 1. Fix any time T > 0 and select a smooth function ζ : V̄ × [0, T ] → R

satisfying (2.5).
Then ∫ T

0

∫
V

βζt + Dy

(
Φ′

(
f

β

))
·Dyζf dydt

=

∫ T

0

∫
U

[
β(u, t)ζt(u, t) + Dx

(
Φ′

(
f

β

))
(Du)−1 ·Dyζf

]
dx

β(u, t)
dt(4.5)

=

∫ T

0

∫
U

∂

∂t
(ζ(u, t)) −Dyζ · ut + Dx

(
Φ′

(
f

β

))
(Du)−1

β
·Dyζf dxdt

= −
∫ T

0

∫
U

Dyζ ·
[
ut −Dx

(
Φ′

(
f

β

))
(Du)−1

β
f

]
dxdt.

But according to (4.3), we have

ut = D(Φ′(f detDu))f(detDu)(Du)−1

= D

(
Φ′

(
f

β

))
f

β
(Du)−1.

(4.6)

Consequently the expression within the square brackets in the last term of (4.5) van-
ishes.
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4.2. “Filling up” the target domain. An interesting variant of our construc-
tion is as follows. Select u0 : Ū → W̄0 to be a diffeomorphism, where W0 ⊂⊂ V is
given. We will choose Φ and u so that{

W (t) := u(U, t) (t ≥ 0),

W (0) = W0

(4.7)

expands to “fill up” the target V in finite time.
For this, let us take m > 0 and

Φ(d) :=

{
1
md−m (d > 0),

+∞ (d ≤ 0).

Therefore

Ψ(d) = dΦ

(
1

d

)
=

1

m
dm+1

for d > 0. Then β solves the porous medium equation

βt = div(Ψ′′(β)βDβ) = Δ(βm+1).

5. Connections with optimal mass transfer problems. As noted in the in-
troduction, the time-step minimization method (1.4) and (1.5) provides an extremely
natural approximation method, but one which we have not been able to prove con-
verges. This section recalls more about this procedure, to highlight the connections
with Monge–Kantorovich mass transfer theory.

We are primarily motivated by Otto [O] and Jordan, Kinderlehrer, and Otto
[J-K-O]. The novelty of Otto’s paper [O] was to interpret (5.8) as a gradient flux of
the “entropy” S(β) :=

∫
V

Ψ(β)dy with respect to the Wasserstein distance.

5.1. Time-step approximations. Assume for this section that U and V are
two bounded, open, convex sets with smooth boundaries.

We discuss a time-discrete algorithm for the flow⎧⎪⎨
⎪⎩

ut = div(DF (Du)),

u(·, 0) = u0,

u(·, t) ∈ Diff(Ū , V̄ ),

(5.1)

where, as before,

F (P ) =

{
Φ(detP ), detP > 0,
+∞, detP ≤ 0.

The system (5.1) is a gradient flux of the functional I[·] with respect to the L2-
metric. In section 2 we have shown that (5.1) is related to (1.16), which, as we will
recall below, is the gradient flow governed by

∫
V

Ψ(β) dy with respect to the Wasser-
stein distance. The algorithm which we discuss is another way to view that relation.

A discrete-time approximation. First, let us fix a time-step size h > 0. We
introduce the implicit scheme of recursively finding uk+1 to solve{

uk+1−uk

h = div(DF (Duk+1)),

uk+1 ∈ Diff(Ū , V̄ ),
(5.2)
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given uk. More precisely, set

Ik[v] :=
1

2

∫
U

|v − uk|2 dx + h

∫
U

F (Dv) dx.(5.3)

We intend to find uk+1 to be the unique minimizer of

min
v

{Ik[v] | v ∈ Diff(Ū , V̄ )}.(5.4)

Changing variables. Since our nonlinearity F is neither coercive nor convex,
standard calculus of variations methods do not apply. However, recent papers by
Gangbo and Van der Putten [G-VP] and Maroofi [Ma] demonstrate how to exploit
the special structure of F (P ) = Φ(detP ) to find minimizers.

Indeed, if we apply a change of variables y = u(x) and set β := det(Du−1),
βk := det(Du−1

k ), we discover that

Ik[v] =
1

2

∫
V

|y − uk(v
−1(y))|2dy + h

∫
V

Ψ(β) dy.

Consequently

min
v∈Diff(Ū,V̄ )

Ik[v]

= inf
β

{
h

∫
V

Ψ(β) dy + inf
v

{
1

2

∫
V

|y − uk(v
−1(y))|2dy | β = det(Dv−1)

}}
(5.5)

= inf
β

{
h

∫
V

Ψ(β) dy + inf
w

{
1

2

∫
V

|y − w(y)|2dy | βk = β(w) detDw

}}

= inf
β

{
h

∫
V

Ψ(β) dy + W 2
2 (βk, β)

}
,

where W2, the Wasserstein distance between two Borel measures μ and ν, is defined
as

W 2
2 (μ, ν) :=

1

2
inf

γ∈Γ(μ,ν)

∫∫
|x− y|2dγ(x, y).

Here Γ(μ, ν) is the set of Borel measures γ on R
2n that have μ and ν as their marginals.

The notation W 2
2 (βk, β) means that we have identified β with the measure whose

density is β.
We assume for k = 0 that ∫

V

β0 dy = 1,

where β0 = detDu−1
0 . This reduces the last three problems in (5.5) to minimization

problems over Pa(V ), the set of probability densities supported in V .
Define the new functional

Jk(β) := W 2
2 (β, βk) + h

∫
V

Ψ(β) dy.(5.6)

Now W 2
2 (βk, ·) is convex and is weakly-∗ lower semicontinuous. Since Ψ is strictly

convex, we see also that β →
∫
V

Ψ(β) dy is a strictly convex functional of β and is
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weakly-∗ lower semicontinuous on subsets of L1 that are weakly-∗ compact. Conse-
quently, the minimization problem

inf
β∈Pa(V )

Jk(β)(5.7)

has a unique solution βk+1.

5.2. Time-step approximations for β. This subsection quickly reviews a
time-discrete algorithm based on the Wasserstein distance for solving{

βt = div
(
βD[Ψ′(β)]

)
,

β(·, 0) = β0.
(5.8)

Let us now deal with the following nonlinear problem appearing in (5.5), where
we replace β by βk+1. We study the minimization problem

inf
v

{∫
V

|y − v(y)|2dy | βk = βk+1(v) detDv

}
,(5.9)

which, thanks to the Monge–Kantorovich theory, is known to admit a unique mini-
mizer vk+1 (see Brenier [B]). Furthermore, vk+1 is the gradient of a convex function
ψk+1 : V̄ → R, satisfying the Monge–Ampere problem

βk = βk+1(Dψk+1) detD2ψk+1, Dψk+1(V̄ ) = V̄(5.10)

in the sense that

Dψk+1 : V̄ → V̄ a.e. and

∫
V

f(Dψk+1)βk dx =

∫
V

fβk+1 dy(5.11)

for all f ∈ C(Rn). Equivalently, if φk+1 is the Legendre transform of ψk+1, then

Dφk+1 : V̄ → V̄ a.e. and

∫
V

g(Dφk+1)βk+1 dy =

∫
V

gβk dx(5.12)

for all g ∈ C(Rn). We write that

(Dψk+1)#βk = βk+1, (Dφk+1)#βk+1 = βk,

the symbol # denoting push-forward. Agueh [A] has shown that

C1 ≤ βk+1 ≤ C2,(5.13)

provided

C1 ≤ βk ≤ C2(5.14)

for constants 0 < C1 ≤ C2

The Euler–Lagrange equations of (5.7) read

Dφk+1(y) = y + hD[Ψ′(βk+1(y))],(5.15)

and we conclude from (5.15) that

βk+1(y) = (Ψ∗)′
((

φk+1(y) −
|y|2
2

)
/h

)
,(5.16)
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where Ψ∗ is the Legendre transform of Ψ.
Assume that βk ∈ Cl,α(V̄ ) for some α > 0 and some integer l ≥ 0. By (5.16),

βk+1 ∈ W 1,∞(V ) ⊂ C0,α(V̄ ). Regularity theory for the Monge–Ampere equations
(see [C1], [C2], [C3], [C4]) and (5.10) imply that ψk+1, φk+1 ∈ C2,α(V̄ ). This and
(5.16) demonstrate that βk+1 ∈ C2,α(V̄ ). Thus

γk+1 := Dφk+1 ◦Dφk ◦ · · · ◦Dφ1 ∈ Cl+1,α(V̄ , V̄ ).

The map

uk+1 = γk+1 ◦ u0

is then the unique solution to (5.2), and uk+1 ∈ Cl+1,α(Ū , V̄ ) if u0 ∈ Cl+1,α(Ū , V̄ ).
We record next that the time-step approximations converge as h → 0.
Theorem 5.1. For h > 0, inductively define βk+1 to be the unique minimizer of

Jk[·] over Pa(V ). Set

βh(y, t) =

{
β0(y) if t = 0,
βk(y) if t ∈ ((k − 1)h, kh].

Fix T > 0 and assume that T = Mh for an integer M > 0.
Then the following hold:
(i) For each test function η ∈ C2

c , we have∣∣∣∣
∫
VT

∂h
t η(β

h − β0) dxdt +

∫
VT

div
(
βhD[Ψ′(βh)]

)
dxdt

∣∣∣∣ ≤ Cηh,

where ∂h
t η(x, t) = (η(x, t + h) − η(x, t))/h and VT = V × (0, T ).

(ii) There exists a subsequence {hm}∞m=1 converging to 0 and β ∈ L1(VT ) such
that {βhm}∞m=1 converges to β. Furthermore, β satisfies the parabolic equation (5.8).

5.3. Time-step approximations for u. Finally, we return to the approxima-
tion scheme (5.2) and consider the convergence problem as h → 0.

We first record some uniform estimates.
Theorem 5.2. Fix h > 0 and inductively define uk+1 to be the unique minimizer

of Ik[·] over Diff(Ū , V̄ ). Define

uh(·, t) =

{
u0(·) if t = 0,
uk(·) if t ∈ ((k − 1)h, kh].

Fix T > 0 and assume that T = Mh for an integer M > 0. Set UT = U × (0, T ).
Then the following hold:
(i) For each t ∈ [0, T ] we have that uh(·, t) ∈ Diff(Ū , V̄ )∩Cl+1,α(Ū ,Rn) and there

are constants C1, C2 > 0 depending only on u0 such that

C1 ≤ detD(uh)−1 ≤ C2.

(ii) There exists a constant C > 0, depending only on u0, such that

M−1∑
k=0

∫
U

|uk+1 − uk|2 dx ≤ Ch.
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(iii) For each test function v ∈ C2, we have

∣∣∣∣
∫
UT

uh · vt −DF (Duh) : Dv dxdt +

∫
U

u0 · v(·, 0) dx

∣∣∣∣ ≤ h

2
C
√
T ||vt||L∞(UT ).

(5.17)

Proof. 1. Set β0 = detDu−1
0 . Since u0 ∈ Diff(Ū , V̄ ) we have that

0 < C1 := min
V̄

β0, C2 := max
V̄

β0 < +∞.

According to the discussion above, we can choose inductively uk+1 to be the unique
minimizer of Ik over Diff(Ū , V̄ ).

2. The inequality Ik(uk+1) ≤ Ik(uk) implies that

M−1∑
k=0

Ik(uk+1) ≤
M−1∑
k=0

Ik(uk).

Therefore

1

2

M−1∑
k=0

∫
V

|uk+1 − uk|2dx ≤ h

∫
U

Φ(detDu0) − Φ(detDuM )dx ≤ 2h|U | max
[ 1
C2

, 1
C1

]
|Φ|.

(5.18)

This proves (ii).
3. Suppose now that v ∈ C2, and set tk = kh, vk = v(·, kh), and Uk = U ×

(tk, tk+1). Then

∫
UT

uh · vt −DF (Duh) : Dv dxdt =

M−1∑
k=0

∫
Uk

uk+1 · vt dxdt−DF (Duk+1) : Dv dxdt.

We recall that (uk+1 − uk)/h = div(DF (Duk+1)) and continue to calculate that

∫
UT

uh · vt −DF (Duh) : Dv dxdt =

M−1∑
k=0

∫
Uk

uk+1 · vt +

(
uk+1 − uk

h

)
· v dxdt

=
M−1∑
k=0

∫
U

uk+1 · (vk+1 − vk) dx

+

∫
U

(uk+1 − uk) · vk dx

+

M−1∑
k=0

∫
U

(
uk+1 − uk

h

)
·
(∫ tk+1

tk

v − vk dt

)
dx

=

∫
U

uM · vM − u0 · v0 dx

+

M−1∑
k=0

∫
U

(
uk+1 − uk

h

)
·
(∫ tk+1

tk

v − vk dt

)
dx.
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Taking into account vM = v(T ) = 0 and∣∣∣∣
∫ tk+1

tk

v − vk dt

∣∣∣∣ ≤ h2

2
max
UT

|vt|,

we conclude that∣∣∣∣
∫
UT

uh · vt −DF (Duh) : Dv dxdt +

∫
U

u0 · v(·, 0) dx

∣∣∣∣
≤ h

2
||vt||L∞

M−1∑
k=0

∫
U

|uk+1 − uk| dx

≤ h

2
||vt||L∞(UT )

(
M−1∑
k=0

∫
U

|uk+1 − uk|2 dx
) 1

2

M
1
2 .(5.19)

We combine (5.18) and (5.19) to finish up the proof of (iii).
This theorem provides some uniform estimates, but it remains an unsolved prob-

lem to show that as h → 0, the approximation uh converges somehow to a solution u
of (1.3). One particular issue is that we do not know if the gradients Duh converge
strongly in L2.

Our belief is that although the scheme (5.2), (5.3), and (5.4) is obviously extremely
natural, we do not currently know how fully to exploit the minimization structure.
We have here a problem in the “time-dependent calculus of variations,” but we do not
have enough experience to understand, for instance, the proper choices of comparison
functions to employ in our variational principles. The direct PDE and ODE methods
in sections 2 and 3 provide a way around this difficulty for the special case of the
nonlinearity (1.6).
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