1. **Cylindrical surfaces.**

These surfaces contain (and consist of) lines parallel to a given one. For example,

\[y = x^2 \]

→ consists of lines parallel to \(z \)-axis

Example: \(x^2 + z^2 = 4 \)

→ consists of lines parallel to \(y \)-axis

Circle of radius 2
2. Review of conic sections

- Parabola

\[y^2 = 4ax \] \((a > 0) \)

\[y^2 = -4ax \] \((a < 0) \)

Parabola = set of points whose distance from a fixed point (focus) is same as distance from a fixed line (directrix)

\[y = ax^2 \] \((a > 0) \)
Ellipse.

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]

\[c^2 = a^2 - b^2 \quad a > b \]

\[b > a; \quad c^2 = b^2 - a^2 \]

Ellipse = set of points the sum of whose distances from two fixed points (called foci) is constant.

Note: for \(a = b \), we get a circle.

Hyperbola.

\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \]

\[c^2 = a^2 + b^2 \]
Hyperbola = set of points the difference of whose distance from two fixed points is constant.

3. Quadratic surfaces.

\[z = \frac{x^2}{4} + \frac{y^2}{9} \]

for a fixed value of \(z (= k^2) \) we get

\[\frac{x^2}{(2k)^2} + \frac{y^2}{(3k)^2} = 1 \]

\(\rightarrow \) an ellipse

For a fixed value of \(y \), for instance \(y=0 \), we get

\[z = \frac{x^2}{4} \]
Sketch of the surface

→ elliptic paraboloid

Traces of a surface: intersection curve of the surface \(S \) and a plane parallel to coordinate planes

For example, \(z = \frac{x^2}{4} + \frac{y^2}{9} \)

- **X-trace,**

 \(x = 0 \), \(z = \frac{y^2}{9} \)

 \(x = \pm 1 \), \(z = \frac{y^2}{9} + 1 \)

- **Z-traces,**

 \(z = 1 \): \(\frac{x^2}{4} + \frac{y^2}{9} = 1 \)

 \(z = 4 \): \(\frac{x^2}{16} + \frac{y^2}{36} = 1 \)
Example 2.
Use traces to sketch \(x^2 + \frac{y^2}{4} + z^2 = 1 \) (ellipsoid)

\[z = y^2 - x^2 \]

\(x \)-trace

\[z \]

\(y \)-trace

\[z \]

\(z \)-trace

\[z \]
More examples

\[z^2 = x^2 + \frac{y^2}{4} \quad \text{(cone)} \]

\[x^2 + \frac{y^2}{4} - z^2 = 1 \quad \text{(hyperboloid)} \]

\[-x^2 - y^2 + z^2 = 4 \]