POINTWISE $C^{2, \alpha}$ ESTIMATES AT THE BOUNDARY FOR THE MONGE-AMPERE EQUATION

O. SAVIN

Abstract

We prove a localization property of boundary sections for solutions to the Monge-Ampere equation. As a consequence we obtain pointwise $C^{2, \alpha}$ estimates at boundary points under appropriate local conditions on the right hand side and boundary data.

1. Introduction

Boundary estimates for the second derivatives of the solution to the Dirichlet problem for the Monge-Ampere equation

$$
\begin{cases}\operatorname{det} D^{2} u=f & \text { in } \Omega \\ u=\varphi & \text { on } \partial \Omega\end{cases}
$$

were first obtained by Ivockina [I] in 1980. A few years later independently Krylov $[\mathrm{K}]$ and Caffarelli-Nirenberg-Spruck [CNS] obtained the global $C^{2, \alpha}$ estimates in the case when $\partial \Omega, \varphi$ and f are sufficiently smooth and this led to the solvability of the classical Dirichlet problem for the Monge-Ampere equation. When the right hand side f is less regular, i.e $f \in C^{\alpha}$, the global $C^{2, \alpha}$ estimates were obtained recently by Trudinger and Wang in [TW] for $\varphi, \partial \Omega \in C^{3}$.

In this paper we discuss pointwise $C^{2, \alpha}$ estimates at boundary points under appropriate local conditions on the right hand side and boundary data. Our main result can be viewed as a boundary Schauder estimate for the Monge-Ampere equation which extends up to the boundary the pointwise interior $C^{2, \alpha}$ estimate of Caffarelli [C2] (see also [JW]). These sharp estimates play an important role for example when dealing with fourth order Monge-Ampere type equations arising in geometry, (see [TW], [LS]) or when the right hand side f depends also on the second derivatives.

We start with the following definition (see [CC]).
Definition: Let $0<\alpha \leq 1$. We say that a function u is pointwise $C^{2, \alpha}$ at x_{0} and write

$$
u \in C^{2, \alpha}\left(x_{0}\right)
$$

if there exists a quadratic polynomial $P_{x_{0}}$ such that

$$
u(x)=P_{x_{0}}(x)+O\left(\left|x-x_{0}\right|^{2+\alpha}\right)
$$

We say that $u \in C^{2}\left(x_{0}\right)$ if

$$
u(x)=P_{x_{0}}(x)+o\left(\left|x-x_{0}\right|^{2}\right) .
$$

Similarly one can define the notion for a function to be C^{k} and $C^{k, \alpha}$ at a point for any integer $k \geq 0$.

[^0]It is easy to check that if u is pointwise $C^{2, \alpha}$ at all points of a Lipschitz domain $\bar{\Omega}$ and the equality in the definition above is uniform in x_{0} then $u \in C^{2, \alpha}(\bar{\Omega})$ in the classical sense. Precisely, if there exist M and δ such that for all points $x_{0} \in \bar{\Omega}$

$$
\left|u(x)-P_{x_{0}}(x)\right| \leq M\left|x-x_{0}\right|^{2+\alpha} \quad \text { if }\left|x-x_{0}\right| \leq \delta, \quad x \in \bar{\Omega}
$$

then

$$
\left[D^{2} u\right]_{C^{\alpha}(\bar{\Omega})} \leq C(\delta, \Omega) M
$$

Caffarelli showed in [C2] that if u is a strictly convex solution of

$$
\operatorname{det} D^{2} u=f
$$

and $f \in C^{\alpha}\left(x_{0}\right), f\left(x_{0}\right)>0$ at some interior point $x_{0} \in \Omega$, then $u \in C^{2, \alpha}\left(x_{0}\right)$. Our main theorem deals with the case when $x_{0} \in \partial \Omega$.
Theorem 1.1. Let Ω be a convex domain and let $u: \bar{\Omega} \rightarrow \mathbb{R}$ convex, continuous, solve the Dirichlet problem for the Monge-Ampere equation

$$
\begin{cases}\operatorname{det} D^{2} u=f & \text { in } \Omega \tag{1.1}\\ u=\varphi & \text { on } \partial \Omega\end{cases}
$$

with positive, bounded right hand side i.e

$$
0<\lambda \leq f \leq \Lambda
$$

for some constants λ, Λ.
Assume that for some point $x_{0} \in \partial \Omega$ we have

$$
f \in C^{\alpha}\left(x_{0}\right), \quad \varphi, \partial \Omega \in C^{2, \alpha}\left(x_{0}\right)
$$

for some $\alpha \in(0,1)$. If φ separates quadratically on $\partial \Omega$ from the tangent plane of u at x_{0}, then

$$
u \in C^{2, \alpha}\left(x_{0}\right)
$$

The way φ separates locally from the tangent plane at x_{0} is given by the tangential second derivatives of u at x_{0}. Thus the assumption that this separation is quadratic is in fact necessary for the $C^{2, \alpha}$ estimate to hold. Heuristically, Theorem 1.1 states that if the tangential pure second derivatives of u are bounded below then the boundary Schauder estimates hold for the Monge-Ampere equation.

A more precise, quantitative version of Theorem 1.1 is given in section 7 (see Theorem 7.1).

Given the boundary data, it is not always easy to check the quadratic separation since it involves some information about the slope of the tangent plane at x_{0}. However, this can be done in several cases (see Proposition 3.2). One example is when $\partial \Omega$ is uniformly convex and $\varphi, \partial \Omega \in C^{3}\left(x_{0}\right)$. The C^{3} condition of the data is optimal as it was shown by Wang in [W]. Other examples are when $\partial \Omega$ is uniformly convex and φ is linear, or when $\partial \Omega$ is tangent of second order to a plane at x_{0} and φ has quadratic growth near x_{0}.

As a consequence of Theorem 1.1 we obtain a pointwise $C^{2, \alpha}$ estimate in the case when the boundary data and the domain are pointwise C^{3}. As mentioned above, the global version was obtained by Trudinger and Wang in [TW].

Theorem 1.2. Let Ω be uniformly convex and let u solve (1.1). Assume that

$$
f \in C^{\alpha}\left(x_{0}\right), \quad \varphi, \partial \Omega \in C^{3}\left(x_{0}\right)
$$

for some point $x_{0} \in \partial \Omega$, and some $\alpha \in(0,1)$. Then $u \in C^{2, \alpha}\left(x_{0}\right)$.

We also obtain the $C^{2, \alpha}$ estimate in the simple situation when $\partial \Omega \in C^{2, \alpha}$ and φ is constant.

Theorem 1.3. Let Ω be a uniformly convex domain and assume u solves (1.1) with $\varphi \equiv 0$. If $f \in C^{\alpha}(\bar{\Omega}), \partial \Omega \in C^{2, \alpha}$, for some $\alpha \in(0,1)$ then $u \in C^{2, \alpha}(\bar{\Omega})$.

The key step in the proof of Theorem 1.1 is a localization theorem for boundary points (see also $[\mathrm{S}]$). It states that under natural local assumptions on the domain and boundary data, the sections

$$
S_{h}\left(x_{0}\right)=\left\{x \in \bar{\Omega} \mid \quad u(x)<u\left(x_{0}\right)+\nabla u\left(x_{0}\right) \cdot\left(x-x_{0}\right)+h\right\}
$$

with $x_{0} \in \partial \Omega$ are "equivalent" to ellipsoids centered at x_{0}.
Theorem 1.4. Let Ω be convex and u satisfy (1.1), and assume

$$
\partial \Omega, \varphi \in C^{1,1}\left(x_{0}\right)
$$

If φ separates quadratically from the tangent plane of u at x_{0}, then for each small $h>0$ there exists an ellipsoid E_{h} of volume $h^{n / 2}$ such that

$$
c E_{h} \cap \bar{\Omega} \subset S_{h}\left(x_{0}\right)-x_{0} \subset C E_{h} \cap \bar{\Omega}
$$

with c, C constants independent of h.
Theorem 1.4 provides useful information about the geometry of the level sets under rather mild assumptions and it extends up to the boundary the localization theorem at interior points due to Caffarelli in [C1].

The paper is organized as follows. In section 2 we discuss briefly the compactness of solutions to the Monge-Ampere equation which we use later in the paper (see Theorem 2.7). For this we need to consider also solutions with possible discontinuities at the boundary. In section 3 we give a quantitative version of the Localization Theorem (see Theorem 3.1). In sections 4 and 5 we provide the proof of Theorem 3.1. In section 6 we obtain a version of the classical Pogorelov estimate in half-domain (Theorem 6.4). Finally, in section 7 we use the previous results together with a standard approximation method and prove our main theorem.

2. Solutions with discontinuities on the boundary

Let $u: \Omega \rightarrow \mathbb{R}$ be a convex function with $\Omega \subset \mathbb{R}^{n}$ bounded and convex. Denote by

$$
U:=\left\{\left(x, x_{n+1}\right) \in \Omega \times \mathbb{R} \mid \quad x_{n+1} \geq u(x)\right\}
$$

the upper graph of u.
Definition 2.1. We define the values of u on $\partial \Omega$ to be equal to φ i.e

$$
\left.u\right|_{\partial \Omega}=\varphi
$$

if the upper graph of $\varphi: \partial \Omega \rightarrow \mathbb{R} \cup\{\infty\}$

$$
\Phi:=\left\{\left(x, x_{n+1}\right) \in \partial \Omega \times \mathbb{R} \mid \quad x_{n+1} \geq \varphi(x)\right\}
$$

is given by the closure of U restricted to $\partial \Omega \times \mathbb{R}$,

$$
\Phi:=\bar{U} \cap(\partial \Omega \times \mathbb{R})
$$

From the definition we see that φ is lower semicontinuous.
If $u: \Omega \rightarrow \mathbb{R}$ is a viscosity solution to

$$
\operatorname{det} D^{2} u=f(x)
$$

with $f \geq 0$ continuous and bounded on Ω, then there exists an increasing sequence of subsolutions, continuous up to the boundary,

$$
u_{n}: \bar{\Omega} \rightarrow \mathbb{R}, \quad \operatorname{det} D^{2} u_{n} \geq f(x)
$$

with

$$
\lim u_{n}=u \quad \text { in } \bar{\Omega}
$$

where the values of u on $\partial \Omega$ are defined as above.
Indeed, let us assume for simplicity that $0 \in \Omega, u(0)=0, u \geq 0$. Then, on each ray from the origin u is increasing, hence $v_{\varepsilon}: \bar{\Omega} \rightarrow \mathbb{R}$,

$$
v_{\varepsilon}(x)=u((1-\varepsilon) x)
$$

is an increasing family of continuous functions as $\varepsilon \rightarrow 0$, with

$$
\lim v_{\varepsilon}=u \quad \text { in } \bar{\Omega}
$$

In order to obtain a sequence of subsolutions we modify v_{ε} as

$$
u_{\varepsilon}(x):=v_{\varepsilon}(x)+w_{\varepsilon}(x),
$$

with $w_{\varepsilon} \leq-\varepsilon$, convex, so that

$$
\operatorname{det} D^{2} w_{\varepsilon} \geq\left|f(x)-(1-\varepsilon)^{2 n} f((1-\varepsilon) x)\right|
$$

thus

$$
\operatorname{det} D^{2} u_{\varepsilon}(x)=\operatorname{det}\left(D^{2} v_{\varepsilon}+D^{2} w_{\varepsilon}\right) \geq \operatorname{det} D^{2} v_{\varepsilon}+\operatorname{det} D^{2} w_{\varepsilon} \geq f(x)
$$

The claim is proved since as $\varepsilon \rightarrow 0$ we can choose w_{ε} to converge uniformly to 0 .
Proposition 2.2 (Comparison principle). Let u, v be defined on Ω with

$$
\operatorname{det} D^{2} u \geq f(x) \geq \operatorname{det} D^{2} v
$$

in the viscosity sense and

$$
\left.u\right|_{\partial \Omega} \leq\left. v\right|_{\partial \Omega}
$$

Then

$$
u \leq v \quad \text { in } \Omega
$$

Proof. Since u can be approximated by a sequence of continuous functions on $\bar{\Omega}$ it suffices to prove the result in the case when u is continuous on $\bar{\Omega}$ and $u<v$ on $\partial \Omega$. Then, $u<v$ in a small neighborhood of $\partial \Omega$ and the inequality follows from the standard comparison principle.

A consequence of the comparison principle is that a solution $\operatorname{det} D^{2} u=f$ is determined uniquely by its boundary values $\left.u\right|_{\partial \Omega}$.

Next we define the notion of convergence for functions which are defined on different domains.

Definition 2.3. a) Let $u_{k}: \Omega_{k} \rightarrow \mathbb{R}$ be a sequence of convex functions with Ω_{k} convex. We say that u_{k} converges to $u: \Omega \rightarrow \mathbb{R}$ i.e

$$
u_{k} \rightarrow u
$$

if the upper graphs converge

$$
\bar{U}_{k} \rightarrow \bar{U} \quad \text { in the Haudorff distance. }
$$

In particular it follows that $\bar{\Omega}_{k} \rightarrow \bar{\Omega}$ in the Hausdorff distance.
b) Let $\varphi_{k}: \partial \Omega_{k} \rightarrow \mathbb{R} \cup\{\infty\}$ be a sequence of lower semicontinuous functions. We say that φ_{k} converges to $\varphi: \partial \Omega \rightarrow \mathbb{R} \cup\{\infty\}$ i.e

$$
\varphi_{k} \rightarrow \varphi
$$

if the upper graphs converge

$$
\Phi_{k} \rightarrow \Phi \quad \text { in the Haudorff distance. }
$$

c) We say that $f_{k}: \Omega_{k} \rightarrow \mathbb{R}$ converge to $f: \Omega \rightarrow \mathbb{R}$ if f_{k} are uniformly bounded and

$$
f_{k} \rightarrow f
$$

uniformly on compact sets of Ω.
Remark: When we restrict the Hausdorff distance to the nonempty closed sets of a compact set we obtain a compact metric space. Thus, if Ω_{k}, u_{k} are uniformly bounded then we can always extract a convergent subsequence $u_{k_{m}} \rightarrow u$. Similarly, if Ω_{k}, φ_{k} are uniformly bounded we can extract a convergent subsequence $\varphi_{k_{m}} \rightarrow \varphi$.

Proposition 2.4. Let $u_{k}: \Omega_{k} \rightarrow \mathbb{R}$ be convex and

$$
\operatorname{det} D^{2} u_{k}=f_{k},\left.\quad u_{k}\right|_{\partial \Omega_{k}}=\varphi_{k}
$$

If

$$
u_{k} \rightarrow u, \quad \varphi_{k} \rightarrow \varphi, \quad f_{k} \rightarrow f
$$

then

$$
\begin{equation*}
\operatorname{det} D^{2} u=f, \quad u=\varphi^{*} \quad \text { on } \partial \Omega, \tag{2.1}
\end{equation*}
$$

where φ^{*} is the convex envelope of φ on $\partial \Omega$ i.e Φ^{*} is the restriction to $\partial \Omega \times \mathbb{R}$ of the convex hull generated by Φ.

Remark: If Ω is strictly convex then $\varphi^{*}=\varphi$.
Proof. Since

$$
\bar{U}_{k} \rightarrow \bar{U}, \quad \Phi_{k} \rightarrow \Phi, \quad \Phi_{k} \subset \bar{U}_{k}
$$

we see that $\Phi \subset \bar{U}$. Thus, if K denotes the convex hull generated by Φ, then $\Phi^{*} \subset K \subset \bar{U}$. It remains to show that $\bar{U} \cap(\partial \Omega \times \mathbb{R}) \subset K$.

Indeed consider a hyperplane

$$
x_{n+1}=l(x)
$$

which lies strictly below K. Then for all large k

$$
\left\{u_{k}-l \leq 0\right\} \subset \Omega_{k}
$$

and by Alexandrov estimate we have that

$$
u_{k}-l \geq-C d_{k}^{1 / n}
$$

where d_{k} represents the distance to $\partial \Omega_{k}$. By taking $k \rightarrow \infty$ we see that

$$
u-l \geq-C d^{1 / n}
$$

thus no point on $\partial \Omega \times \mathbb{R}$ below the hyperplane belongs to \bar{U}.

Proposition 2.4 says that given any φ bounded and lower semicontinuous, and $f \geq 0$ bounded and continuous we can always solve uniquely the Dirichlet problem

$$
\begin{cases}\operatorname{det} D^{2} u=f & \text { in } \Omega \\ u=\varphi & \text { on } \partial \Omega\end{cases}
$$

by approximation. Indeed, we can find sequences φ_{k}, f_{k} of continuous, uniformly bounded functions defined on strictly convex domains Ω_{k} such that $\varphi_{k} \rightarrow \varphi$ and $f_{k} \rightarrow f$. Then the corresponding solutions u_{k} are uniformly bounded and continuous up to the boundary. Using compactness and the proposition above we see that u_{k} must converge to the unique solution u in (2.1).

In view of Proposition 2.4 we extend the Definition 2.1 in order to allow boundary data that is not necessarily convex.

Definition 2.5. Let $\varphi: \partial \Omega \rightarrow \mathbb{R}$ be a lower semicontinuous function. When we write that a convex function u satisfies

$$
u=\varphi \quad \text { on } \partial \Omega
$$

we understand

$$
\left.u\right|_{\partial \Omega}=\varphi^{*}
$$

where φ^{*} is the convex envelope of φ on $\partial \Omega$.
Whenever φ^{*} and φ do not coincide we can think of the graph of u as having a vertical part on $\partial \Omega$ between φ^{*} and φ.

It follows easily from the definition above that the boundary values of u when we restrict to the domain

$$
\Omega_{h}:=\{u<h\}
$$

are given by

$$
\varphi_{h}=\varphi \quad \text { on } \quad \partial \Omega \cap\{\varphi \leq h\} \subset \partial \Omega_{h}
$$

and $\varphi_{h}=h$ on the remaining part of $\partial \Omega_{h}$.
By Proposition 2.2, the comparison principle still holds. Precisely, if

$$
\begin{gathered}
u=\varphi, \quad v=\psi, \quad \varphi \leq \psi \quad \text { on } \partial \Omega \\
\operatorname{det} D^{2} u \geq f \geq \operatorname{det} D^{2} v \quad \text { in } \Omega
\end{gathered}
$$

then

$$
u \leq v \quad \text { in } \Omega
$$

The advantage of introducing the notation of Definition 2.5 is that the boundary data is preserved under limits.
Proposition 2.6. Assume

$$
\operatorname{det} D^{2} u_{k}=f_{k}, \quad u_{k}=\varphi_{k} \quad \text { on } \partial \Omega_{k}
$$

with Ω_{k}, φ_{k} uniformly bounded and

$$
\varphi_{k} \rightarrow \varphi, \quad f_{k} \rightarrow f
$$

Then

$$
u_{k} \rightarrow u
$$

and u satisfies

$$
\operatorname{det} D^{2} u=f, \quad u=\varphi \quad \text { on } \partial \Omega
$$

Proof. Using compactness we may assume also that $\varphi_{k}^{*} \rightarrow \psi$. Since $\varphi_{k} \rightarrow \varphi$ we find

$$
\varphi \geq \psi \geq \varphi^{*}
$$

and the conclusion follows from Proposition 2.4.

Finally, we state a version of the last proposition for solutions with bounded right-hand side i.e

$$
\lambda \leq \operatorname{det} D^{2} u \leq \Lambda,
$$

where the two inequalities are understood in the viscosity sense.
Theorem 2.7. Assume

$$
\lambda \leq \operatorname{det} D^{2} u_{k} \leq \Lambda, \quad u_{k}=\varphi_{k} \quad \text { on } \partial \Omega_{k},
$$

and Ω_{k}, φ_{k} uniformly bounded.
Then there exists a subsequence k_{m} such that

$$
u_{k_{m}} \rightarrow u, \quad \varphi_{k_{m}} \rightarrow \varphi
$$

with

$$
\lambda \leq \operatorname{det} D^{2} u \leq \Lambda, \quad u=\varphi \quad \text { on } \partial \Omega .
$$

3. The Localization Theorem

In this section we state the quantitative version of the localization theorem at boundary points (Theorem 3.1).

Let Ω be a bounded convex set in \mathbb{R}^{n}. We assume that

$$
\begin{equation*}
B_{\rho}\left(\rho e_{n}\right) \subset \Omega \subset\left\{x_{n} \geq 0\right\} \cap B_{\frac{1}{\rho}}, \tag{3.1}
\end{equation*}
$$

for some small $\rho>0$, that is $\Omega \subset\left(\mathbb{R}^{n}\right)^{+}$and Ω contains an interior ball tangent to $\partial \Omega$ at 0 .

Let $u: \bar{\Omega} \rightarrow \mathbb{R}$ be continuous, convex, satisfying

$$
\begin{equation*}
\operatorname{det} D^{2} u=f, \quad 0<\lambda \leq f \leq \Lambda \quad \text { in } \Omega . \tag{3.2}
\end{equation*}
$$

We extend u to be ∞ outside $\bar{\Omega}$.
After subtracting a linear function we assume that

$$
\begin{equation*}
x_{n+1}=0 \text { is the tangent plane to } u \text { at } 0, \tag{3.3}
\end{equation*}
$$

in the sense that

$$
u \geq 0, \quad u(0)=0,
$$

and any hyperplane $x_{n+1}=\varepsilon x_{n}, \varepsilon>0$, is not a supporting plane for u.
We investigate the geometry of the sections of u at 0 that we denote for simplicity of notation

$$
S_{h}:=\{x \in \bar{\Omega}: \quad u(x)<h\} .
$$

We show that if the boundary data has quadratic growth near $\left\{x_{n}=0\right\}$ then, as $h \rightarrow 0, S_{h}$ is equivalent to a half-ellipsoid centered at 0 .

Precisely, our theorem reads as follows.

Theorem 3.1 (Localization Theorem). Assume that Ω, u satisfy (3.1)-(3.3) above and for some $\mu>0$,

$$
\begin{equation*}
\mu|x|^{2} \leq u(x) \leq \mu^{-1}|x|^{2} \quad \text { on } \partial \Omega \cap\left\{x_{n} \leq \rho\right\} \tag{3.4}
\end{equation*}
$$

Then, for each $h<c(\rho)$ there exists an ellipsoid E_{h} of volume $h^{n / 2}$ such that

$$
k E_{h} \cap \bar{\Omega} \subset S_{h} \subset k^{-1} E_{h} \cap \bar{\Omega}
$$

Moreover, the ellipsoid E_{h} is obtained from the ball of radius $h^{1 / 2}$ by a linear transformation A_{h}^{-1} (sliding along the $x_{n}=0$ plane)

$$
\begin{gathered}
A_{h} E_{h}=h^{1 / 2} B_{1} \\
A_{h}(x)=x-\nu x_{n}, \quad \nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{n-1}, 0\right)
\end{gathered}
$$

with

$$
|\nu| \leq k^{-1}|\log h|
$$

The constant k above depends on μ, λ, Λ, n and $c(\rho)$ depends also on ρ.
The ellipsoid E_{h}, or equivalently the linear map A_{h}, provides information about the behavior of the second derivatives near the origin. Heuristically, the theorem states that in S_{h} the tangential second derivatives are bounded from above and below and the mixed second derivatives are bounded by $|\log h|$.

The hypothesis that u is continuous up to the boundary is not necessary, we just need to require that (3.4) holds in the sense of Definition 2.5.

Given only the boundary data φ of u on $\partial \Omega$, it is not always easy to check the main assumption (3.4) i.e that φ separates quadratically on $\partial \Omega$ (in a neighborhood of $\left\{x_{n}=0\right\}$) from the tangent plane at 0 . Proposition 3.2 provides some examples when this is satisfied depending on the local behavior of $\partial \Omega$ and φ (see also the remarks below).

Proposition 3.2. Assume (3.1),(3.2) hold. Then (3.4) is satisfied if any of the following holds:

1) φ is linear in a neighborhood of 0 and Ω is uniformly convex at the origin.
2) $\partial \Omega$ is tangent of order 2 to $\left\{x_{n}=0\right\}$ and φ has quadratic growth in a neighborhood of $\left\{x_{n}=0\right\}$.
3) $\varphi, \partial \Omega \in C^{3}(0)$, and Ω is uniformly convex at the origin.

Proposition 3.2 is standard (see [CNS], [W]). We sketch its proof below.
Proof. 1) Assume $\varphi=0$ in a neighborhood of 0 . By the use of standard barriers, the assumptions on Ω imply that the tangent plane at the origin is given by

$$
x_{n+1}=-\mu x_{n}
$$

for some bounded $\mu>0$. Then (3.4) clearly holds.
2) After subtracting a linear function we may assume that

$$
\mu\left|x^{\prime}\right|^{2} \leq \varphi \leq \mu^{-1}\left|x^{\prime}\right|^{2}
$$

on $\partial \Omega$ in a neighborhood of $\left\{x_{n}=0\right\}$. Using a barrier we obtain that l_{0}, the tangent plane at the origin, has bounded slope. But $\partial \Omega$ is tangent of order 2 to $\left\{x_{n}=0\right\}$,
thus l_{0} grows less than quadratic on $\partial \Omega$ in a neighborhood of $\left\{x_{n}=0\right\}$ and (3.4) is again satisfied.
3) Since Ω is uniformly convex at the origin, we can use barriers and obtain that l_{0} has bounded slope. After subtracting this linear function we may assume $l_{0}=0$. Since $\varphi, \partial \Omega \in C^{3}(0)$ we find that

$$
\varphi=Q_{0}\left(x^{\prime}\right)+o\left(\left|x^{\prime}\right|^{3}\right)
$$

with Q_{0} a cubic polynomial. Now $\varphi \geq 0$, hence Q_{0} has no linear part and its quadratic part is given by, say

$$
\sum_{i<n} \frac{\mu_{i}}{2} x_{i}^{2}, \quad \text { with } \quad \mu_{i} \geq 0
$$

We need to show that $\mu_{i}>0$.
If $\mu_{1}=0$, then the coefficient of x_{1}^{3} is 0 in Q_{0}. Thus, if we restrict to $\partial \Omega$ in a small neighborhood near the origin, then for all small h the set $\{\varphi<h\}$ contains

$$
\left\{\left|x_{1}\right| \leq r(h) h^{1 / 3}\right\} \cap\left\{\left|x^{\prime}\right| \leq c h^{1 / 2}\right\}
$$

for some $c>0$ and with

$$
r(h) \rightarrow \infty \quad \text { as } h \rightarrow 0
$$

Now S_{h} contains the convex set generated by $\{\varphi<h\}$ thus, since Ω is uniformly convex,

$$
\left|S_{h}\right| \geq c^{\prime}\left(r(h) h^{1 / 3}\right)^{3} h^{(n-2) / 2} \geq c^{\prime} r(h)^{3} h^{n / 2}
$$

On the other hand, since u satisfies (3.2) and

$$
0 \leq u \leq h \quad \text { in } S_{h}
$$

we obtain (see (4.4))

$$
\left|S_{h}\right| \leq C h^{n / 2}
$$

for some C depending on λ and n, and we contradict the inequality above as $h \rightarrow 0$.

Remark 3.3. The proof easily implies that if $\partial \Omega, \varphi \in C^{3}(\Omega)$ and Ω is uniformly convex, then we can find a constant μ which satisfies (3.4) for all $x \in \partial \Omega$.

Remark 3.4. From above we see that we can often verify (3.4) in the case when φ, $\partial \Omega \in C^{1,1}(0)$ and Ω is uniformly convex at 0 . Indeed, if l_{φ} represents the tangent plane at 0 to $\varphi: \partial \Omega \rightarrow \mathbb{R}$ (in the sense of (3.3)), then (3.4) holds if either φ separates from l_{φ} quadratically near 0 , or if φ is tangent to l_{φ} of order 3 in some tangential direction.
Remark 3.5. Given $\varphi, \partial \Omega \in C^{1,1}(0)$ and Ω uniformly convex at 0 , then (3.4) holds if λ is sufficiently large.

4. Proof of Theorem 3.1 (I)

We prove Theorem 3.1 in the next two sections. In this section we obtain some preliminary estimates and reduce the theorem to a statement about the rescalings of u. This statement is proved in section 5 using compactness.

Next proposition was proved by Trudinger and Wang in [TW]. It states that the volume of S_{h} is proportional to $h^{n / 2}$ and after an affine transformation (of controlled norm) we may assume that the center of mass of S_{h} lies on the x_{n} axis. Since our setting is slightly different we provide its proof.

Proposition 4.1. Under the assumptions of Theorem 3.1, for all $h \leq c(\rho)$, there exists a linear transformation (sliding along $x_{n}=0$)

$$
A_{h}(x)=x-\nu x_{n},
$$

with

$$
\nu_{n}=0, \quad|\nu| \leq C(\rho) h^{-\frac{n}{2(n+1)}}
$$

such that the rescaled function

$$
\tilde{u}\left(A_{h} x\right)=u(x)
$$

satisfies in

$$
\tilde{S}_{h}:=A_{h} S_{h}=\{\tilde{u}<h\}
$$

the following:
(i) the center of mass of \tilde{S}_{h} lies on the x_{n}-axis;
(ii)

$$
k_{0} h^{n / 2} \leq\left|\tilde{S}_{h}\right|=\left|S_{h}\right| \leq k_{0}^{-1} h^{n / 2}
$$

(iii) the part of $\partial \tilde{S}_{h}$ where $\{\tilde{u}<h\}$ is a graph, denoted by

$$
\tilde{G}_{h}=\partial \tilde{S}_{h} \cap\{\tilde{u}<h\}=\left\{\left(x^{\prime}, g_{h}\left(x^{\prime}\right)\right)\right\}
$$

that satisfies

$$
g_{h} \leq C(\rho)\left|x^{\prime}\right|^{2}
$$

and

$$
\frac{\mu}{2}\left|x^{\prime}\right|^{2} \leq \tilde{u} \leq 2 \mu^{-1}\left|x^{\prime}\right|^{2} \quad \text { on } \tilde{G}_{h} .
$$

The constant k_{0} above depends on μ, λ, Λ, n and the constants $C(\rho), c(\rho)$ depend also on ρ.

In this section we denote by c, C positive constants that depend on n, μ, λ, Λ. For simplicity of notation, their values may change from line to line whenever there is no possibility of confusion. Constants that depend also on ρ are denote by $c(\rho)$, $C(\rho)$.

Proof. The function

$$
v:=\mu\left|x^{\prime}\right|^{2}+\frac{\Lambda}{\mu^{n-1}} x_{n}^{2}-C(\rho) x_{n}
$$

is a lower barrier for u in $\Omega \cap\left\{x_{n} \leq \rho\right\}$ if $C(\rho)$ is chosen large.
Indeed, then

$$
\begin{gathered}
v \leq u \quad \text { on } \partial \Omega \cap\left\{x_{n} \leq \rho\right\} \\
v \leq 0 \leq u \quad \text { on } \Omega \cap\left\{x_{n}=\rho\right\}
\end{gathered}
$$

and

$$
\operatorname{det} D^{2} v>\Lambda
$$

In conclusion,

$$
v \leq u \quad \text { in } \Omega \cap\left\{x_{n} \leq \rho\right\}
$$

hence

$$
\begin{equation*}
S_{h} \cap\left\{x_{n} \leq \rho\right\} \subset\{v<h\} \subset\left\{x_{n}>c(\rho)\left(\mu\left|x^{\prime}\right|^{2}-h\right)\right\} \tag{4.1}
\end{equation*}
$$

Let x_{h}^{*} be the center of mass of S_{h}. We claim that

$$
\begin{equation*}
x_{h}^{*} \cdot e_{n} \geq c_{0}(\rho) h^{\alpha}, \quad \alpha=\frac{n}{n+1} \tag{4.2}
\end{equation*}
$$

for some small $c_{0}(\rho)>0$.
Otherwise, from (4.1) and John's lemma we obtain

$$
S_{h} \subset\left\{x_{n} \leq C(n) c_{0} h^{\alpha} \leq h^{\alpha}\right\} \cap\left\{\left|x^{\prime}\right| \leq C_{1} h^{\alpha / 2}\right\}
$$

for some large $C_{1}=C_{1}(\rho)$. Then the function

$$
w=\varepsilon x_{n}+\frac{h}{2}\left(\frac{\left|x^{\prime}\right|}{C_{1} h^{\alpha / 2}}\right)^{2}+\Lambda C_{1}^{2(n-1)} h\left(\frac{x_{n}}{h^{\alpha}}\right)^{2}
$$

is a lower barrier for u in S_{h} if c_{0} is sufficiently small.
Indeed,

$$
w \leq \frac{h}{4}+\frac{h}{2}+\Lambda C_{1}^{2(n-1)}\left(C(n) c_{0}\right)^{2} h<h \quad \text { in } S_{h}
$$

and for all small h,

$$
w \leq \varepsilon x_{n}+\frac{h^{1-\alpha}}{C_{1}^{2}}\left|x^{\prime}\right|^{2}+C(\rho) h c_{0} \frac{x_{n}}{h^{\alpha}} \leq \mu\left|x^{\prime}\right|^{2} \leq u \quad \text { on } \partial \Omega
$$

and

$$
\operatorname{det} D^{2} w=2 \Lambda
$$

Hence

$$
w \leq u \quad \text { in } S_{h}
$$

and we contradict that 0 is the tangent plane at 0 . Thus claim (4.2) is proved.
Now, define

$$
A_{h} x=x-\nu x_{n}, \quad \nu=\frac{x_{h}^{*^{\prime}}}{x_{h}^{*} \cdot e_{n}}
$$

and

$$
\tilde{u}\left(A_{h} x\right)=u(x)
$$

The center of mass of $\tilde{S}_{h}=A_{h} S_{h}$ is

$$
\tilde{x}_{h}^{*}=A_{h} x_{h}^{*}
$$

and lies on the x_{n}-axis from the definition of A_{h}. Moreover, since $x_{h}^{*} \in S_{h}$, we see from (4.1)-(4.2) that

$$
|\nu| \leq C(\rho) \frac{\left(x_{h}^{*} \cdot e_{n}\right)^{1 / 2}}{\left(x_{h}^{*} \cdot e_{n}\right)} \leq C(\rho) h^{-\alpha / 2}
$$

and this proves (i).
If we restrict the map A_{h} on the set on $\partial \Omega$ where $\{u<h\}$, i.e. on

$$
\partial S_{h} \cap \partial \Omega \subset\left\{x_{n} \leq \frac{\left|x^{\prime}\right|^{2}}{\rho}\right\} \cap\left\{\left|x^{\prime}\right|<C h^{1 / 2}\right\}
$$

we have

$$
\left|A_{h} x-x\right|=|\nu| x_{n} \leq C(\rho) h^{-\alpha / 2}\left|x^{\prime}\right|^{2} \leq C(\rho) h^{\frac{1-\alpha}{2}}\left|x^{\prime}\right|
$$

and part (iii) easily follows.
Next we prove (ii). From John's lemma, we know that after relabeling the x^{\prime} coordinates if necessary,

$$
\begin{equation*}
D_{h} B_{1} \subset \tilde{S}_{h}-\tilde{x}_{h}^{*} \subset C(n) D_{h} B_{1} \tag{4.3}
\end{equation*}
$$

where

$$
D_{h}=\left(\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_{n}
\end{array}\right)
$$

Since

$$
\tilde{u} \leq 2 \mu^{-1}\left|x^{\prime}\right|^{2} \quad \text { on } \tilde{G}_{h}=\left\{\left(x^{\prime}, g_{h}\left(x^{\prime}\right)\right)\right\}
$$

we see that the domain of definition of g_{h} contains a ball of radius $(\mu h / 2)^{1 / 2}$. This implies that

$$
d_{i} \geq c_{1} h^{1 / 2}, \quad i=1, \cdots, n-1
$$

for some c_{1} depending only on n and μ. Also from (4.2) we see that

$$
\tilde{x}_{h}^{*} \cdot e_{n}=x_{h}^{*} \cdot e_{n} \geq c_{0}(\rho) h^{\alpha}
$$

which gives

$$
d_{n} \geq c(n) \tilde{x}_{h}^{*} \cdot e_{n} \geq c(\rho) h^{\alpha} .
$$

We claim that for all small h,

$$
\prod_{i=1}^{n} d_{i} \geq k_{0} h^{n / 2}
$$

with k_{0} small depending only on μ, n, Λ, which gives the left inequality in (ii).
To this aim we consider the barrier,

$$
w=\varepsilon x_{n}+\sum_{i=1}^{n} c h\left(\frac{x_{i}}{d_{i}}\right)^{2} .
$$

We choose c sufficiently small depending on μ, n, Λ so that for all $h<c(\rho)$,

$$
w \leq h \quad \text { on } \partial \tilde{S}_{h}
$$

and on the part of the boundary \tilde{G}_{h}, we have $w \leq \tilde{u}$ since

$$
\begin{aligned}
w & \leq \varepsilon x_{n}+\frac{c}{c_{1}^{2}}\left|x^{\prime}\right|^{2}+c h\left(\frac{x_{n}}{d_{n}}\right)^{2} \\
& \leq \frac{\mu}{4}\left|x^{\prime}\right|^{2}+c h C(n) \frac{x_{n}}{d_{n}} \\
& \leq \frac{\mu}{4}\left|x^{\prime}\right|^{2}+c h^{1-\alpha} C(\rho)\left|x^{\prime}\right|^{2} \\
& \leq \frac{\mu}{2}\left|x^{\prime}\right|^{2} .
\end{aligned}
$$

Moreover, if our claim does not hold, then

$$
\operatorname{det} D^{2} w=(2 c h)^{n}\left(\prod d_{i}\right)^{-2 n}>\Lambda,
$$

thus $w \leq \tilde{u}$ in \tilde{S}_{h}. By definition, \tilde{u} is obtained from u by a sliding along $x_{n}=0$, hence 0 is still the tangent plane of \tilde{u} at 0 . We reach again a contradiction since $\tilde{u} \geq w \geq \varepsilon x_{n}$ and the claim is proved.

Finally we show that

$$
\begin{equation*}
\left|\tilde{S}_{h}\right| \leq C h^{n / 2} \tag{4.4}
\end{equation*}
$$

for some C depending only on λ, n. Indeed, if

$$
v=h \quad \text { on } \partial \tilde{S}_{h}
$$

and

$$
\operatorname{det} D^{2} v=\lambda
$$

then

$$
v \geq u \geq 0 \quad \text { in } \tilde{S}_{h}
$$

Since

$$
h \geq h-\min _{\tilde{S}_{h}} v \geq c(n, \lambda)\left|\tilde{S}_{h}\right|^{2 / n}
$$

we obtain the desired conclusion.

In the proof above we showed that for all $h \leq c(\rho)$, the entries of the diagonal matrix D_{h} from (4.3) satisfy

$$
\begin{gathered}
d_{i} \geq c h^{1 / 2}, \quad i=1, \ldots n-1 \\
d_{n} \geq c(\rho) h^{\alpha}, \quad \alpha=\frac{n}{n+1} \\
c h^{n / 2} \leq \prod d_{i} \leq C h^{n / 2}
\end{gathered}
$$

The main step in the proof of Theorem 3.1 is the following lemma that will be completed in Section 5.

Lemma 4.2. There exist constants $c, c(\rho)$ such that

$$
\begin{equation*}
d_{n} \geq c h^{1 / 2} \tag{4.5}
\end{equation*}
$$

for all $h \leq c(\rho)$.
Using Lemma 4.2 we can easily finish the proof of our theorem.
Proof of Theorem 3.1. Since all d_{i} are bounded below by $c h^{1 / 2}$ and their product is bounded above by $C h^{n / 2}$ we see that

$$
C h^{1 / 2} \geq d_{i} \geq c h^{1 / 2} \quad i=1, \cdots, n
$$

for all $h \leq c(\rho)$. Using (4.3) we obtain

$$
\tilde{S}_{h} \subset C h^{1 / 2} B_{1}
$$

Moreover, since

$$
\tilde{x}_{h}^{*} \cdot e_{n} \geq d_{n} \geq c h^{1 / 2}, \quad\left(\tilde{x}_{h}^{*}\right)^{\prime}=0
$$

and the part \tilde{G}_{h} of the boundary $\partial \tilde{S}_{h}$ contains the graph of \tilde{g}_{h} above $\left|x^{\prime}\right| \leq c h^{1 / 2}$, we find that

$$
c h^{1 / 2} B_{1} \cap \tilde{\Omega} \subset \tilde{S}_{h}
$$

with $\tilde{\Omega}=A_{h} \Omega, \tilde{S}_{h}=A_{h} S_{h}$. In conclusion

$$
c h^{1 / 2} B_{1} \cap \tilde{\Omega} \subset A_{h} S_{h} \subset C h^{1 / 2} B_{1}
$$

We define the ellipsoid E_{h} as

$$
E_{h}:=A_{h}^{-1}\left(h^{1 / 2} B_{1}\right)
$$

hence

$$
c E_{h} \cap \bar{\Omega} \subset S_{h} \subset C E_{h}
$$

Comparing the sections at levels h and $h / 2$ we find

$$
c E_{h / 2} \cap \bar{\Omega} \subset C E_{h}
$$

and we easily obtain the inclusion

$$
A_{h} A_{h / 2}^{-1} B_{1} \subset C B_{1}
$$

If we denote

$$
A_{h} x=x-\nu_{h} x_{n}
$$

then the inclusion above implies

$$
\left|\nu_{h}-\nu_{h / 2}\right| \leq C,
$$

which gives the desired bound

$$
\left|\nu_{h}\right| \leq C|\log h|
$$

for all small h.

In order to prove Lemma 4.2 we introduce a new quantity $b(h)$ which is proportional to $d_{n} h^{-1 / 2}$ and is appropriate when dealing with affine transformations.

Notation. Given a convex function u we define

$$
b_{u}(h)=h^{-1 / 2} \sup _{S_{h}} x_{n}
$$

Whenever there is no possibility of confusion we drop the subindex u and use the notation $b(h)$.

Below we list some basic properties of $b(h)$.

1) If $h_{1} \leq h_{2}$ then

$$
\left(\frac{h_{1}}{h_{2}}\right)^{\frac{1}{2}} \leq \frac{b\left(h_{1}\right)}{b\left(h_{2}\right)} \leq\left(\frac{h_{2}}{h_{1}}\right)^{\frac{1}{2}}
$$

2) A rescaling

$$
\tilde{u}(A x)=u(x)
$$

given by a linear transformation A which leaves the x_{n} coordinate invariant does not change the value of b, i.e

$$
b_{\tilde{u}}(h)=b_{u}(h) .
$$

3) If A is a linear transformation which leaves the plane $\left\{x_{n}=0\right\}$ invariant the values of b get multiplied by a constant. However the quotients $b\left(h_{1}\right) / b\left(h_{2}\right)$ do not change values i.e

$$
\frac{b_{\tilde{u}}\left(h_{1}\right)}{b_{\tilde{u}}\left(h_{2}\right)}=\frac{b_{u}\left(h_{1}\right)}{b_{u}\left(h_{2}\right)} .
$$

4) If we multiply u by a constant, i.e.

$$
\tilde{u}(x)=\beta u(x)
$$

then

$$
b_{\tilde{u}}(\beta h)=\beta^{-1 / 2} b_{u}(h)
$$

and

$$
\frac{b_{\tilde{u}}\left(\beta h_{1}\right)}{b_{\tilde{u}}\left(\beta h_{2}\right)}=\frac{b_{u}\left(h_{1}\right)}{b_{u}\left(h_{2}\right)} .
$$

From (4.3) and property 2 above,

$$
c(n) d_{n} \leq b(h) h^{1 / 2} \leq C(n) d_{n}
$$

hence Lemma 4.2 will follow if we show that $b(h)$ is bounded below. We achieve this by proving the following lemma.

Lemma 4.3. There exist $c_{0}, c(\rho)$ such that if $h \leq c(\rho)$ and $b(h) \leq c_{0}$ then

$$
\begin{equation*}
\frac{b(t h)}{b(h)}>2 \tag{4.6}
\end{equation*}
$$

for some $t \in\left[c_{0}, 1\right]$.
This lemma states that if the value of $b(h)$ on a certain section is less than a critical value c_{0}, then we can find a lower section at height still comparable to h where the value of b doubled. Clearly Lemma 4.3 and property 1 above imply that $b(h)$ remains bounded for all h small enough.

The quotient in (4.6) is the same for \tilde{u} which is defined in Proposition 4.1. We normalize the domain \tilde{S}_{h} and \tilde{u} by considering the rescaling

$$
v(x)=\frac{1}{h} \tilde{u}\left(h^{1 / 2} A x\right)
$$

where A is a multiple of $D_{h}\left(\right.$ see (4.3)), $A=\gamma D_{h}$ such that

$$
\operatorname{det} A=1
$$

Then

$$
c h^{-1 / 2} \leq \gamma \leq C h^{-1 / 2}
$$

and the diagonal entries of A satisfy

$$
\begin{gathered}
a_{i} \geq c, \quad i=1,2, \cdots, n-1 \\
c b_{u}(h) \leq a_{n} \leq C b_{u}(h)
\end{gathered}
$$

The function v satisfies

$$
\begin{aligned}
& \lambda \leq \operatorname{det} D^{2} v \leq \Lambda \\
& v \geq 0, \quad v(0)=0
\end{aligned}
$$

is continuous and it is defined in $\bar{\Omega}_{v}$ with

$$
\Omega_{v}:=\{v<1\}=h^{-1 / 2} A^{-1} \tilde{S}_{h}
$$

Then

$$
x^{*}+c B_{1} \subset \Omega_{v} \subset C B_{1}^{+}
$$

for some x^{*}, and

$$
c t^{n / 2} \leq\left|S_{t}(v)\right| \leq C t^{n / 2}, \quad \forall t \leq 1
$$

where $S_{t}(v)$ denotes the section of v. Since

$$
\tilde{u}=h \quad \text { in } \quad \partial \tilde{S}_{h} \cap\left\{x_{n} \geq C(\rho) h\right\}
$$

then

$$
v=1 \quad \text { on } \partial \Omega_{v} \cap\left\{x_{n} \geq \sigma\right\}, \quad \sigma:=C(\rho) h^{1-\alpha} .
$$

Also, from Proposition 4.1 on the part G of the boundary of $\partial \Omega_{v}$ where $\{v<1\}$ we have

$$
\begin{equation*}
\frac{1}{2} \mu \sum_{i=1}^{n-1} a_{i}^{2} x_{i}^{2} \leq v \leq 2 \mu^{-1} \sum_{i=1}^{n-1} a_{i}^{2} x_{i}^{2} \tag{4.7}
\end{equation*}
$$

In order to prove Lemma 4.3 we need to show that if σ, a_{n} are sufficiently small depending on n, μ, λ, Λ then the function v above satisfies

$$
\begin{equation*}
b_{v}(t) \geq 2 b_{v}(1) \tag{4.8}
\end{equation*}
$$

for some $1>t \geq c_{0}$.
Since $\alpha<1$, the smallness condition on σ is satisfied by taking $h<c(\rho)$ sufficiently small. Also a_{n} being small is equivalent to one of the $a_{i}, 1 \leq i \leq n-1$ being large since their product is 1 and a_{i} are bounded below.

In the next section we prove property (4.8) above by compactness, by letting $\sigma \rightarrow 0, a_{i} \rightarrow \infty$ for some i (see Proposition 5.1).

5. Proof of Theorem 3.1 (II)

In this section we consider the class of solutions v that satisfy the properties above. After relabeling the constants μ and a_{i}, and by abuse of notation writing u instead of v, we may assume we are in the following situation.

Fix μ small and λ, Λ. For an increasing sequence

$$
a_{1} \leq a_{2} \leq \ldots \leq a_{n-1}
$$

with

$$
a_{1} \geq \mu,
$$

we consider the family of solutions

$$
u \in \mathcal{D}_{\sigma}^{\mu}\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)
$$

of convex functions $u: \Omega \rightarrow \mathbb{R}$ that satisfy

$$
\begin{gather*}
\lambda \leq \operatorname{det} D^{2} u \leq \Lambda \quad \text { in } \Omega, \quad 0 \leq u \leq 1 \text { in } \Omega \tag{5.1}\\
0 \in \partial \Omega, \quad B_{\mu}\left(x_{0}\right) \subset \Omega \subset B_{1 / \mu}^{+} \text {for some } x_{0} \tag{5.2}\\
\mu h^{n / 2} \leq\left|S_{h}\right| \leq \mu^{-1} h^{n / 2} \tag{5.3}
\end{gather*}
$$

Moreover we assume that the boundary $\partial \Omega$ has a closed subset G

$$
\begin{equation*}
G \subset\left\{x_{n} \leq \sigma\right\} \cap \partial \Omega \tag{5.4}
\end{equation*}
$$

which is a graph in the e_{n} direction with projection $\pi_{n}(G) \subset \mathbb{R}^{n-1}$ along e_{n}

$$
\begin{equation*}
\left\{\mu^{-1} \sum_{1}^{n-1} a_{i}^{2} x_{i}^{2} \leq 1\right\} \subset \pi_{n}(G) \subset\left\{\mu \sum_{1}^{n-1} a_{i}^{2} x_{i}^{2} \leq 1\right\} \tag{5.5}
\end{equation*}
$$

and (see Definition 2.5), the boundary values of $u=\varphi$ on $\partial \Omega$ satisfy

$$
\begin{equation*}
\varphi=1 \quad \text { on } \partial \Omega \backslash G ; \tag{5.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu \sum_{1}^{n-1} a_{i}^{2} x_{i}^{2} \leq \varphi \leq \min \left\{1, \quad \mu^{-1} \sum_{1}^{n-1} a_{i}^{2} x_{i}^{2}\right\} \quad \text { on } G \tag{5.7}
\end{equation*}
$$

In this section we prove
Proposition 5.1. For any $M>0$ there exists C_{*} depending on $M, \mu, \lambda, \Lambda, n$ such that if $u \in \mathcal{D}_{\sigma}^{\mu}\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)$ with

$$
a_{n-1} \geq C_{*}, \quad \sigma \leq C_{*}^{-1}
$$

then

$$
b(h)=\left(\sup _{S_{h}} x_{n}\right) h^{-1 / 2} \geq M
$$

for some h with $C_{*}^{-1} \leq h \leq 1$.
Property (4.8) (hence Theorem 3.1), easily follows from this proposition. Indeed, by choosing

$$
M=2 \mu^{-1} \geq 2 b(1)
$$

in Proposition 5.1 we prove the existence of a section S_{h} with $h \geq c_{0}$ such that

$$
b(h) \geq 2 b(1)
$$

Clearly the function v of the previous section satisfies the hypotheses above (after renaming the constant μ) provided that σ, a_{n} are sufficiently small.

We prove Proposition 5.1 by compactness. We introduce the limiting solutions from the class $\mathcal{D}_{\sigma}^{\mu}\left(a_{1}, \ldots, a_{n-1}\right)$ when $a_{k+1} \rightarrow \infty$ and $\sigma \rightarrow 0$.

If $\mu \leq a_{1} \leq \ldots \leq a_{k}$, we denote by

$$
\mathcal{D}_{0}^{\mu}\left(a_{1}, \ldots, a_{k}, \infty, \infty, \ldots, \infty\right), \quad 0 \leq k \leq n-2
$$

the class of functions u that satisfy properties (5.1)-(5.2)-(5.3) with,

$$
\begin{equation*}
G \subset\left\{x_{i}=0, \quad i>k\right\} \cap \partial \Omega \tag{5.8}
\end{equation*}
$$

and if we restrict to the space generated by the first k coordinates then

$$
\begin{equation*}
\left\{\mu^{-1} \sum_{1}^{k} a_{i}^{2} x_{i}^{2} \leq 1\right\} \subset G \subset\left\{\mu \sum_{1}^{k} a_{i}^{2} x_{i}^{2} \leq 1\right\} \tag{5.9}
\end{equation*}
$$

Also, $u=\varphi$ on $\partial \Omega$ with

$$
\begin{gather*}
\varphi=1 \quad \text { on } \partial \Omega \backslash G \tag{5.10}\\
\mu \sum_{1}^{k} a_{i}^{2} x_{i}^{2} \leq \varphi \leq \min \left\{1, \quad \mu^{-1} \sum_{1}^{k} a_{i}^{2} x_{i}^{2}\right\} \quad \text { on } G \tag{5.11}
\end{gather*}
$$

The compactness theorem (Theorem 2.7) implies that if

$$
u_{m} \in D_{\sigma_{m}}^{\mu}\left(a_{1}^{m}, \ldots, a_{n-1}^{m}\right)
$$

is a sequence with

$$
\sigma_{m} \rightarrow 0 \quad \text { and } \quad a_{k+1}^{m} \rightarrow \infty
$$

for some fixed $0 \leq k \leq n-2$, then we can extract a convergent subsequence to a function u (see Definition 2.3) with

$$
u \in D_{0}^{\mu}\left(a_{1}, . ., a_{l}, \infty, . ., \infty\right)
$$

for some $l \leq k$ and $a_{1} \leq \ldots \leq a_{l}$.

Proposition 5.1 follows easily from the next proposition.
Proposition 5.2. For any $M>0$ and $0 \leq k \leq n-2$ there exists c_{k} depending on $M, \mu, \lambda, \Lambda, n, k$ such that if

$$
\begin{equation*}
u \in \mathcal{D}_{0}^{\mu}\left(a_{1}, \ldots, a_{k}, \infty, \ldots, \infty\right) \tag{5.12}
\end{equation*}
$$

then

$$
b(h)=\left(\sup _{S_{h}} x_{n}\right) h^{-1 / 2} \geq M
$$

for some h with $c_{k} \leq h \leq 1$.
Indeed, if Proposition 5.1 fails for a sequence of constants $C_{*} \rightarrow \infty$ then we obtain a limiting solution u as in (5.12) for which $b(h) \leq M$ for all $h>0$. This contradicts Proposition 5.2 (with M replaced by $2 M$).

We prove Proposition 5.2 by induction on k. We start by introducing some notation.

Denote

$$
x=\left(y, z, x_{n}\right), \quad y=\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{R}^{k}, \quad z=\left(x_{k+1}, \ldots, x_{n-1}\right) \in \mathbb{R}^{n-1-k}
$$

Definition 5.3. We say that a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a sliding along the y direction if

$$
T x:=x+\nu_{1} z_{1}+\nu_{2} z_{2}+\ldots+\nu_{n-k-1} z_{n-k-1}+\nu_{n-k} x_{n}
$$

with

$$
\nu_{1}, \nu_{2}, \ldots, \nu_{n-k} \in \operatorname{span}\left\{e_{1}, \ldots, e_{k}\right\}
$$

We see that T leaves the $\left(z, x_{n}\right)$ components invariant together with the subspace $(y, 0,0)$. Clearly, if T is a sliding along the y direction then so is T^{-1} and

$$
\operatorname{det} T=1
$$

The key step in the proof of Proposition 5.2 is the following lemma.
Lemma 5.4. Assume that

$$
u \geq p\left(|z|-q x_{n}\right)
$$

for some $p, q>0$ and assume that for each section S_{h} of $u, h \in(0,1)$, there exists T_{h} a sliding along the y direction such that

$$
T_{h} S_{h} \subset C_{0} h^{1 / 2} B_{1}^{+}
$$

for some constant C_{0}. Then

$$
u \notin D_{0}^{\mu}(1, \ldots, 1, \infty, \ldots, \infty)
$$

Proof. Assume by contradiction that $u \in D_{0}^{\mu}$ and it satisfies the hypotheses with $q \leq q_{0}$ for some q_{0}. We show that

$$
\begin{equation*}
u \geq p^{\prime}\left(|z|-q^{\prime} x_{n}\right), \quad q^{\prime}=q-\eta \tag{5.13}
\end{equation*}
$$

for some $0<p^{\prime} \ll p$, where the constant $\eta>0$ depends only on q_{0} and μ, C_{0}, Λ, n.
Then, since $q^{\prime} \leq q_{0}$, we can apply this result a finite number of times and obtain

$$
u \geq \varepsilon\left(|z|+x_{n}\right)
$$

for some small $\varepsilon>0$. This gives $S_{h} \subset\left\{x_{n} \leq \varepsilon^{-1} h\right\}$ hence

$$
T_{h} S_{h} \subset\left\{x_{n} \leq \varepsilon^{-1} h\right\}
$$

and by the hypothesis above

$$
\left|S_{h}\right|=\left|T_{h} S_{h}\right|=O\left(h^{(n+1) / 2}\right) \quad \text { as } h \rightarrow 0
$$

and we contradict (5.3).
Now we prove (5.13). Since $u \in D_{0}^{\mu}$ as above, there exists a closed set

$$
G_{h} \subset \partial S_{h} \cap\left\{z=0, x_{n}=0\right\}
$$

such that on the subspace $(y, 0,0)$

$$
\left\{\mu^{-1}|y|^{2} \leq h\right\} \subset G_{h} \subset\left\{\mu|y|^{2} \leq h\right\}
$$

and the boundary values φ_{h} of u on ∂S_{h} satisfy (see Section 2)

$$
\begin{array}{r}
\varphi_{h}=h \quad \text { on } \partial S_{h} \backslash G_{h} \\
\mu|y|^{2} \leq \varphi_{h} \leq \min \left\{h, \mu^{-1}|y|^{2}\right\} \quad \text { on } G_{h}
\end{array}
$$

Let w be a rescaling of u,

$$
w(x):=\frac{1}{h} u\left(h^{1 / 2} T_{h}^{-1} x\right)
$$

for some small $h \ll p$. Then

$$
S_{1}(w):=\Omega_{w}=h^{-1 / 2} T_{h} S_{h} \subset B_{C_{0}}^{+}
$$

and our hypothesis becomes

$$
\begin{equation*}
w \geq \frac{p}{h^{1 / 2}}\left(|z|-q x_{n}\right) \tag{5.14}
\end{equation*}
$$

Moreover the boundary values φ_{w} of w on $\partial \Omega_{w}$ satisfy

$$
\begin{gathered}
\varphi_{w}=1 \quad \text { on } \partial \Omega_{w} \backslash G_{w} \\
\mu|y|^{2} \leq \varphi_{w} \leq \min \left\{1, \mu^{-1}|y|^{2}\right\} \quad \text { on } \quad G_{w}:=h^{-1 / 2} G_{h}
\end{gathered}
$$

Next we show that $\varphi_{w} \geq v$ on $\partial \Omega_{w}$ where v is defined as

$$
v:=\delta|x|^{2}+\frac{\Lambda}{\delta^{n-1}}\left(z_{1}-q x_{n}\right)^{2}+N\left(z_{1}-q x_{n}\right)+\delta x_{n}
$$

and δ is small depending on μ and C_{0}, and N is chosen large such that

$$
\frac{\Lambda}{\delta^{n-1}} t^{2}+N t
$$

is increasing in the interval $|t| \leq\left(1+q_{0}\right) C_{0}$.
From the definition of v we see that

$$
\operatorname{det} D^{2} v>\Lambda
$$

On the part of the boundary $\partial \Omega_{w}$ where $z_{1} \leq q x_{n}$ we use that $\Omega_{w} \subset B_{C_{0}}$ and obtain

$$
v \leq \delta\left(|x|^{2}+x_{n}\right) \leq \varphi_{w}
$$

On the part of the boundary $\partial \Omega_{w}$ where $z_{1}>q x_{n}$ we use (5.14) and obtain

$$
1=\varphi_{w} \geq C\left(|z|-q x_{n}\right) \geq C\left(z_{1}-q x_{n}\right)
$$

with C arbitrarily large provided that h is small enough. We choose C such that the inequality above implies

$$
\frac{\Lambda}{\delta^{n-1}}\left(z_{1}-q x_{n}\right)^{2}+N\left(z_{1}-q x_{n}\right)<\frac{1}{2}
$$

Then

$$
\varphi_{w}=1>\frac{1}{2}+\delta\left(|x|^{2}+x_{n}\right) \geq v
$$

In conclusion $\varphi_{w} \geq v$ on $\partial \Omega_{w}$ hence the function v is a lower barrier for w in Ω_{w}. Then

$$
w \geq N\left(z_{1}-q x_{n}\right)+\delta x_{n}
$$

and, since this inequality holds for all directions in the z-plane, we obtain

$$
w \geq N\left(|z|-(q-\eta) x_{n}\right), \quad \eta:=\frac{\delta}{N}
$$

Scaling back we get

$$
u \geq p^{\prime}\left(|z|-(q-\eta) x_{n}\right) \quad \text { in } S_{h}
$$

Since u is convex and $u(0)=0$, this inequality holds globally, and (5.13) is proved.

Lemma 5.5. Proposition 5.2 holds for $k=0$.
Proof. By compactness we need to show that there does not exist $u \in \mathcal{D}_{0}^{\mu}(\infty, \ldots, \infty)$ with $b(h) \leq M$ for all h. If such u exists then $G=\{0\}$. Let

$$
v:=\delta\left(\left|x^{\prime}\right|+\frac{1}{2}\left|x^{\prime}\right|^{2}\right)+\frac{\Lambda}{\delta^{n-1}} x_{n}^{2}-N x_{n}
$$

with δ small depending on μ, and N large so that

$$
\frac{\Lambda}{\delta^{n-1}} x_{n}^{2}-N x_{n} \leq 0
$$

in $B_{1 / \mu}^{+}$. Then

$$
v \leq \varphi \quad \text { on } \partial \Omega, \quad \operatorname{det} D^{2} v>\Lambda
$$

hence

$$
v \leq u \quad \text { in } \Omega
$$

This gives

$$
u \geq \delta\left|x^{\prime}\right|-N x_{n}
$$

and we obtain

$$
S_{h} \subset\left\{\left|x^{\prime}\right| \leq C\left(x_{n}+h\right)\right\}
$$

Since $b(h) \leq M$ we conclude

$$
S_{h} \subset C h^{1 / 2} B_{1}^{+}
$$

and we contradict Lemma 5.4 for $k=0$.

Now we prove Proposition 5.2 by induction on k.
Proof of Proposition 5.2. In this proof we denote by c, C positive constants that depend on $M, \mu, \lambda, \Lambda, n$ and k.

We assume that the proposition holds for all nonnegative integers up to $k-1$, $1 \leq k<n-2$, and we prove it for k. Let

$$
u \in D_{0}^{\mu}\left(a_{1}, \ldots, a_{k}, \infty, \ldots, \infty\right)
$$

By the induction hypotheses and compactness we see that there exists a constant

$$
C_{k}(\mu, M, \lambda, \Lambda, n)
$$

such that if $a_{k} \geq C_{k}$ then $b(h) \geq M$ for some $h \geq C_{k}^{-1}$. Thus, it suffices to consider only the case when $a_{k}<C_{k}$.

If no c_{k+1} exists then we can find a limiting solution that, by abuse of notation, we still denote by u such that

$$
\begin{equation*}
u \in \mathcal{D}_{0}^{\tilde{\mu}}(1,1, \ldots, 1, \infty, \ldots, \infty) \tag{5.15}
\end{equation*}
$$

with

$$
\begin{equation*}
b(h) \leq M h^{1 / 2}, \quad \forall h>0 \tag{5.16}
\end{equation*}
$$

where $\tilde{\mu}$ depends on μ and C_{k}.
We show that such a function u does not exist.
Denote as before

$$
x=\left(y, z, x_{n}\right), \quad y=\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{R}^{k}, \quad z=\left(x_{k+1}, \ldots, x_{n-1}\right) \in \mathbb{R}^{n-1-k}
$$

On $\partial \Omega$ we have

$$
\varphi(x) \geq \delta\left|x^{\prime}\right|^{2}+\delta|z|+\frac{\Lambda}{\delta^{n-1}} x_{n}^{2}-N x_{n}
$$

where δ is small depending on $\tilde{\mu}$, and N is large so that

$$
\frac{\Lambda}{\delta^{n-1}} x_{n}^{2}-N x_{n} \leq 0
$$

in $B_{1 / \tilde{\mu}}^{+}$. As before we obtain that the inequality above holds in Ω, hence

$$
\begin{equation*}
u(x) \geq \delta|z|-N x_{n} \tag{5.17}
\end{equation*}
$$

From (5.16)-(5.17) we see that the section S_{h} of u satisfies

$$
\begin{equation*}
S_{h} \subset\left\{|z|<\delta^{-1}\left(N x_{n}+h\right)\right\} \cap\left\{x_{n} \leq M h^{1 / 2}\right\} \tag{5.18}
\end{equation*}
$$

From John's lemma we know that S_{h} is equivalent to an ellipsoid E_{h} of the same volume i.e

$$
\begin{equation*}
c(n) E_{h} \subset S_{h}-x_{h}^{*} \subset C(n) E_{h}, \quad\left|E_{h}\right|=\left|S_{h}\right| \tag{5.19}
\end{equation*}
$$

with x_{h}^{*} the center of mass of S_{h}.
For any ellipsoid E_{h} in \mathbb{R}^{n} of positive volume we can find T_{h}, a sliding along the y direction (see Definition 5.3), such that

$$
\begin{equation*}
T_{h} E_{h}=\left|E_{h}\right|^{1 / n} A B_{1} \tag{5.20}
\end{equation*}
$$

with a matrix A that leaves the $(y, 0,0)$ and $\left(0, z, x_{n}\right)$ subspaces invariant, and $\operatorname{det} A=1$. By choosing an appropriate system of coordinates in the y and z variables we may assume in fact that

$$
A\left(y, z, x_{n}\right)=\left(A_{1} y, A_{2}\left(z, x_{n}\right)\right)
$$

with

$$
A_{1}=\left(\begin{array}{cccc}
\beta_{1} & 0 & \cdots & 0 \\
0 & \beta_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \beta_{k}
\end{array}\right)
$$

with $0<\beta_{1} \leq \cdots \leq \beta_{k}$, and

$$
A_{2}=\left(\begin{array}{ccccc}
\gamma_{k+1} & 0 & \cdots & 0 & \theta_{k+1} \\
0 & \gamma_{k+2} & \cdots & 0 & \theta_{k+2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \gamma_{n-1} & \theta_{n-1} \\
0 & 0 & \cdots & 0 & \theta_{n}
\end{array}\right)
$$

with $\gamma_{j}, \theta_{n}>0$.
The h section $\tilde{S}_{h}=T_{h} S_{h}$ of the rescaling

$$
\tilde{u}(x)=u\left(T_{h}^{-1} x\right)
$$

satisfies (5.18) and since $u \in \mathcal{D}_{0}^{\mu}$, there exists $\tilde{G}_{h}=G_{h}$,

$$
\tilde{G}_{h} \subset\left\{z=0, x_{n}=0\right\} \cap \partial \tilde{S}_{h}
$$

such that on the subspace $(y, 0,0)$

$$
\left\{\mu^{-1}|y|^{2} \leq h\right\} \subset \tilde{G}_{h} \subset\left\{\mu|y|^{2} \leq h\right\}
$$

and the boundary values $\tilde{\varphi}_{h}$ of \tilde{u} on $\partial \tilde{S}_{h}$ satisfy

$$
\begin{gathered}
\tilde{\varphi}_{h}=h \quad \text { on } \partial \tilde{S}_{h} \backslash \tilde{G}_{h} \\
\mu|y|^{2} \leq \tilde{\varphi}_{h} \leq \min \left\{h, \mu^{-1}|y|^{2}\right\} \quad \text { on } \tilde{G}_{h}
\end{gathered}
$$

Moreover, using that

$$
\left|S_{h}\right| \sim h^{n / 2}
$$

in (5.19), (5.20) and that $0 \in \partial S_{h}$, we obtain

$$
\begin{equation*}
\tilde{x}_{h}^{*}+c h^{1 / 2} A B_{1} \subset \tilde{S}_{h} \subset C h^{1 / 2} A B_{1}, \quad \operatorname{det} A=1 \tag{5.21}
\end{equation*}
$$

for the matrix A as above and with \tilde{x}_{h}^{*} the center of mass of \tilde{S}_{h}.
Next we use the induction hypothesis and show that \tilde{S}_{h} is equivalent to a ball.
Lemma 5.6. There exists C_{0} such that

$$
T_{h} S_{h}=\tilde{S}_{h} \subset C_{0} h^{n / 2} B_{1}^{+}
$$

Proof. We need to show that

$$
|A| \leq C
$$

Since \tilde{S}_{h} satisfies (5.18) we see that

$$
\tilde{S}_{h} \subset\left\{\left|\left(z, x_{n}\right)\right| \leq C h^{1 / 2}\right\}
$$

which together with the inclusion (5.21) gives $\left|A_{2}\right| \leq C$ hence

$$
\gamma_{j}, \theta_{n} \leq C, \quad\left|\theta_{j}\right| \leq C
$$

Also, since

$$
\tilde{G}_{h} \subset \tilde{S}_{h}
$$

we find from (5.21)

$$
\beta_{i} \geq c>0, \quad i=1, \cdots, k
$$

We define the rescaling

$$
w(x)=\frac{1}{h} \tilde{u}\left(h^{1 / 2} A x\right)
$$

defined in a domain $\Omega_{w}=S_{1}(w)$. Then (5.21) gives

$$
B_{c}\left(x_{0}\right) \subset \Omega_{w} \subset B_{C}^{+}
$$

and $w=\varphi_{w}$ on $\partial \Omega_{w}$ with

$$
\begin{gathered}
\varphi_{w}=1 \quad \text { on } \partial \Omega_{w} \backslash G_{w} \\
\tilde{\mu} \sum_{1}^{k} \beta_{i}^{2} x_{i}^{2} \leq \varphi_{w} \leq \min \left\{1, \tilde{\mu}^{-1} \sum_{1}^{k} \beta_{i}^{2} x_{i}^{2}\right\} \quad \text { on } G_{w}:=h^{-1 / 2} A^{-1} \tilde{G}_{h}
\end{gathered}
$$

This implies that

$$
w \in \mathcal{D}_{0}^{\bar{\mu}}\left(\beta_{1}, \beta_{2}, \ldots, \beta_{k}, \infty, \ldots, \infty\right)
$$

for some small $\bar{\mu}$ depending on $\mu, M, \lambda, \Lambda, n, k$.
We claim that

$$
b_{u}(h) \geq c_{\star}
$$

First we notice that

$$
b_{u}(h)=b_{\tilde{u}}(h) \sim \theta_{n} .
$$

Since

$$
\theta_{n} \prod \beta_{i} \prod \gamma_{j}=\operatorname{det} A=1
$$

and

$$
\gamma_{j} \leq C
$$

we see that if $b_{u}(h)$ (and therefore θ_{n}) becomes smaller than a critical value c_{*} then

$$
\beta_{k} \geq C_{k}(\bar{\mu}, \bar{M}, \lambda, \Lambda, n)
$$

with $\bar{M}:=2 \bar{\mu}^{-1}$, and by the induction hypothesis

$$
b_{w}(\tilde{h}) \geq \bar{M} \geq 2 b_{w}(1)
$$

for some $\tilde{h}>C_{k}^{-1}$. This gives

$$
\frac{b_{u}(h \tilde{h})}{b_{u}(h)}=\frac{b_{w}(\tilde{h})}{b_{w}(1)} \geq 2
$$

which implies $b_{u}(h \tilde{h}) \geq 2 b_{u}(h)$ and our claim follows.
Next we claim that γ_{j} are bounded below by the same argument. Indeed, from the claim above θ_{n} is bounded below and if some γ_{j} is smaller than a small value \tilde{c}_{*} then

$$
\beta_{k} \geq C_{k}\left(\bar{\mu}, \bar{M}_{1}, \lambda, \Lambda, n\right)
$$

with

$$
\bar{M}_{1}:=\frac{2 M}{\bar{\mu} c_{\star}}
$$

By the induction hypothesis

$$
b_{w}(\tilde{h}) \geq \bar{M}_{1} \geq \frac{2 M}{c_{\star}} b_{w}(1)
$$

hence

$$
\frac{b_{u}(h \tilde{h})}{b_{u}(h)} \geq \frac{2 M}{c_{\star}}
$$

which gives $b_{u}(h \tilde{h}) \geq 2 M$, contradiction. In conclusion θ_{n}, γ_{j} are bounded below which implies that β_{i} are bounded above. This shows that $|A|$ is bounded and the lemma is proved.

End of the proof of Proposition 5.2.
The proof is finished since Lemma 5.6, (5.15), (5.17) contradict Lemma 5.4.

6. Pogorelov estimate in half-domain

In this section we obtain a version of Pogorelov estimate at the boundary (Theorem 6.4 below). A similar estimate was proved also in [TW]. We start with the following a priori estimate.
Proposition 6.1. Let $u: \bar{\Omega} \rightarrow \mathbb{R}, u \in C^{4}(\bar{\Omega})$ satisfy the Monge-Ampere equation

$$
\operatorname{det} D^{2} u=1 \quad \text { in } \Omega
$$

Assume that for some constant $k>0$,

$$
B_{k}^{+} \subset \Omega \subset B_{k^{-1}}^{+},
$$

and

$$
\left\{\begin{array}{l}
u=\frac{1}{2}\left|x^{\prime}\right|^{2} \quad \text { on } \quad \partial \Omega \cap\left\{x_{n}=0\right\} \\
u=1 \quad \text { on } \quad \partial \Omega \cap\left\{x_{n}>0\right\}
\end{array}\right.
$$

Then

$$
\|u\|_{C^{3,1}\left(\left\{u<\frac{1}{16} k^{2}\right\}\right)} \leq C(k, n) .
$$

Proof. We divide the proof into four steps.
Step 1: We show that

$$
|\nabla u| \leq C(k, n) \quad \text { in the set } \quad D:=\left\{u<k^{2} / 2\right\}
$$

For each

$$
x_{0} \in\left\{\left|x^{\prime}\right| \leq k, \quad x_{n}=0\right\},
$$

we consider the barrier

$$
w_{x_{0}}(x):=\frac{1}{2}\left|x_{0}\right|^{2}+x_{0} \cdot\left(x-x_{0}\right)+\delta\left|x^{\prime}-x_{0}\right|^{2}+\delta^{1-n}\left(x_{n}^{2}-k^{-1} x_{n}\right)
$$

where δ is small so that

$$
w_{x_{0}} \leq 1 \quad \text { in } \quad B_{k^{-1}}^{+}
$$

Then

$$
\begin{gathered}
w_{x_{0}}\left(x_{0}\right)=u\left(x_{0}\right), \quad w_{x_{0}} \leq u \quad \text { on } \quad \partial \Omega \cap\left\{x_{n}=0\right\} \\
w_{x_{0}} \leq 1=u \quad \text { on } \quad \partial \Omega \cap\left\{x_{n}>0\right\}
\end{gathered}
$$

and

$$
\operatorname{det} D^{2} w_{x_{0}}>1
$$

thus in Ω

$$
u \geq w_{x_{0}} \geq u\left(x_{0}\right)+x_{0} \cdot\left(x-x_{0}\right)-\delta^{1-n} k^{-1} x_{n} .
$$

This gives a lower bound for $u_{n}\left(x_{0}\right)$. Moreover, writing the inequality for all x_{0} with $\left|x_{0}\right|=k$ we obtain

$$
D \subset\left\{x_{n} \geq c\left(\left|x^{\prime}\right|-k\right)\right\}
$$

From the values of u on $\left\{x_{n}=0\right\}$ and the inclusion above we obtain a lower bound on u_{n} on ∂D in a neighborhood of $\left\{x_{n}=0\right\}$. Since Ω contains the cone generated by $k e_{n}$ and $\left\{\left|x^{\prime}\right| \leq 1, x_{n}=0\right\}$ and $u \leq 1$ in Ω, we can use the convexity of u and obtain also an upper bound for u_{n} and all $\left|u_{i}\right|, 1 \leq i \leq n-1$, on ∂D in a neighborhood of $\left\{x_{n}=0\right\}$. We find

$$
|\nabla u| \leq C \quad \text { on } \quad \partial D \cap\left\{x_{n} \leq c_{0}\right\}
$$

where $c_{0}>0$ is a small constant depending on k and n. We obtain a similar bound on $\partial D \cap\left\{x_{n} \geq c_{0}\right\}$ by bounding below

$$
\operatorname{dist}\left(\partial D \cap\left\{x_{n} \geq c_{0}\right\}, \partial \Omega\right)
$$

by a small positive constant. Indeed, if

$$
y \in \partial \Omega \cap\left\{x_{n} \geq c_{0} / 2\right\}
$$

then there exists a linear function l_{y} with bounded gradient so that

$$
u(y)=l_{y}(y), \quad u \geq l_{y} \quad \text { on } \quad \partial \Omega
$$

Then, using Alexandrov estimate for $\left(u-l_{y}\right)^{-}$we obtain

$$
u(x) \geq l_{y}(x)-C d(x)^{1 / n}, \quad d(x):=\operatorname{dist}(x, \partial \Omega)
$$

hence D stays outside a fixed neighborhood of y.
Step 2: We show that

$$
\left\|D^{2} u\right\| \leq C(k, n) \quad \text { on } \quad E:=\left\{x_{n}=0\right\} \cap\left\{\left|x^{\prime}\right| \leq k / 2\right\}
$$

It suffices to prove that $\left|u_{i n}\right|$ are bounded in E with $i=1, . ., n-1$. Let

$$
L \varphi:=u^{i j} \varphi_{i j}
$$

denote the linearized Monge-Ampere operator for u. Then

$$
\begin{aligned}
L u_{i} & =0, \quad u_{i}=x_{i} \quad \text { on } \quad\left\{x_{n}=0\right\}, \\
L u & =n
\end{aligned}
$$

and if we define $P(x)=\delta\left|x^{\prime}\right|^{2}+\delta^{1-n} x_{n}^{2}$ then

$$
\begin{aligned}
L P & =\operatorname{Tr}\left(\left(D^{2} u\right)^{-1} D^{2} P\right) \\
& \geq n\left(\operatorname{det}\left(D^{2} u\right)^{-1} \operatorname{det} D^{2} P\right)^{\frac{1}{n}} \\
& \geq n
\end{aligned}
$$

Fix $x_{0} \in E$. We compare u_{i} and

$$
v_{x_{0}}(x):=x_{i}+\gamma_{1}\left[\delta\left|x^{\prime}-x_{0}\right|^{2}+\delta^{1-n}\left(x_{n}^{2}-\gamma_{2} x_{n}\right)-\left(u-l_{x_{0}}\right)\right]
$$

where $l_{x_{0}}$ denotes the supporting linear function for u at $x_{0}, \delta=1 / 4$, and γ_{1}, $\gamma_{2} \geq 0$. Clearly,

$$
L v_{x_{0}} \geq 0
$$

and, since u is Lipschitz in D we can choose γ_{1}, γ_{2} large, depending only on k and n such that

$$
v_{x_{0}} \leq u_{i} \quad \text { on } \quad \partial D
$$

This shows that the inequality above holds also in D and we obtain a lower bound on $u_{i n}\left(x_{0}\right)$. Similarly we obtain an upper bound.

Step 3: We show that

$$
\left\|D^{2} u\right\| \leq C \quad \text { on } \quad\left\{u<k^{2} / 8\right\}
$$

We apply the classical Pogorelov estimate in the set

$$
F:=\left\{u<k^{2} / 4\right\} .
$$

Precisely if the maximal value of

$$
\log \left(\frac{1}{4} k^{2}-u\right)+\log u_{i i}+\frac{1}{2} u_{i}^{2}
$$

occurs in the interior of F then this value is bounded by a constant depending only on n and $\max _{F}|\nabla u|$ (see [C2]). From step 2, the expression is bounded above on ∂F and the estimate follows.

Step 4: The Monge-Ampere equation is uniformly elliptic in $\left\{u<k^{2} / 8\right\}$ and by Evans-Krylov theorem and Schauder estimates we obtain the desired $C^{3,1}$ bound.

Remark 6.2. Assume the boundary values of u are given by

$$
\begin{cases}u=p\left(x^{\prime}\right) & \text { on } \quad \partial \Omega \cap\left\{x_{n}=0\right\} \\ u=1 & \text { on } \partial \Omega \cap\left\{x_{n}>0\right\}\end{cases}
$$

with $p\left(x^{\prime}\right)$ a quadratic polynomial that satisfies

$$
\rho\left|x^{\prime}\right|^{2} \leq p\left(x^{\prime}\right) \leq \rho^{-1}\left|x^{\prime}\right|^{2}
$$

for some $\rho>0$. Then

$$
\|u\|_{C^{3,1}\left(\left\{u<\frac{1}{16} k^{2}\right\}\right)} \leq C(\rho, k, n)
$$

Indeed, after an affine transformation we can reduce the problem to the case $p\left(x^{\prime}\right)=\left|x^{\prime}\right|^{2} / 2$.
Remark 6.3. Proposition 6.1 holds as well if we replace the half-space $\left\{x_{n} \geq 0\right\}$ with a large ball of radius ε^{-1}

$$
\mathcal{B}_{\varepsilon}:=\left\{\left|x-\varepsilon^{-1} e_{n}\right| \leq \varepsilon^{-1}\right\}
$$

Precisely, if

$$
B_{k} \cap \mathcal{B}_{\varepsilon} \subset \Omega \subset B_{k^{-1}} \cap \mathcal{B}_{\varepsilon}
$$

and the boundary values of u satisfy

$$
\left\{\begin{array}{l}
u=\frac{1}{2}\left|x^{\prime}\right|^{2} \quad \text { on } \quad B_{1} \cap \partial \mathcal{B}_{\varepsilon} \subset \partial \Omega \\
u \in[1,2] \quad \text { on } \quad \partial \Omega \backslash\left(B_{1} \cap \partial \mathcal{B}_{\varepsilon}\right),
\end{array}\right.
$$

then for all small ε,

$$
\|u\|_{C^{3,1}\left(\left\{u<k^{2} / 16\right\}\right)} \leq C,
$$

with C depending only on k and n.
The proof is essentially the same except that in the barrier functions $w_{x_{0}}, v_{x_{0}}$ we need to replace x_{n} by $\left(x-x_{0}\right) \cdot \nu_{x_{0}}$ where $\nu_{x_{0}}$ denotes the inner normal to $\partial \Omega$ at x_{0}, and in step 2 we work (as in [CNS]) with the tangential derivative

$$
T_{i}:=\left(1-\varepsilon x_{n}\right) \partial_{x_{i}}+\varepsilon x_{i} \partial_{x_{n}},
$$

instead of $\partial_{x_{i}}$.
As a consequence of the Proposition 6.1 and the remarks above we obtain
Theorem 6.4. Let $u: \Omega \rightarrow \mathbb{R}$ satisfy the Monge-Ampere equation

$$
\operatorname{det} D^{2} u=1 \quad \text { in } \Omega
$$

Assume that for some constants $\rho, k>0$,

$$
B_{k}^{+} \subset \Omega \subset B_{k^{-1}}^{+}
$$

and (see Definition 2.5) the boundary values of u are given by

$$
\left\{\begin{array}{l}
u=p\left(x^{\prime}\right) \quad \text { on } \quad\left\{p\left(x^{\prime}\right) \leq 1\right\} \cap\left\{x_{n}=0\right\} \subset \partial \Omega \\
u=1 \quad \text { on the rest of } \partial \Omega
\end{array}\right.
$$

where p is a quadratic polynomial that satisfies

$$
\rho\left|x^{\prime}\right|^{2} \leq p\left(x^{\prime}\right) \leq \rho^{-1}\left|x^{\prime}\right|^{2}
$$

Then

$$
\begin{equation*}
\|u\|_{C^{3,1}\left(B_{c_{0}}^{+}\right)} \leq c_{0}^{-1} \tag{6.1}
\end{equation*}
$$

with $c_{0}>0$ small, depending only on k, ρ and n.
Proof. We approximate u on $\partial \Omega$ by a sequence of smooth functions u_{m} on $\partial \Omega_{m}$, with Ω_{m} smooth, uniformly convex, so that u_{m}, Ω_{m} satisfy the conditions of Remark 6.3 above. Notice that u_{m} is smooth up to the boundary by the results in [CNS], thus we can use Proposition 6.1 for u_{m}. We let $m \rightarrow \infty$ and obtain (6.1) since

$$
B_{c_{0}}^{+} \subset\left\{u<k^{2} / 16\right\}
$$

by convexity.

7. Pointwise $C^{2, \alpha}$ estimates at the boundary

Let Ω be a bounded convex set with

$$
\begin{equation*}
B_{\rho}\left(\rho e_{n}\right) \subset \Omega \subset\left\{x_{n} \geq 0\right\} \cap B_{\frac{1}{\rho}} \tag{7.1}
\end{equation*}
$$

for some small $\rho>0$, that is $\Omega \subset\left(\mathbb{R}^{n}\right)^{+}$and Ω contains an interior ball tangent to $\partial \Omega$ at 0 .

Let $u: \bar{\Omega} \rightarrow \mathbb{R}$ be convex, continuous, satisfying

$$
\begin{equation*}
\operatorname{det} D^{2} u=f, \quad 0<\lambda \leq f \leq \Lambda \quad \text { in } \Omega, \tag{7.2}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{n+1}=0 \text { is a tangent plane to } u \text { at } 0, \tag{7.3}
\end{equation*}
$$

in the following sense:

$$
u \geq 0, \quad u(0)=0
$$

and any hyperplane $x_{n+1}=\varepsilon x_{n}, \varepsilon>0$ is not a supporting plane for u.
We also assume that on $\partial \Omega$, in a neighborhood of $\left\{x_{n}=0\right\}, u$ separates quadratically from the tangent plane $\left\{x_{n+1}=0\right\}$,

$$
\begin{equation*}
\rho|x|^{2} \leq u(x) \leq \rho^{-1}|x|^{2} \quad \text { on } \partial \Omega \cap\left\{x_{n} \leq \rho\right\} . \tag{7.4}
\end{equation*}
$$

Our main theorem is the following.
Theorem 7.1. Let Ω, u satisfy (7.1)-(7.4) above with $f \in C^{\alpha}$ at the origin, i.e

$$
|f(x)-f(0)| \leq M|x|^{\alpha} \quad \text { in } \quad \Omega \cap B_{\rho}
$$

for some $M>0$, and $\alpha \in(0,1)$. Suppose that $\partial \Omega$ and $\left.u\right|_{\partial \Omega}$ are $C^{2, \alpha}$ at the origin, i.e we assume that on $\partial \Omega \cap B_{\rho}$ we satisfy

$$
\begin{gathered}
\left|x_{n}-q\left(x^{\prime}\right)\right| \leq M\left|x^{\prime}\right|^{2+\alpha} \\
\left|u-p\left(x^{\prime}\right)\right| \leq M\left|x^{\prime}\right|^{2+\alpha}
\end{gathered}
$$

where $p\left(x^{\prime}\right), q\left(x^{\prime}\right)$ are quadratic polynomials.

Then $u \in C^{2, \alpha}$ at the origin, that is there exists a quadratic polynomial \mathcal{P}_{0} with

$$
\operatorname{det} D^{2} \mathcal{P}_{0}=f(0), \quad\left\|D^{2} \mathcal{P}_{0}\right\| \leq C(M)
$$

such that

$$
\left|u-\mathcal{P}_{0}\right| \leq C(M)|x|^{2+\alpha} \quad \text { in } \quad \Omega \cap B_{\rho},
$$

where $C(M)$ depends on $M, \rho, \lambda, \Lambda, n, \alpha$.
From (7.1) and (7.4) we see that p, q are homogenous of degree 2 and

$$
\left\|D^{2} p\right\|,\left\|D^{2} q\right\| \leq \rho^{-1}
$$

A consequence of the proof of Theorem 7.1 is that if $f \in C^{\alpha}$ near the origin, then $u \in C^{2, \alpha}$ in any cone \mathcal{C}_{θ} of opening $\theta<\pi / 2$ around the x_{n}-axis i.e

$$
\mathcal{C}_{\theta}:=\left\{x \in\left(\mathbb{R}^{n}\right)^{+}|\quad| x^{\prime} \mid \leq x_{n} \tan \theta\right\}
$$

Corollary 7.2. Assume u satisfies the hypotheses of Theorem 7.1 and

$$
\|f\|_{C^{\alpha}(\bar{\Omega})} \leq M
$$

Given any $\theta<\pi / 2$ there exists $\delta(M, \theta)$ small, such that

$$
\|u\|_{C^{2, \alpha}\left(\mathcal{C}_{\theta} \cap B_{\delta}\right)} \leq C(M, \theta)
$$

We also mention the global version of Theorem 7.1.
Theorem 7.3. Let Ω be a bounded, convex domain and let $u: \bar{\Omega} \rightarrow \mathbb{R}$ be convex, Lipschitz continuous, satisfying

$$
\operatorname{det} D^{2} u=f, \quad 0<\lambda \leq f \leq \Lambda \quad \text { in } \Omega
$$

Assume that

$$
\partial \Omega,\left.\quad u\right|_{\partial \Omega} \in C^{2, \alpha}, \quad f \in C^{\alpha}(\bar{\Omega})
$$

for some $\alpha \in(0,1)$ and there exists a constant $\rho>0$ such that

$$
u(y)-u(x)-\nabla u(x) \cdot(y-x) \geq \rho|y-x|^{2} \quad \forall x, y \in \partial \Omega
$$

where $\nabla u(x)$ is understood in the sense of (7.3). Then $u \in C^{2, \alpha}(\bar{\Omega})$ and

$$
\|u\|_{C^{2, \alpha}(\bar{\Omega})} \leq C
$$

with C depending on $\|\partial \Omega\|_{C^{2, \alpha}},\left\|\left.u\right|_{\partial \Omega}\right\|_{C^{2, \alpha}},\|u\|_{C^{0,1}(\bar{\Omega})},\|f\|_{C^{\alpha}(\bar{\Omega})}, \rho, \lambda, \Lambda, n, \alpha$.
In general, the Lipschitz bound is easily obtained from the boundary data $\left.u\right|_{\partial \Omega}$. We can always do this if for example Ω is uniformly convex.

The proof of Theorem 7.1 is similar to the proof of the interior $C^{2, \alpha}$ estimate from [C2], and it has three steps. First we use the localization theorem to show that after a rescaling it suffices to prove the theorem only in the case when M is arbitrarily small (see Lemma 7.4). Then we use Pogorelov estimate in half-domain (Theorem 6.4) and reduce further the problem to the case when u is arbitrarily close to a quadratic polynomial (see Lemma 7.5). In the last step we use a standard iteration argument to show that u is well-approximated by quadratic polynomials at all scales.

We assume for simplicity that

$$
f(0)=1,
$$

otherwise we divide u by $f(0)$.
Constants depending on $\rho, \lambda, \Lambda, n$ and α are called universal. We denote them by C, c and they may change from line to line whenever there is no possibility of
confusion. Constants depending on universal constants and other parameters i.e $\mathrm{M}, \sigma, \delta$, etc. are denoted as $C(M, \sigma, \delta)$.

We denote linear functions by $l(x)$ and quadratic polynomials which are homogenous and convex we denote by $p\left(x^{\prime}\right), q\left(x^{\prime}\right), P(x)$.

The localization theorem says that the section S_{h} is comparable to an ellipsoid E_{h} which is obtained from $B_{h^{1 / 2}}$ by a sliding along $\left\{x_{n}=0\right\}$. Using an affine transformation we can normalize S_{h} so that it is comparable to B_{1}. In the next lemma we show that, if h is sufficiently small, the corresponding rescaling u_{h} satisfies the hypotheses of u in which the constant M is replaced by an arbitrary small constant σ.

Lemma 7.4. Given any $\sigma>0$, there exist small constants $h=h_{0}(M, \sigma), k>0$ depending only on $\rho, \lambda, \Lambda, n$, and a rescaling of u

$$
u_{h}(x):=\frac{u\left(h^{1 / 2} A_{h}^{-1} x\right)}{h}
$$

where A_{h} is a linear transformation with

$$
\operatorname{det} A_{h}=1, \quad\left\|A_{h}^{-1}\right\|,\left\|A_{h}\right\| \leq k^{-1}|\log h|
$$

so that
a)

$$
B_{k} \cap \bar{\Omega}_{h} \subset S_{1}\left(u_{h}\right) \subset B_{k^{-1}}^{+}, \quad S_{1}\left(u_{h}\right):=\left\{u_{h}<1\right\}
$$

b)

$$
\operatorname{det} D^{2} u_{h}=f_{h}, \quad\left|f_{h}(x)-1\right| \leq \sigma|x|^{\alpha} \quad \text { in } \quad \Omega_{h} \cap B_{k^{-1}}
$$

c) On $\partial \Omega_{h} \cap B_{k^{-1}}$ we have

$$
\begin{gathered}
\left|x_{n}-q_{h}\left(x^{\prime}\right)\right| \leq \sigma\left|x^{\prime}\right|^{2+\alpha}, \quad\left|q_{h}\left(x^{\prime}\right)\right| \leq \sigma, \\
\left|u_{h}-p\left(x^{\prime}\right)\right| \leq \sigma\left|x^{\prime}\right|^{2+\alpha}
\end{gathered}
$$

where q_{h} is a quadratic polynomial.
Proof. By the localization theorem Theorem 3.1, for all $h \leq c$,

$$
S_{h}:=\{u<h\} \cap \bar{\Omega},
$$

satisfies

$$
k E_{h} \cap \bar{\Omega} \subset S_{h} \subset k^{-1} E_{h}
$$

with

$$
\begin{gathered}
E_{h}=A_{h}^{-1} B_{h^{1 / 2}}, \quad A_{h} x=x-\nu_{h} x_{n} \\
\nu_{h} \cdot e_{n}=0, \quad\left\|A_{h}^{-1}\right\|,\left\|A_{h}\right\| \leq k^{-1}|\log h|
\end{gathered}
$$

Then we define u_{h} as above and obtain

$$
S_{1}\left(u_{h}\right)=h^{-1 / 2} A_{h} S_{h}
$$

hence

$$
B_{k} \cap \bar{\Omega}_{h} \subset S_{1}\left(u_{h}\right) \subset B_{k^{-1}}^{+}
$$

where

$$
\Omega_{h}:=h^{-1 / 2} A_{h} \Omega
$$

Then

$$
\operatorname{det} D^{2} u_{h}=f_{h}(x)=f\left(h^{1 / 2} A_{h}^{-1} x\right),
$$

and

$$
\begin{aligned}
\left|f_{h}(x)-1\right| & \leq M\left|h^{1 / 2} A_{h}^{-1} x\right|^{\alpha} \\
& \leq M\left(h^{1 / 2} k^{-1}|\log h|\right)^{\alpha}|x|^{\alpha} \\
& \leq \sigma|x|^{\alpha}
\end{aligned}
$$

if $h_{0}(M, \sigma)$ is sufficiently small.
Next we estimate $\left|x_{n}-h^{1 / 2} q\left(x^{\prime}\right)\right|$ and $\left|u_{h}-p\left(x^{\prime}\right)\right|$ on $\partial \Omega_{h} \cap B_{k^{-1}}$. We have

$$
x \in \partial \Omega_{h} \quad \Leftrightarrow \quad y:=h^{1 / 2} A_{h}^{-1} x \in \Omega
$$

or

$$
h^{1 / 2} x_{n}=y_{n}, \quad h^{1 / 2} x^{\prime}=y^{\prime}-\nu_{h} y_{n} .
$$

If $|x| \leq k^{-1}$ then

$$
|y| \leq k^{-1} h^{1 / 2}|\log h||x| \leq h^{1 / 4}
$$

if h_{0} is small hence, since Ω has an interior tangent ball of radius ρ, we have

$$
\left|y_{n}\right| \leq \rho^{-1}\left|y^{\prime}\right|^{2}
$$

Then

$$
\left|\nu_{h} y_{n}\right| \leq k^{-1}|\log h|\left|y^{\prime}\right|^{2} \leq\left|y^{\prime}\right| / 2
$$

thus

$$
\frac{1}{2}\left|y^{\prime}\right| \leq\left|h^{1 / 2} x^{\prime}\right| \leq \frac{3}{2}\left|y^{\prime}\right|
$$

We obtain

$$
\begin{aligned}
\left|x_{n}-h^{1 / 2} q\left(x^{\prime}\right)\right| & \leq h^{-1 / 2}\left|y_{n}-q\left(y^{\prime}\right)\right|+h^{1 / 2}\left|q\left(h^{-1 / 2} y^{\prime}\right)-q\left(x^{\prime}\right)\right| \\
& \leq M h^{-1 / 2}\left|y^{\prime}\right|^{2+\alpha}+C h^{1 / 2}\left(\left|x^{\prime}\right|\left|\nu_{h} x_{n}\right|+\left|\nu_{h} x_{n}\right|^{2}\right) \\
& \leq 2 M h^{(\alpha+1) / 2}\left|x^{\prime}\right|^{2+\alpha}+C h^{1 / 2}\left(h^{1 / 2}|\log h|\left|x^{\prime}\right|^{3}+h|\log h|^{2}\left|x^{\prime}\right|^{4}\right) \\
& \leq \sigma\left|x^{\prime}\right|^{2+\alpha}
\end{aligned}
$$

if h_{0} is chosen small. Hence on $\partial \Omega_{h} \cap B_{k^{-1}}$,

$$
\begin{gathered}
\left|x_{n}-q_{h}\left(x^{\prime}\right)\right| \leq \sigma\left|x^{\prime}\right|^{2+\alpha}, \quad q_{h}:=h^{1 / 2} q\left(x^{\prime}\right), \\
\left|q_{h}\right| \leq \sigma,
\end{gathered}
$$

and also

$$
\begin{aligned}
\left|u_{h}-p\left(x^{\prime}\right)\right| & \leq h^{-1}\left|u(y)-p\left(y^{\prime}\right)\right|+\left|p\left(h^{-1 / 2} y^{\prime}\right)-p\left(x^{\prime}\right)\right| \\
& \leq M h^{-1}\left|y^{\prime}\right|^{2+\alpha}+C\left(\left|x^{\prime}\right|\left|\nu_{h} x_{n}\right|+\left|\nu_{h} x_{n}\right|^{2}\right) \\
& \leq 2 M h^{\alpha / 2}\left|x^{\prime}\right|^{2+\alpha}+C\left(h^{1 / 2}|\log h|\left|x^{\prime}\right|^{3}+h|\log h|^{2}\left|x^{\prime}\right|^{4}\right) \\
& \leq \sigma\left|x^{\prime}\right|^{2+\alpha}
\end{aligned}
$$

In the next lemma we show that if σ is sufficiently small, then u_{h} can be wellapproximated by a quadratic polynomial near the origin.

Lemma 7.5. For any $\delta_{0}, \varepsilon_{0}$ there exist $\sigma_{0}\left(\delta_{0}, \varepsilon_{0}\right)$, $\mu_{0}\left(\varepsilon_{0}\right)$ such that for any function u_{h} satisfying properties a), b), c) of Lemma 7.4 with $\sigma \leq \sigma_{0}$ we can find a rescaling

$$
\tilde{u}(x):=\frac{\left(u_{h}-l_{h}\right)\left(\mu_{0} x\right)}{\mu_{0}^{2}}
$$

with

$$
l_{h}(x)=\gamma_{h} x_{n}, \quad\left|\gamma_{h}\right| \leq C_{0}, \quad C_{0} \text { universal },
$$

that satisfies
a) in $\tilde{\Omega} \cap B_{1}$,

$$
\operatorname{det} D^{2} \tilde{u}=\tilde{f}, \quad|\tilde{f}(x)-1| \leq \delta_{0} \varepsilon_{0}|x|^{\alpha} \quad \text { in } \quad \tilde{\Omega} \cap B_{1}
$$

and

$$
\left|\tilde{u}-P_{0}\right| \leq \varepsilon_{0} \quad \text { in } \quad \tilde{\Omega} \cap B_{1}
$$

for some P_{0}, quadratic polynomial,

$$
\operatorname{det} D^{2} P_{0}=1, \quad\left\|D^{2} P_{0}\right\| \leq C_{0}
$$

b) On $\partial \tilde{\Omega} \cap B_{1}$ there exist $\tilde{p}_{0}, \tilde{q}_{0}$ such that

$$
\left|x_{n}-\tilde{q}_{0}\left(x^{\prime}\right)\right| \leq \delta_{0} \varepsilon_{0}\left|x^{\prime}\right|^{2+\alpha}, \quad\left|\tilde{q}_{0}\left(x^{\prime}\right)\right| \leq \delta_{0} \varepsilon_{0}
$$

and

$$
\begin{gathered}
\left|\tilde{u}-\tilde{p}_{0}\left(x^{\prime}\right)\right| \leq \delta_{0} \varepsilon_{0}\left|x^{\prime}\right|^{2+\alpha} \\
\tilde{p}_{0}\left(x^{\prime}\right)=P_{0}\left(x^{\prime}\right), \quad \frac{\rho}{2}\left|x^{\prime}\right|^{2} \leq \tilde{p}_{0}\left(x^{\prime}\right) \leq 2 \rho\left|x^{\prime}\right|^{2}
\end{gathered}
$$

Proof. We prove the lemma by compactness. Assume by contradiction that the statement is false for a sequence u_{m} satisfying a), b), c) of Lemma 7.4 with $\sigma_{m} \rightarrow 0$. Then, we may assume after passing to a subsequence if necessary that

$$
p_{m} \rightarrow p_{\infty}, \quad q_{m} \rightarrow 0 \quad \text { uniformly on } \quad B_{k^{-1}}
$$

and

$$
u_{m}: S_{1}\left(u_{m}\right) \rightarrow \mathbb{R}
$$

converges to (see Definition 2.3)

$$
u_{\infty}: \Omega_{\infty} \rightarrow \mathbb{R}
$$

Then, by Theorem 2.6, u_{∞} satisfies

$$
\begin{gathered}
B_{k}^{+} \subset \Omega_{\infty} \subset B_{k^{-1}}^{+}, \quad \operatorname{det} D^{2} u_{\infty}=1 \\
\left\{\begin{array}{l}
u_{\infty}=p_{\infty}\left(x^{\prime}\right) \quad \text { on } \quad\left\{p_{\infty}\left(x^{\prime}\right)<1\right\} \cap\left\{x_{n}=0\right\} \subset \partial \Omega_{\infty} \\
u_{\infty}=1 \quad \text { on the rest of } \partial \Omega_{\infty}
\end{array}\right.
\end{gathered}
$$

From Pogorelov estimate in half-domain (Theorem 6.4) there exists c_{0} universal such that

$$
\left|u_{\infty}-l_{\infty}-P_{\infty}\right| \leq c_{0}^{-1}|x|^{3} \quad \text { in } \quad \mathrm{B}_{c_{0}}^{+},
$$

where

$$
l_{\infty}:=\gamma_{\infty} x_{n}, \quad\left|\gamma_{\infty}\right| \leq c_{0}^{-1}
$$

and P_{∞} is a quadratic polynomial such that

$$
P_{\infty}\left(x^{\prime}\right)=p_{\infty}\left(x^{\prime}\right), \quad \operatorname{det} D^{2} P_{\infty}=1, \quad\left\|D^{2} P_{\infty}\right\| \leq c_{0}^{-1}
$$

Choose μ_{0} small such that

$$
c_{0}^{-1} \mu_{0}=\varepsilon_{0} / 32
$$

hence

$$
\left|u_{\infty}-l_{\infty}-P_{\infty}\right| \leq \frac{1}{4} \varepsilon_{0} \mu_{0}^{2} \quad \text { in } \quad B_{2 \mu_{0}}^{+}
$$

which together with $p_{m} \rightarrow p_{\infty}$ implies that for all large m

$$
\left|u_{m}-l_{\infty}-P_{\infty}\right| \leq \frac{1}{2} \varepsilon_{0} \mu_{0}^{2} \quad \text { in } \quad S_{1}\left(u_{m}\right) \cap B_{\mu_{0}}^{+}
$$

Then, for all large m,

$$
\tilde{u}_{m}:=\frac{\left(u_{m}-l_{\infty}\right)\left(\mu_{0} x\right)}{\mu_{0}^{2}}
$$

satisfies in $\tilde{\Omega}_{m} \cap B_{1}$

$$
\left|\tilde{u}_{m}-P_{\infty}\right| \leq \varepsilon_{0} / 2
$$

and

$$
\begin{gathered}
\operatorname{det} D^{2} \tilde{u}_{m}=\tilde{f}_{m}(x)=f_{m}\left(\mu_{0} x\right) \\
\left|\tilde{f}_{m}(x)-1\right| \leq \sigma_{m}\left(\mu_{0}|x|\right)^{\alpha} \leq \delta_{0} \varepsilon_{0}|x|^{\alpha}
\end{gathered}
$$

We define

$$
\tilde{q}_{m}:=\mu_{0} q_{m}, \quad \tilde{p}_{m}:=p_{m}-\gamma_{\infty} q_{m}
$$

and clearly

$$
\tilde{p}_{m} \rightarrow p_{\infty}, \quad \tilde{q}_{m} \rightarrow 0 \quad \text { uniformly in } \quad B_{1} .
$$

On $\partial \tilde{\Omega}_{m} \cap B_{1}$ we have

$$
\begin{aligned}
\left|x_{n}-\tilde{q}_{m}\left(x^{\prime}\right)\right| & =\mu_{0}^{-1}\left|\mu_{0} x_{n}-q_{m}\left(\mu_{0} x^{\prime}\right)\right| \\
& \leq \mu_{0}^{-1} \sigma_{m}\left|\mu_{0} x^{\prime}\right|^{2+\alpha} \\
& \leq \delta_{0} \varepsilon_{0}\left|x^{\prime}\right|^{2+\alpha}
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\tilde{u}_{m}-\tilde{p}_{m}\left(x^{\prime}\right)\right| & =\mu_{0}^{-2}\left|\left(u_{m}-l_{\infty}\right)\left(\mu_{0} x\right)-p_{m}\left(\mu_{0} x^{\prime}\right)+\gamma_{\infty} q_{m}\left(\mu_{0} x^{\prime}\right)\right| \\
& \leq \mu_{0}^{-2}\left(\left|\left(u_{m}-p_{m}\right)\left(\mu_{0} x^{\prime}\right)\right|+\left|\gamma_{\infty}\right|\left|\mu_{0} x_{n}-q_{m}\left(\mu_{0} x^{\prime}\right)\right|\right) \\
& \leq \sigma_{m} \mu_{0}^{\alpha}\left(1+\left|\gamma_{\infty}\right|\right)\left|x^{\prime}\right|^{2+\alpha} \\
& \leq \delta_{0} \varepsilon_{0}\left|x^{\prime}\right|^{2+\alpha}
\end{aligned}
$$

Finally, we let P_{m} be a perturbation of P_{∞} such that

$$
P_{m}\left(x^{\prime}\right)=\tilde{p}_{m}\left(x^{\prime}\right), \quad \operatorname{det} D^{2} P_{m}=1, \quad P_{m} \rightarrow P_{\infty} \quad \text { uniformly in } B_{1}
$$

Then $\tilde{u}_{m}, P_{m}, \tilde{p}_{m}, \tilde{q}_{m}$ satisfy the conclusion of the lemma for all large m, and we reached a contradiction.

From Lemma 7.4 and Lemma 7.5 we see that given any $\delta_{0}, \varepsilon_{0}$ there exist a linear transformation

$$
T:=\mu_{0} h_{0}^{1 / 2} A_{h_{0}}^{-1}
$$

and a linear function

$$
l(x):=\gamma x_{n}
$$

with

$$
|\gamma|,\left\|T^{-1}\right\|,\|T\| \leq C\left(M, \delta_{0}, \varepsilon_{0}\right)
$$

such that the rescaling

$$
\tilde{u}(x):=\frac{(u-l)(T x)}{(\operatorname{det} T)^{2 / n}}
$$

defined in $\tilde{\Omega} \subset \mathbb{R}^{n}$ satisfies

1) in $\tilde{\Omega} \cap B_{1}$

$$
\operatorname{det} D^{2} \tilde{u}=\tilde{f}, \quad|\tilde{f}-1| \leq \delta_{0} \varepsilon_{0}|x|^{\alpha}
$$

and

$$
\left|\tilde{u}-P_{0}\right| \leq \varepsilon_{0}
$$

for some P_{0} with

$$
\operatorname{det} D^{2} P_{0}=1, \quad\left\|D^{2} P_{0}\right\| \leq C_{0}
$$

2) on $\partial \tilde{\Omega} \cap B_{1}$ we have \tilde{p}, \tilde{q} so that

$$
\begin{gathered}
\left|x_{n}-\tilde{q}\left(x^{\prime}\right)\right| \leq \delta_{0} \varepsilon_{0}\left|x^{\prime}\right|^{2+\alpha}, \quad\left|\tilde{q}\left(x^{\prime}\right)\right| \leq \delta_{0} \varepsilon_{0} \\
\left|\tilde{u}-\tilde{p}\left(x^{\prime}\right)\right| \leq \delta_{0} \varepsilon_{0}\left|x^{\prime}\right|^{2+\alpha}, \quad \frac{\rho}{2}\left|x^{\prime}\right|^{2} \leq \tilde{p}\left(x^{\prime}\right)=P_{0}\left(x^{\prime}\right) \leq 2 \rho\left|x^{\prime}\right|^{2}
\end{gathered}
$$

By choosing $\delta_{0}, \varepsilon_{0}$ appropriately small, universal, we show in Lemma 7.6 that there exist \tilde{l}, \tilde{P} such that

$$
|\tilde{u}-\tilde{l}-\tilde{P}| \leq C|x|^{2+\alpha} \quad \text { in } \quad \tilde{\Omega} \cap B_{1}, \quad \text { and } \quad|\nabla \tilde{l}|,\left\|D^{2} \tilde{P}\right\| \leq C
$$

with C a universal constant. Rescaling back, we obtain that u is well approximated by a quadratic polynomial at the origin i.e

$$
|u-l-P| \leq C(M)|x|^{2+\alpha} \quad \text { in } \quad \Omega \cap B_{\rho}, \quad \text { and } \quad|\nabla l|,\left\|D^{2} P\right\| \leq C(M)
$$

which, by (7.3), proves Theorem 7.1.
Since $\alpha \in(0,1)$, in order to prove that $\tilde{u} \in C^{2, \alpha}(0)$ it suffices to show that \tilde{u} is approximated of order $2+\alpha$ by quadratic polynomials $l_{m}+P_{m}$ in each ball of radius r_{0}^{m} for some small $r_{0}>0$, and then $\tilde{l}+\tilde{P}$ is obtained in the limit as $m \rightarrow \infty$ (see [C2], [CC]). Thus Theorem 7.1 follows from the next lemma.
Lemma 7.6. Assume \tilde{u} satisfies the properties 1), 2) above. There exist $\varepsilon_{0}, \delta_{0}, r_{0}$ small, universal, such that for all $m \geq 0$ we can find l_{m}, P_{m} so that

$$
\left|\tilde{u}-l_{m}-P_{m}\right| \leq \varepsilon_{0} r^{2+\alpha} \quad \text { in } \quad \tilde{\Omega} \cap B_{r}, \quad \text { with } \quad r=r_{0}^{m}
$$

Proof. We prove by induction on m that the inequality above is satisfied with

$$
\begin{gathered}
l_{m}=\gamma_{m} x_{n}, \quad\left|\gamma_{m}\right| \leq 1 \\
P_{m}\left(x^{\prime}\right)=\tilde{p}\left(x^{\prime}\right)-\gamma_{m} \tilde{q}\left(x^{\prime}\right), \quad \operatorname{det} D^{2} P_{m}=1, \quad\left\|D^{2} P_{m}\right\| \leq 2 C_{0}
\end{gathered}
$$

From properties 1), 2) above we see that this holds for $m=0$ with $\gamma_{0}=0$.
Assume the conclusion holds for m and we prove it for $m+1$. Let

$$
v(x):=\frac{\left(\tilde{u}-l_{m}\right)(r x)}{r^{2}}, \quad \text { with } \quad r:=r_{0}^{m}
$$

and define

$$
\varepsilon:=\varepsilon_{0} r^{\alpha} .
$$

Then

$$
\begin{gather*}
\left|v-P_{m}\right| \leq \varepsilon \quad \text { in } \quad \Omega_{v} \cap B_{1}, \quad \Omega_{v}:=r^{-1} \tilde{\Omega} \tag{7.5}\\
\left|\operatorname{det} D^{2} v-1\right|=|\tilde{f}(r x)-1| \leq \delta_{0} \varepsilon
\end{gather*}
$$

On $\partial \Omega_{v} \cap B_{1}$ we have

$$
\begin{aligned}
\left|\frac{x_{n}}{r}-\tilde{q}\left(x^{\prime}\right)\right| & =r^{-2}\left|r x_{n}-\tilde{q}\left(r x^{\prime}\right)\right| \\
& \leq \delta_{0} \varepsilon\left|x^{\prime}\right|^{2+\alpha} \\
& \leq \delta_{0} \varepsilon
\end{aligned}
$$

which also gives

$$
\begin{equation*}
\left|x_{n}\right| \leq 2 \delta_{0} \varepsilon \quad \text { on } \quad \partial \Omega_{v} \cap B_{1} \tag{7.6}
\end{equation*}
$$

From the definition of v and the properties of P_{m} we see that in B_{1}

$$
\left|v-P_{m}\right| \leq r^{-2}|(\tilde{u}-\tilde{p})(r x)|+\left|\gamma_{m}\right|\left|x_{n} / r-\tilde{q}\right|+2 n C_{0}\left|x_{n}\right|,
$$

and the inequalities above and property 2) imply

$$
\begin{equation*}
\left|v-P_{m}\right| \leq C_{1} \delta_{0} \varepsilon \quad \text { in } \quad \partial \Omega_{v} \cap B_{1}, \tag{7.7}
\end{equation*}
$$

with C_{1} universal constant (depending only on n and C_{0}).
We want to compare v with the solution

$$
w: B_{1 / 8}^{+} \rightarrow \mathbb{R}, \quad \operatorname{det} D^{2} w=1
$$

which has the boundary conditions

$$
\begin{cases}w=v & \text { on } \\ w=B_{m}^{+} & \text {on } \quad \partial B_{1 / 8}^{+} \backslash \Omega_{v} \\ w\end{cases}
$$

In order to estimate $|u-w|$ we introduce a barrier ϕ defined as

$$
\phi: \bar{B}_{1 / 2} \backslash B_{1 / 4} \rightarrow \mathbb{R}, \quad \phi(x):=c(\beta)\left(4^{\beta}-|x|^{-\beta}\right),
$$

where $c(\beta)$ is chosen such that $\phi=1$ on $\partial B_{1 / 2}$ and $\phi=0$ on $\partial B_{1 / 4}$.
We choose the exponent $\beta>0$ depending only on C_{0} and n such that for any symmetric matrix A with

$$
\left(2 C_{0}\right)^{1-n} I \leq A \leq\left(2 C_{0}\right)^{n-1} I
$$

we have

$$
\operatorname{Tr} A\left(D^{2} \phi\right) \leq-\eta_{0}<0
$$

for some η_{0} small, depending only on C_{0} and n.
For each y with $y_{n}=-1 / 4,\left|y^{\prime}\right| \leq 1 / 8$ the function

$$
\phi_{y}(x):=P_{m}+\varepsilon\left(C_{1} \delta+\phi(x-y)\right)
$$

satisfies

$$
\operatorname{det} D^{2} \phi_{y} \leq 1-\frac{\eta_{0}}{2} \varepsilon \quad \text { in } \quad B_{1 / 2}(y) \backslash B_{1 / 4}(y)
$$

if $\varepsilon \leq \varepsilon_{0}$ is sufficiently small. From (7.5), (7.7) we see that

$$
v \leq \phi_{y} \quad \text { on } \quad \partial\left(\Omega_{v} \cap B_{1 / 2}(y)\right)
$$

and if $\delta_{0} \leq \eta_{0} / 2$,

$$
\operatorname{det} D^{2} v \geq \operatorname{det} D^{2} \phi_{y}
$$

This gives

$$
v \leq \phi_{y} \quad \text { in } \quad \Omega_{v} \cap B_{1 / 2}(y)
$$

and using the definition of w we obtain

$$
w \leq \phi_{y} \quad \text { on } \quad \partial B_{1 / 8}^{+}
$$

The maximum principle yields

$$
w \leq \phi_{y} \quad \text { in } \quad B_{1 / 8}^{+}
$$

and by varying y we obtain

$$
w(x) \leq P_{m}+\varepsilon\left(C_{1} \delta_{0}+C x_{n}\right) \quad \text { in } \quad B_{1 / 8}^{+}
$$

Recalling (7.6), this implies

$$
w-P_{m} \leq 2 C_{1} \delta_{0} \varepsilon \quad \text { on } \quad B_{1 / 8}^{+} \backslash \Omega_{v}
$$

The opposite inequality holds similarly, hence

$$
\begin{equation*}
\left|w-P_{m}\right| \leq 2 C_{1} \delta_{0} \varepsilon \quad \text { on } \quad B_{1 / 8}^{+} \backslash \Omega_{v} \tag{7.8}
\end{equation*}
$$

From the definition of w and (7.7) we also obtain

$$
\begin{equation*}
|v-w| \leq 3 C_{1} \delta_{0} \varepsilon \quad \text { on } \quad \partial\left(\Omega_{v} \cap B_{1 / 8}^{+}\right) \tag{7.9}
\end{equation*}
$$

Now we claim that

$$
\begin{equation*}
|v-w| \leq C_{2} \delta_{0} \varepsilon \quad \text { in } \quad \Omega_{v} \cap B_{1 / 8}^{+}, \quad C_{2} \text { universal. } \tag{7.10}
\end{equation*}
$$

For this, we use the following inequality. If $A \geq 0$ is a symmetric matrix with

$$
1 / 2 \leq \operatorname{det} A \leq 2
$$

and $a \geq 0$, then

$$
\begin{aligned}
\operatorname{det}(A+a I) & =\operatorname{det} A \operatorname{det}\left(I+a A^{-1}\right) \\
& \geq \operatorname{det} A\left(1+\operatorname{Tr}\left(a A^{-1}\right)\right) \\
& \geq \operatorname{det} A(1+a / 2) \\
& \geq \operatorname{det} A+a / 4
\end{aligned}
$$

This and (7.9) give that in $\Omega_{v} \cap B_{1 / 8}^{+}$

$$
\begin{aligned}
& w+2 \delta_{0} \varepsilon\left(|x|^{2}-2 C_{1}\right) \leq v \\
& v+2 \delta_{0} \varepsilon\left(|x|^{2}-2 C_{1}\right) \leq w
\end{aligned}
$$

and the claim (7.10) is proved.
Next we approximate w by a quadratic polynomial near 0 . From (7.5),(7.8), (7.10) we can conclude that

$$
\left|w-P_{m}\right| \leq 2 \varepsilon \quad \text { in } \quad B_{1 / 8}^{+}
$$

if δ_{0} is sufficiently small. Since $w=P_{m}$ on $\left\{x_{n}=0\right\}$, and

$$
\frac{\rho}{4}\left|x^{\prime}\right|^{2} \leq P_{m}\left(x^{\prime}\right) \leq 4 \rho\left|x^{\prime}\right|^{2}, \quad \operatorname{det} D^{2} P_{m}=1, \quad\left\|D^{2} P_{m}\right\| \leq 2 C_{0}
$$

we conclude from Pogorelov estimate (Theorem 6.4) that

$$
\left\|D^{2} w\right\|_{C^{1,1}\left(B_{c_{0}}^{+}\right)} \leq c_{0}^{-1}
$$

for some small universal constant c_{0}. Thus in $B_{c_{0}}^{+}, w-P_{m}$ solves a uniformly elliptic equation

$$
\operatorname{Tr} A(x) D^{2}\left(w-P_{m}\right)=0
$$

with the $C^{1,1}$ norm of the coefficients $A(x)$ bounded by a universal constant. Since

$$
w-P_{m}=0 \quad \text { on } \quad\left\{x_{n}=0\right\}
$$

we obtain

$$
\left\|w-P_{m}\right\|_{C^{2,1}\left(B_{c_{0} / 2}^{+}\right)} \leq C_{3}\left\|w-P_{m}\right\|_{L^{\infty}\left(B_{c_{0}}^{+}\right)} \leq 2 C_{3} \varepsilon
$$

with C_{3} a universal constant. Then

$$
\begin{equation*}
\left|w-P_{m}-\tilde{l}_{m}-\tilde{P}_{m}\right| \leq 2 C_{3} \varepsilon|x|^{3} \quad \text { if }|x| \leq c_{0} / 2 \tag{7.11}
\end{equation*}
$$

with

$$
\tilde{P}_{m}\left(x^{\prime}\right)=0, \quad \tilde{l}_{m}=\tilde{\gamma}_{m} x_{n}, \quad\left|\tilde{\gamma}_{m}\right|,\left\|D^{2} \tilde{P}_{m}\right\| \leq 2 C_{3} \varepsilon
$$

Since $\tilde{l}_{m}+P_{m}+\tilde{P}_{m}$ is the quadratic expansion for w at 0 we also have

$$
\operatorname{det} D^{2}\left(P_{m}+\tilde{P}_{m}\right)=1
$$

We define

$$
P_{m+1}(x):=P_{m}(x)+\tilde{P}_{m}(x)-r \tilde{\gamma}_{m} \tilde{q}\left(x^{\prime}\right)+\sigma_{m} x_{n}^{2}
$$

with σ_{m} so that

$$
\operatorname{det} D^{2} P_{m+1}=1
$$

and let

$$
l_{m+1}(x):=\gamma_{m+1} x_{n}, \quad \gamma_{m+1}=\gamma_{m}+r \tilde{\gamma}_{m}
$$

Notice that

$$
\begin{equation*}
\left|\gamma_{m+1}-\gamma_{m}\right|,\left\|D^{2} P_{m+1}-D^{2} P_{m}\right\| \leq C_{4} \varepsilon=C_{4} \varepsilon_{0} r_{0}^{m \alpha} \tag{7.12}
\end{equation*}
$$

and

$$
\left\|D^{2} P_{m+1}-D^{2}\left(P_{m}+\tilde{P}_{m}\right)\right\| \leq C_{4} \delta_{0} \varepsilon
$$

for some C_{4} universal. From the last inequality and (7.10), (7.11) we find

$$
\left|v-\tilde{l}_{m}-P_{m+1}\right| \leq\left(2 C_{3} r_{0}^{3}+C_{2} \delta_{0}+C_{4} \delta_{0}\right) \varepsilon \quad \text { in } \quad \Omega_{v} \cap B_{r_{0}}^{+}
$$

This gives

$$
\left|v-\tilde{l}_{m}-P_{m+1}\right| \leq \varepsilon r_{0}^{2+\alpha} \quad \text { in } \quad \Omega_{v} \cap B_{r_{0}}^{+}
$$

if we first choose r_{0} small (depending on C_{3}) and then δ_{0} depending on r_{0}, C_{2}, C_{4}, hence

$$
\left|\tilde{u}-l_{m+1}-P_{m+1}\right| \leq \varepsilon r^{2} r_{0}^{2+\alpha}=\varepsilon_{0}\left(r r_{0}\right)^{\alpha} \quad \text { in } \quad \Omega \cap B_{r r_{0}}^{+}
$$

Finally we choose ε_{0} small such that (7.12) and

$$
\gamma_{0}=0, \quad\left\|D^{2} P_{0}\right\| \leq C_{0}
$$

guarantee that

$$
\left|\gamma_{m}\right| \leq 1, \quad\left\|D^{2} P_{m}\right\| \leq 2 C_{0}
$$

for all m. This shows that the induction hypotheses hold for $m+1$ and the lemma is proved.

Remark 7.7. The proof of Lemma 7.6 applies also at interior points. More precisely, if \tilde{u} satisfies the hypotheses in $B_{1}\left(x_{0}\right) \subset \tilde{\Omega}$ instead of $B_{1} \cap \tilde{\Omega}$ then the conclusion holds in $B_{1}\left(x_{0}\right)$. The proof is in fact simpler since, in this case we take w so that

$$
w=v \quad \text { on } \quad \partial B_{1}\left(x_{0}\right)
$$

and then (7.9) is automatically satisfied, so there is no need for the barrier ϕ. Also, at the end we apply the classical interior estimate of Pogorelov instead of the estimate in half-domain.

Now we can sketch a proof of Corollary 7.2 and Theorem 7.3.
If u satisfies the conclusion of Theorem 7.1 then, after an appropriate dilation, any point in $\mathcal{C}_{\theta} \cap B_{\delta}$ becomes an interior point x_{0} as in Remark 7.7 above for the rescaled function \tilde{u}. Moreover, the hypotheses of Lemma 7.6 hold in $B_{1}\left(x_{0}\right)$ for some appropriate $\varepsilon \leq \varepsilon_{0}$. Then Corollary 7.2 follows easily from Remark 7.7.

If u satisfies the hypotheses of Theorem 7.3 then we obtain as above that

$$
\|u\|_{C^{2, \alpha}\left(D_{\delta}\right)} \leq C, \quad D_{\delta}:=\{x \in \Omega \mid \quad \operatorname{dist}(x, \partial \Omega) \leq \delta\}
$$

for some δ and C depending on the data. We combine this with the interior $C^{2, \alpha}$ estimate of Caffarelli in [C2] and obtain the desired bound.

References

[CC] Caffarelli L., Cabre X., Fully Nonlinear Elliptic Equations, Colloquium Publications 43, American Mathematical Society, Providence, RI, 1995.
[CNS] Caffarelli L., Nirenberg L.,Spruck J., The Dirichlet problem for nonlinear second order elliptic equations I. Monge-Ampere equation, Comm. Pure Appl. Math. 37 (1984), 369402.
[C1] Caffarelli L., A localization property of viscosity solutions to the Monge-Ampere equation and their strict convexity, Ann. of Math. 131 (1990), 129-134.
[C2] Caffarelli L., Interior $W^{2, p}$ estimates for solutions of Monge-Ampere equation, Ann. of Math. 131 (1990), 135-150.
[I] Ivockina N. M., An a priori estimate of $\|u\|_{C^{2}(\Omega)}$ for convex solutions of Monge-Ampere equations. Zap. Nauchn. Sem. Leningr. Otdel. Mat. Inst. Steklova (LOMI) 96 (1980) 6979.
[JW] Jian H.Y., Wang X.J., Continuity estimates for the Monge-Ampere equation, SIAM J. Math. Anal., 39 (2007), 608-626.
[K] Krylov N. V., Boundedly inhomogeneous elliptic and parabolic equations in a domain. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), no. 1, 75-108.
[LS] Le N., Savin O., Some minimization problems in the class of convex functions with prescribed determinant, preprint, arXiv:1109.5676.
[S] Savin O., A localization property at the boundary for the Monge-Ampere equation, preprint arXiv:1010.1745.
[TW] Trudinger N., Wang X.J, Boundary regularity for Monge-Ampere and affine maximal surface equations, Ann. of Math. 167 (2008), 993-1028.
[W] Wang X.J, Regularity for Monge-Ampere equation near the boundary, Analysis 16 (1996), 101-107.

E-mail address: savin@math.columbia.edu

[^0]: The author was partially supported by NSF grant 0701037.

