
Extension Fields

Throughout these notes, the letters F , E, K denote fields.

1 Introduction to extension fields

Let F , E be fields and suppose that F ≤ E, i.e. that F is a subfield of E.
We will often view F as the primary object of interest, and in this case refer
to E as an extension field or simply extension of F . For example, R is an
extension field of Q and C is an extension field of R.

Now suppose that E is an extension field of F and that α ∈ E. We have
the evaluation homomorphism evα : F [x]→ E, whose value on a polynomial
f(x) ∈ F [x] is f(α). By definition, the image Im evα = F [α] is a subring
of E. It is the smallest subring of E containing both F and α, and it is an
integral domain as it is a subring of a field. Note that, by definition,

F [α] = Im evα = {f(α) : f(x) ∈ F [x]}.

There are now two cases:

Case I: Ker evα = {0}. In other words, if f(x) ∈ F [x] is a nonzero poly-
nomial, then f(α) 6= 0, i.e. α is not the root of any nonzero polynomial in
f(x). In this case, we say that α is transcendental over F . If α is tran-
scendental over F , then evα : F [x] → E is injective, and hence evα is an
isomorphism from F [x] to F [α] ⊆ E. In particular, F [α] is not a field, since
F [x] is not a field. By results on the field of quotients of an integral do-
main, evα extends to an injective homomorphism êvα : F (x)→ E. Clearly,
the image of êvα is the set of all quotients in E of the form f(α)/g(α),
where f(x), g(x) ∈ F [x] and g(x) 6= 0. By general properties of fields of
quotients, f1(α)/g1(α) = f2(α)/g2(α) ⇐⇒ f1(α)g2(α) = f2(α)g1(α) ⇐⇒
f1(x)g2(x) = f2(x)g1(x). Defining

F (α) = Im êvα = {f(α)/g(α) : f(x), g(x) ∈ F [x], g(x) 6= 0},
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we see that F (α) is a field and it is the smallest subfield of E containing F
and α.

For example, if F = Q and E = R, “most” elements of R are transcen-
dental over Q. In fact, it is not hard to show that the set of elements of R
which are not transcendental over Q is countable, and since R is uncountable
there are an uncountable number of elements of R which are transcendental
over Q. It is much harder to show that a given element of R is transcen-
dental over Q. For example e and π are both transcendental over Q. (The
transcendence of π shows that it is impossible to “square the circle,” in other
words to construct a square with straightedge and compass whose area is
π.) Hence, the subring Q[π] of R is isomorphic to the polynomial ring Q[x]:
every element of Q[π] can be uniquely written as a polynomial

∑n
i=0 aiπ

i

in π, where the ai ∈ Q. The field Q(π) is then the set of all quotients,
f(π)/g(π), where f(x), g(x) ∈ Q[x] and g(x) 6= 0. Finally, note that the
property of transcendence is very much a relative property. Thus, π ∈ R is
transcendental over Q, but π is not transcendental over R; in fact, π is a
root of the nonzero polynomial x− π ∈ R[x].

For another example, let F be an arbitrary field and consider F (x), the
field of rational functions with coefficients in F . Thus F (x) is the field of
quotients of the polynomial ring F [x], and the elements of F (x) are quotients
f(x)/g(x), where f(x), g(x) ∈ F [x] and g(x) 6= 0. However, when we think
of F (x) as a field in its own right, it is traditional to rename the variable x by
some other letter such as t,which we still refer too as an “indeterminate,” to
avoid confusion with x which we reserve for the “variable” of a polynomial.
With this convention, the field F (t) (with t an indeterminate) is an extension
field of F . Moreover, t ∈ F (t) is transcendental over F , since, if f(x) ∈ F [x]
is a nonzero polynomial, then evt f(x) = f(t), which is a nonzero element
of F [t] and hence of F (t).

Case II: Ker evα 6= {0}. In other words, there exists a nonzero polynomial
f(x) ∈ F [x] f(α) = 0. In this case, we say that α is algebraic over F .
This will be the important case for us, so we state the main result as a
proposition:

Proposition 1.1. Suppose that E is an extension field of F and that α ∈
E is algebraic over F . Then Ker evα = (p(x)), where p(x) ∈ F [x] is an
irreducible polynomial. Moreover, if f(x) ∈ F [x] is any polynomial such that
f(α) = 0, then p(x)

∣∣f(x). The homomorphism evα induces an isomorphism,
denoted ẽvα, from F [x]/(p(x)) to F [α]. Finally, F [α] = Im evα is a field.

Proof. By hypothesis, Ker evα is a nonzero ideal in F [x]. Moreover, the ho-
momorphism evα induces an isomorphism, denoted ẽvα, from F [x]/Ker evα
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to F [α], and in particular F [α] ∼= F [x]/Ker evα. Since F [α] is a subring
of a field, it is an integral domain. Thus F [x]/Ker evα is also an integral
domain, and hence Ker evα is a prime ideal. But we have seen that every
nonzero prime ideal is maximal, hence F [α] is a subfield of E, and that the
nonzero prime ideals are exactly those of the form (p(x)), where p(x) ∈ F [x]
is an irreducible polynomial. Thus Ker evα = (p(x)) for some irreducible
polynomial p(x) ∈ F [x]. By definition, f(α) = 0 ⇐⇒ f(x) ∈ Ker evα
⇐⇒ p(x)

∣∣f(x).

Definition 1.2. Let E be an extension field of F and suppose that α ∈ E
is algebraic over F . We set F (α) = F [α]. As in Case I, F (α) is a subfield
of E and is the smallest subfield of E containing both F and α.

With E and α as above, suppose that p1(x), p2(x) ∈ F [x] are two
polynomials such that Ker evα = (p1(x)) = (p2(x)). Then p1(x)

∣∣p2(x)
and p2(x)

∣∣p1(x). It is then easy to see that there exists a c ∈ F ∗ such
that p2(x) = cp1(x). In particular, there is a unique monic polynomial
p(x) ∈ F [x] such that Ker evα = (p(x)).

Definition 1.3. Let E be an extension field of F and suppose that α ∈ E
is algebraic over F . The unique monic irreducible polynomial which is a
generator of Ker evα will be denoted irr(α, F, x).

Thus, if E is an extension field of F and α ∈ E is algebraic over F , then
irr(α, F, x) is the unique monic irreducible polynomial in F [x] for which α is
a root. One way to find irr(α, F, x) is as follows: suppose that p(x) ∈ F [x]
is an irreducible monic polynomial such that p(α) = 0. Then irr(α, F, x)
divides p(x), but since p(x) is irreducible, there exists a c ∈ F ∗ such that
p(x) = c irr(α, F, x). Finally, since both p(x) and irr(α, F, x) are monic,
c = 1, i.e. p(x) = irr(α, F, x).

For example, x2 − 2 = irr(
√

2,Q, x), since p(x) = x2 − 2 is monic and
(as we have seen) irreducible and p(

√
2) = 0. As in Case I, the definition

of irr(α, F, x) is relative to the field F . For example, irr(
√

2,Q(
√

2), x) =
x−
√

2. Note that x−
√

2 is a factor of x2− 2 in Q(
√

2)[x], but that x−
√

2
is not an element of Q[x].

One problem with finding irr(α, F, x) is that we don’t have many ways
of showing that a polynomial is irreducible. So far, we just know that a
polynomial of degree 2 or 3 is irreducible ⇐⇒ it does not have a root.
Here are a few more examples that we can handle by this method:

Example 1.4. (1) irr( 3
√

2,Q, x) = x3 − 2 since 3
√

2 is irrational.
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(2) There is no element α ∈ Q(
√

2) such that α2 = 3 (by a homework
problem). In other words,

√
3 /∈ Q(

√
2). Thus irr(

√
3,Q(

√
2), x) = x2 − 3.

(3) If α =
√

2 +
√

3, then it is easy to check (homework) that α is a root of
the polynomial x4−10x2+1. Thus irr(α,Q, x) divides x4−10x2+1, but awe
cannot conclude that they are equal unless we can show that x4 − 10x2 + 1
is irreducible, or by some other method. We will describe one such method
in the next section.

Definition 1.5. Let E be an extension field of F . Then we say that E is
a simple extension of F if there exists an α ∈ E such that E = F (α). Note
that this definition makes sense both in case α is algebraic over F and in
case it is transcendental over F . However, we shall mainly be interested in
the case where α is algebraic over F .

In many cases, we want to consider extension fields which are not nec-
essarily simple extensions.

Definition 1.6. Let E be an extension field of F and let α1, . . . , αn ∈ E.
We define F (α1, . . . , αn) to be the smallest subfield of E containing F and
α1, . . . , αn. If E = F (α1, . . . , αn), we say that E is generated over F by
α1, . . . , αn. It is easy to see that F (α1, . . . , αn) = F (α1, . . . , αn−1)(αn). In
fact, by definition, both sides of this equality are the smallest subfield of E
containing F , α1, . . . , αn−1, and αn. More generally, for every k, 1 ≤ k ≤ n,
F (α1, . . . , αn) = F (α1, . . . , αk)(αk+1, . . . , αn).

Example 1.7. Consider the field Q(
√

2,
√

3). Then α =
√

2 +
√

3 ∈
Q(
√

2,
√

3), and hence Q(α) ≤ Q(
√

2,
√

3). However, it is another homework
problem to show that

√
2 ∈ Q(α) and that

√
3 ∈ Q(α). Thus Q(

√
2,
√

3) ≤
Q(α) and hence Q(

√
2,
√

3) = Q(α). In conclusion, a field such as Q(
√

2,
√

3)
which is not obviously a simple extension may turn out to be a simple ex-
tension. We shall analyze this in much greater detail later.

2 Finite and algebraic extensions

Let E be an extension field of F . Then E is an F -vector space.

Definition 2.1. Let E be an extension field of F . Then E is a finite
extension of F if E is a finite dimensional F -vector space. If E is a finite
extension of F , then the positive integer dimF E is called the degree of E
over F , and is denoted [E : F ]. Note that [E : F ] = 1 ⇐⇒ E = F .
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Proposition 2.2. Suppose that E = F (α) is a simple extension of F . Then
E is a finite extension of F ⇐⇒ α is algebraic over F . In this case

[E : F ] = degF α,

where by definition degF α is the degree of irr(α, F, x). Finally, if α is al-
gebraic over F and degF α = irr(α, F, x) = d, then 1, α, . . . , αd−1 is a basis
for F (α) as an F -vector space.

Proof. First suppose that α is transcendental over F . Then we have seen
that F ≤ F [α] ≤ F (α), and that evα : F [x] → F [α] is an isomorphism,
which is clearly F -linear. Since F [x] is not a finite dimensional F -vector
space, F [α] is also not a finite dimensional F -vector space. But then F (α)
is also not a finite dimensional F -vector space, since every vector subspace
of a finite dimensional F -vector space is also finite dimensional. Hence F (α)
is not a finite extension of F .

Now suppose that α is algebraic over F . Then evα induces an isomor-
phism ẽvα : F [x]/(irr(α, F, x)) → F [α] = F (α). Concretely, given g(x) ∈
F [x], ẽvα(g(x) + (irr(α, F, x)) = g(α). Moreover, every coset in the quotient
ring F [x]/(irr(α, F, x)) can be uniquely written as

∑d−1
i=0 cix

i+(irr(α, F, x)),
where d = deg irr(α, F, x). It follows that every element of F [α] = F (α) can
be uniquely written as

∑d−1
i=0 ciα

i. Thus, 1, α, . . . , αd−1 is a basis for F (α)
as an F -vector space. It then follows that dimF F (α) = d.

To be able to calculate the degree [E : F ] and use it to extract more
information about field extensions, we shall need to consider a sequence of
extension fields:

Proposition 2.3. Suppose that F , E, and K are fields such that F ≤ E ≤
K, i.e. that E is an extension field of F and that K is an extension field
of E. Then K is a finite extension field of F ⇐⇒ K is a finite extension
field of E and E is a finite extension field of F . Moreover, in this case

[K : F ] = [K : E][E : F ].

Proof. First suppose that K is a finite extension field of F . Then E is an F -
vector subspace of the finite dimensional F -vector space K, hence E is finite
dimensional and thus is a finite extension of F . Also, there exists an F -basis
α1, . . . , αn of K. Thus every element of K is a linear combination of the
αi with coefficients in F and hence with coefficients in E. Thus α1, . . . , αn
span K as an E-vector space, so that K is a finite dimensional E-vector
space. Thus K is a finite extension field of E.
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Conversely, suppose that K is a finite extension field of E and E is a
finite extension field of F . The proof then follows from the following more
general lemma (taking V = K):

Lemma 2.4. Let E be a finite extension field of F and let V be an E-vector
space. Then, viewing V as an F -vector space, V is a finite-dimensional
F -vector space ⇐⇒ V is a finite-dimensional E-vector space, and in this
case

dimF V = [E : F ] dimE V.

Proof. =⇒ : As in the proof above, an F -basis of V clearly spans V over
E, hence if V is a finite-dimensional F -vector space, then it is a finite-
dimensional E-vector space.
⇐= : Let v1, . . . , vn be an E-basis for V and let α1, . . . , αm be an F -

basis for E. We claim that αivj is an F -basis for V . First, the αivj span
V : if v ∈ V , since the vj are an E-basis for V , there exist aj ∈ E such that∑n

j=1 ajvj = v. Since the αi are an F -basis of E, there exist bij ∈ F such
that aj =

∑m
i=1 bijαi. Hence

v =
n∑
j=1

ajvj =
∑
i,j

bijαivj .

Thus the αivj span V .
Finally, to see that the αivj are linearly independent, suppose that there

exist bij ∈ F such that
∑

i,j bijαivj = 0. We must show that all of the bij
are 0. Regrouping this sum as

0 =
∑
i,j

bijαivj =
n∑
j=1

(
m∑
i=1

bijαi

)
vj ,

and using the fact that the vj are linearly independent over E, it follows
that, for every j, the sum

∑m
i=1 bijαi is 0. But since the αi are linearly

independent over F , we must have bij = 0 for all i and j. Hence the αivj
are linearly independent, and therefore a basis.

Corollary 2.5. If F ≤ E ≤ K and K is a finite extension of F , then
[K : E] and [E : F ] both divide [K : F ].

Proof. This is immediate from the formula above.

The proof also shows the following:
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Corollary 2.6. If K is a finite extension field of E with basis β1, . . . , βn and
E is a finite extension field of F with basis α1, . . . , αm, then αiβj, 1 ≤ i ≤ m
and 1 ≤ j ≤ n, is an F -basis of K.

Example 2.7. By a homework problem,
√

3 /∈ Q(
√

2). Thus

[Q(
√

2,
√

3) : Q] = [Q(
√

2,
√

3) : Q(
√

2)][Q(
√

2) : Q)] = 2 · 2 = 4.

A Q-basis for Q(
√

2,
√

3) is 1,
√

2,
√

3,
√

6. Furthermore, with α =
√

2 +
√

3,
Q(α) = Q(

√
2,
√

3). Hence [Q(α) : Q] = 4 and so degQ α = 4.

Example 2.8. The real number
√

2 /∈ Q( 3
√

2), because if it were, then
Q(
√

2) would be a subfield of Q( 3
√

2), hence 2 = [Q(
√

2 : Q] would divide
3 = [Q( 3

√
2) : Q].

Example 2.9. The above corollary is the main point in showing that various
geometric constructions with straightedge and compass such as trisecting
every angle or doubling the cube are impossible.

Returning to a general extension of fields, we have the following basic
definition:

Definition 2.10. Let E be an extension field of F . Then E is an algebraic
extension of F if, for every α ∈ E, α is algebraic over F .

The following two lemmas are then easy corollaries of Proposition ??:

Lemma 2.11. Let E be a finite extension of F . Then E is an algebraic
extension of F .

Proof. If α ∈ E, then we have a sequence of extensions

F ≤ F (α) ≤ E.

Since E is a finite extension of F , F (α) is a finite extension of F as well, by
Proposition ??. Thus α is algebraic over F .

Lemma 2.12. Let E be an extension field of F and let α, β ∈ E be algebraic
over F . Then α± β, α · β, and (if β 6= 0) α/β are all algebraic over F .

Proof. Consider the sequence of extensions

F ≤ F (α) ≤ F (α)(β) = F (α, β).

Then F (α) is a finite extension of F since α is algebraic over F . Moreover,
β is the root of a nonzero polynomial with coefficients in F , and hence
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with coefficients in F (α). Thus β is algebraic over F (α), so that F (α)(β)
is a finite extension of F (α). By Proposition ??, F (α, β) is then a finite
extension of F , and by the previous lemma it is an algebraic extension of
F . Thus every element of F (α, β) is algebraic over F , in particular α ± β,
α · β, and α/β if β 6= 0.

Definition 2.13. Let E be an extension field of F . We define the algebraic
closure of F in E to be

{α ∈ E : α is algebraic over F }.

Thus the algebraic closure of F in E is the set of all elements of E which
are algebraic over F .

Corollary 2.14. The algebraic closure of F in E is a subfield of E con-
taining F . Moreover, it is an algebraic extension of F .

Proof. It clearly contains F , since every a ∈ F is algebraic over F , and it is
a subfield of E by Lemma ??. By definition, the algebraic closure of F in
E is an algebraic extension of F .

Example 2.15. There are many fields which are algebraic over Q but not
finite over Q. For example, it is not hard to see that the smallest subfield
Q(
√

2,
√

3,
√

5, . . . ) of R which contains the square roots of all of the prime
numbers, and hence of every positive integer, is not a finite extension of Q.

For another important example, let Qalg, the field of algebraic numbers,
be the algebraic closure of Q in C. Thus

Qalg = {α ∈ C : α is algebraic over Q }.

Then Qalg is a subfield of C, and by definition it is the largest subfield of C
which is algebraic over Q. The extension field Qalg is not a finite extension
of Q, since for example it contains Q(

√
2,
√

3,
√

5, . . . ).
Finally, let F be an arbitrary field and consider the extension F (t) of

F , where t is an indeterminate. As we have seen F (t) is not an algebraic
extension of F . In fact, one can show that the algebraic closure of F in
F (t) is F , in other words that if a rational function f(t)/g(t) is the root of
a nonzero polynomial with coefficients in F , then f(t)/g(t) is constant, i.e.
lies in the subfield F of F (t).

We now give another characterization of finite extensions:
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Lemma 2.16. Let E be an extension of F . Then E is a finite extension
of F ⇐⇒ there exist α1, . . . , αn ∈ E, all algebraic over F , such that
E = F (α1, . . . , αn).

Proof. ⇐= : By induction on n. In case n = 1, this is just the statement
that, if α1 is algebraic over F , then the simple extension F (α1) is a finite
extension of F . For the inductive step, suppose that we have showed that
F (α1, . . . , αi) is a finite extension of F . Then αi+1 is algebraic over F , hence
over F (α1, . . . , αi) as in the proof of Lemma ??. Thus F (α1, . . . , αi+1) =
F (α1, . . . , αi)(αi+1) is a finite extension of F (α1, . . . , αi). Now consider the
sequence of extensions

F ≤ F (α1, . . . , αi) ≤ F (α1, . . . , αi+1).

Since F (α1, . . . , αi+1) is a finite extension of F (α1, . . . , αi) and F (α1, . . . , αi)
is a finite extension of F , it follows from Proposition ?? that F (α1, . . . , αi+1)
is a finite extension of F . This completes the inductive step, and hence the
proof that E = F (α1, . . . , αn) is a finite extension of F .

=⇒ : Let N = [E : F ]. The proof is by complete induction on N , and
the case N = 1 is clear since then E = F and we can just take α1 = 1.
Now suppose that we have showed that, for every finite extension F1 ≤ E1

with degree [E1 : F1] < N , there exist β1, . . . , βk ∈ E1 such that E1 =
F1(β1, . . . , βk). Let E be a finite extension of F with [E : F ] = N >
1. Since E 6= F , there exists an α1 ∈ E with α1 /∈ F . Hence [F (α1) :
F ] > 1. Since N = [E : F ] = [E : F (α1)][F (α1) : F ], it follows that
[E : F (α1)] < N . By the inductive hypothesis, there exist α2, . . . , αn ∈ E
such that E = F (α1)(α2, . . . , αn) = F (α1, . . . , αn). Finally, the αi are
automatically algebraic over F since E is a finite extension of F . This
completes the proof of the inductive step and hence of the lemma.

Lemma 2.17. Let F ≤ E ≤ K be a sequence of field extensions, with E an
algebraic extension of F , and let α ∈ K. Then α is algebraic over F ⇐⇒
α is algebraic over E.

Proof. =⇒ : This is clear since, if α is a root of a nonzero polynomial f(x) ∈
F [x], then since F [x] ⊆ E[x], α is also a root of the nonzero polynomial f(x)
viewed as an element of E[x].
⇐= : Write irr(α,E, x) = xn+an−1x

n−1+· · ·+a0, where the ai ∈ E and
hence the ai are algebraic over F . By the previous lemma, F (a0, . . . , an−1) is
a finite extension of F , and clearly α is algebraic over F (a0, . . . , an−1) since
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it is the root of a nonzero polynomial with coefficients in F (a0, . . . , an−1).
Thus

F (a0, . . . , an−1)(α) = F (a0, . . . , an−1, α)

is a finite extension of F (a0, . . . , an−1). It follows from Proposition ?? that
F (a0, . . . , an−1, α) is a finite extension of F , hence an algebraic extension of
F . Hence α is algebraic over F .

Corollary 2.18. Let F ≤ E ≤ K be a sequence of field extensions. Then
K is an algebraic extension of F ⇐⇒ K is an algebraic extension of E
and E is an algebraic extension of F .

Proof. =⇒ : If K is an algebraic extension of F , then clearly E is an
algebraic extension of F . Moreover, every element α of K is the root of
a nonzero polynomial with coefficients in F and hence in E, hence α is
algebraic over E. Thus K is an algebraic extension of E.
⇐= : Follows immediately from the preceding lemma.

Definition 2.19. A field K is algebraically closed if every nonconstant
polynomial f(x) ∈ K[x] has a root in K.

Lemma 2.20. Let K be a field. Then the following are equivalent:

(i) K is algebraically closed.

(ii) If f(x) ∈ K[x] is a nonconstant polynomial, then f(x) is a product of
linear factors. In other words, the irreducible polynomials in K[x] are
linear.

(iii) The only algebraic extension of K is K.

Proof. (i) =⇒ (ii): Let f(x) ∈ K[x] be a nonconstant polynomial. Then
f(x) factors into a product of irreducible polynomials, so it suffices to show
that every irreducible polynomial is linear. Let p(x) be irreducible. Then,
since K is algebraically closed, there exists a root α of p(x) in K, and hence
a linear factor x−α ∈ K[x] of p(x). Since p(x) is irreducible, p(x) = c(x−α)
for some c ∈ K∗, and hence p(x) is linear.

(ii) =⇒ (iii): Let E be an algebraic extension of K and let α ∈ E. Then
p(x) = irr(α,K, x) is a monic irreducible polynomial, hence necessarily of
the form x− α. Since p(x) ∈ K[x], it follows that α ∈ K.

(iii) =⇒ (i): If f(x) ∈ K[x] is a nonconstant polynomial, then there
exists an extension field E of K and an α ∈ E which is a root of f(x).
Clearly, α is algebraic over K and hence the extension field F (α) is an
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algebraic extension of K. By assumption, K(α) = K, i.e. α ∈ K. Hence
there exists a root of f(x) in K.

The most important example of an algebraically closed field comes from
the following theorem, essentially due to Gauss (1799):

Theorem 2.21 (The Fundamental Theorem of Algebra). The field C of
complex numbers is algebraically closed.

Despite its name, the Fundamental Theorem of Algebra cannot be a the-
orem strictly about algebra, since the real numbers and hence the complex
numbers are not defined algebraically. There are many proofs of the Fun-
damental Theorem of Algebra. A number of proofs use some basic complex
analysis, or some topological properties of the plane. We will give a (mostly)
algebraic proof at the end of the course.

Definition 2.22. Let F be a field. Then an extension field K of F is an
algebraic closure of F if the following hold:

1. K is an algebraic extension of F , and

2. K is algebraically closed.

With this definition, C is not an algebraic closure of Q, because C is not
an algebraic extension of Q.

So far, we have defined three confusingly similar sounding concepts: the
algebraic closure of the field F in an extension field E, when a field K
is algebraically closed (with no reference to any subfield), and when an
extension field K is an algebraic closure of the field F . One way these
concepts are related is as follows:

Proposition 2.23. Let F be a field, let K be an extension field of F , and
suppose that K is algebraically closed. Then the algebraic closure of F in K
is an algebraic closure of F .

Proof. Let E be the algebraic closure of F in K. Then E is an algebraic
extension of F , and we must prove that E is algebraically closed. Let f(x) ∈
E[x] be a nonconstant polynomial. Then, since E[x] ⊆ K[x], there exists
a root α ∈ K of f(x). Clearly α is algebraic over E. By Lemma ??, α is
algebraic over F , hence α ∈ E. Thus E is algebraically closed.

Corollary 2.24. The field Qalg of algebraic numbers is an algebraic closure
of Q.
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The following theorem, which we shall not prove, guarantees the exis-
tence of an algebraic closure for every field:

Theorem 2.25. Let F be a field. Then there exists an algebraic closure
of F . Moreover, every two algebraic closures of F are isomorphic. More
precisely, if F ≤ K1 and F ≤ K2, then there exists an isomorphism ρ : K1 →
K2 such that ρ(a) = a for all a ∈ F , viewing F as a subfield both of K1 and
K2.

The isomorphism ρ in the previous theorem is far from unique. In fact,
understanding the possible isomorphisms is, in a very vague sense, the cen-
tral problem in Galois theory.

3 Derivatives and multiple roots

We begin by recalling the definition of a repeated root.

Definition 3.1. Let F be a field and let α ∈ F . Then there is a unique
integer m ≥ 0 such that (x−α)m divides f(x) but (x−α)m+1 does not divide
f(x). We define this integer m to be the multiplicity of the root α in f(x).
Note that, by the correspondence between roots of a polynomial and its
linear factors, α has multiplicity 0 in f(x), i.e. m = 0 above, ⇐⇒ f(α) 6= 0.
More generally, if α has multiplicity m in f(x), then f(x) = (x − α)mg(x)
with g(α) 6= 0, and conversely.

If α has multiplicity 1 in f(x), we call α a simple root of f(x). If α has
multiplicity m ≥ 2 in f(x), then we call α a multiple root or repeated root
of f(x).

We would like to find conditions when a nonconstant polynomial does,
or does not have a multiple root in F or in some extension field E of F . To
do so, we introduce the formal derivative:

Definition 3.2. Let F be a field. Define the function D : F [x] → F [x] by
the formula

D(
n∑
i=0

aix
i) =

n∑
i=1

iaix
i−1.

Here the notation iai means the ring element i · ai = ai + · · ·+ ai︸ ︷︷ ︸
i times

. We

usually write D(f(x)) as Df(x). Note that either Df(x) = 0 or degDf(x) ≤
deg f(x)− 1.
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Clearly, the function D is compatible with field extension, in the sense
that, if F ≤ E, then we have D : F [x] → F [x] and D : E[x] → E[x], then,
given f(x) ∈ F [x], Df(x) is the same whether we view f(x) as an element
of F [x] or of E[x]. Also, an easy calculation shows that:

Proposition 3.3. D : F [x]→ F [x] is F -linear.

This result is equivalent to the sum rule: for all f(x), g(x) ∈ F [x], D(f+
g) = Df +Dg as well as the constant multiple rule: for all f(x) ∈ F [x] and
c ∈ F , D(cf) = cDf . Once we know that D is F -linear, it is specified by
the fact D(1) = 0 and, that, for all i > 0, Dxi = ixi−1. Also, viewing D as
a homomorphism of abelian groups, we can try to compute

KerD = {f(x) ∈ F [x] : Df(x) = 0}.

Our expectation from calculus is that a function whose derivative is 0 is
a constant. But if charF = p > 0, something strange happens:

Proposition 3.4. If KerD = {f(x) ∈ F [x] : Df(x) = 0}, then

KerD =

{
F, if charF = 0;
F [xp], if charF = p > 0.

Here F [xp] = {
∑n

i=0 aix
ip : ai ∈ F} is the subring of all polynomials in xp.

Proof. Clearly, f(x) =
∑n

i=0 aix
i is in KerD ⇐⇒ for every i such that the

coefficient ai is nonzero, the monomial ixi−1 = 0. In case charF = 0, this
is only possible if i = 0, in other words f(x) ∈ F is a constant polynomial.
In case charF = p > 0, this happens exactly when p|i for every i such that
ai 6= 0. This is equivalent to saying that f(x) is a polynomial in xp.

As is well-known in calculus, D is not a ring homomorphism. In other
words, the derivative of a product of two polynomials is not in general the
product of the derivatives. Instead we have:

Proposition 3.5 (The product rule). For all f(x), g(x) ∈ F [x],

D(f · g)(x) = Df(x) · g(x) + f(x) ·Dg(x).

Proof. If f(x) = xa and g(x) = xb, then we can verify this directly:

D(xaxb) = D(xa+b) = (a+ b)xa+b−1;

(Dxa)xb + xa(Dxb) = axa−1xb + bxaxb−1 = (a+ b)xa+b−1.

The general case follows from this by writing f(x) and g(x) as sums of
monomials and expanding (but is a little messy to write down). Another
approach using formal difference quotients is in the HW.
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If R is a ring, a function d : R→ R which is an additive homomorphism
(i.e. d(r + s) = d(r) + d(s) for all r, s ∈ R) satisfying d(rs) = d(r)s+ rd(s)
for all r, s ∈ R is called a derivation of R. Thus, D is a derivation of F [x].

As a corollary of the product rule, we obtain:

Corollary 3.6 (The power rule). For all f(x) ∈ F [x] and n ∈ N,

D(f(x))n = n(f(x))n−1Df(x).

Proof. This is an easy induction using the product rule and starting with
the case n = 1.

The connection between derivatives and multiple roots is as follows:

Lemma 3.7. Let f(x) ∈ F [x] be a nonconstant polynomial. Then α ∈ F is
a multiple root of f(x) ⇐⇒ f(α) = Df(α) = 0.

Proof. Write f(x) = (x− α)mg(x) with m equal to the multiplicity of α in
f(x) and g(x) ∈ F [x] a polynomial such that g(α) 6= 0. If m = 0, then
f(α) = g(α) 6= 0. Otherwise,

Df(x) = m(x− α)m−1g(x) + (x− α)mDg(x).

If m = 1, then Df(α) = g(α) 6= 0. If m ≥ 2, then f(α) = Df(α) = 0.
Thus we see that α ∈ F is a multiple root of f(x) ⇐⇒ m ≥ 2 ⇐⇒
f(α) = Df(α) = 0.

In practice, an (unknown) root of f(x) will only exist in some (unknown)
extension field E of F . We would like to have a criterion for when a poly-
nomial f(x) has some multiple root α in some extension field E of F ,
without having to know what E and α are explicitly. In order to find such
a criterion, we begin with the following lemma, which says essentially that
divisibility, greatest common divisors, and relative primality are unchanged
after passing to extension fields.

Lemma 3.8. Let E be an extension field of a field F , and let f(x), g(x) ∈
F [x], not both 0.

(i) f(x)
∣∣g(x) in F [x] ⇐⇒ f(x)

∣∣g(x) in E[x].

(ii) The polynomial d(x) ∈ F [x] is a gcd of f(x), g(x) in F [x] ⇐⇒ d(x)
is a gcd of f(x), g(x) in E[x].

(iii) The polynomials f(x), g(x) are relatively prime in F [x] ⇐⇒ f(x), g(x)
are relatively prime in E[x].
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Proof. (i): =⇒ : obvious. ⇐= : We can assume that f(x) 6= 0, since
otherwise f(x)

∣∣g(x) (in either F [x] or E[x]) ⇐⇒ g(x) = 0. Suppose that
f(x)

∣∣g(x) in E[x], i.e. that g(x) = f(x)h(x) for some h(x) ∈ E[x]. We must
show that h(x) ∈ F [x]. By long division with remainder in F [x], there exist
q(x), r(x) ∈ F [x] with either r(x) = 0 or deg r(x) < deg f(x), such that
g(x) = f(x)q(x) + r(x). Now, in E[x], we have both g(x) = f(x)h(x) and
g(x) = f(x)q(x) + r(x). By uniqueness of long division with remainder in
E[x], we must have h(x) = q(x) (and r(x) = 0). In particular, h(x) = q(x) ∈
F [x], as claimed.

(ii): =⇒ : Let d(x) ∈ F [x] be a gcd of f(x), g(x) in F [x]. Then, by (i),
since d(x)

∣∣f(x), d(x)
∣∣g(x) in F [x], d(x)

∣∣f(x), d(x)
∣∣g(x) in E[x]. Moreover,

there exist a(x), b(x) ∈ F [x] such that d(x) = a(x)f(x) + b(x)g(x). Now
suppose that e(x) ∈ E[x] and that e(x)

∣∣f(x), e(x)
∣∣g(x) in E[x]. Then

e(x)
∣∣a(x)f(x) + b(x)g(x) = d(x). It follows that d(x) satisfies the properties

of being a gcd in E[x]. ⇐= : Let d(x) ∈ F [x] be a gcd of f(x), g(x) in
E[x]. Then d(x)

∣∣f(x), d(x)
∣∣g(x) in E[x], hence by (i) d(x)

∣∣f(x), d(x)
∣∣g(x)

in F [x]. Suppose that e(x) ∈ F [x] and that e(x)
∣∣f(x), e(x)

∣∣g(x) in F [x].
Then e(x)

∣∣f(x), e(x)
∣∣g(x) in E[x]. Hence e(x)

∣∣d(x) in E[x]. Since both
e(x), d(x) ∈ F [x], it again follows by (i) that e(x)

∣∣d(x) in F [x]. Thus d(x)
is a gcd of f(x), g(x) in F [x].

(iii): The polynomials f(x), g(x) are relatively prime in F [x] ⇐⇒
1 ∈ F [x] is a gcd of f(x) and g(x) in F [x] ⇐⇒ 1 ∈ F [x] is a gcd of f(x)
and g(x) in F [x], by (ii), ⇐⇒ f(x), g(x) are relatively prime in E[x].

Corollary 3.9. Let f(x) ∈ F [x] be a nonconstant polynomial. Then there
exists an extension field E of F and a multiple root of f(x) in E ⇐⇒ f(x)
and Df(x) are not relatively prime in F [x].

Proof. =⇒ : If E and α exist, then, by Lemma ??, f(x) and Df(x) have a
common factor x − α in E[x] and hence are not relatively prime. Thus by
Lemma ?? f(x) and Df(x) are not relatively prime in F [x].
⇐= : Suppose that f(x) and Df(x) are not relatively prime in F [x], and

let g(x) be a common nonconstant factor of f(x) and Df(x). There exists
an extension field E of F and an α ∈ E which is a root of g(x). Then α is
a common root of f(x) and Df(x), and hence a multiple root of f(x).

We now apply the above to an irreducible polynomial f(x) ∈ F [x].

Corollary 3.10. Let f(x) ∈ F [x] be an irreducible polynomial. Then there
exists an extension field E of F and a multiple root of f(x) in E ⇐⇒
Df(x) = 0.
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Proof. =⇒ : By the previous corollary, if there exists an extension field E of
F and a multiple root of f(x) in E, then f(x) and Df(x) are not relatively
prime in F [x]. In this case, since f(x) is irreducible, it must be that f(x)
divides Df(x). Hence, if Df(x) 6= 0, then degDf(x) ≥ deg f(x). But we
have seen that either degDf(x) < deg f(x) or Df(x) = 0. Thus, we must
have Df(x) = 0.
⇐= : Clearly, if Df(x) = 0, then f(x) is a gcd of f(x) and Df(x),

hence f(x) and Df(x) are not relatively prime in F [x].

Corollary 3.11. Let F be a field of characteristic 0 and let f(x) ∈ F [x] be
an irreducible polynomial. Then there does not exist an extension field E of
F and a multiple root of f(x) in E. In particular, if E is an extension field
of F such that f(x) factors into linear factors in E, say

f(x) = c(x− α1) · · · (x− αn),

then the αi are distinct, i.e. for i 6= j, αi 6= αj.

If charF = p > 0, then it is possible for an irreducible polynomial
f(x) ∈ F [x] to have a multiple root in some extension field, but it takes a
little effort to produce such examples. The basic example arises as follows:
consider the field Fp(t), where t is an indeterminate (here we could replace
Fp by any field of characteristic p). Then t is not a pth power in Fp(t), and
in fact one can show that the polynomial xp − t is irreducible in Fp(t)[x].
Let E be an extension field of Fp(t) which contains a root α of xp − t, so
that by definition αp = t. Then

xp − t = xp − αp = (x− α)p,

because we are in characteristic p. Thus α is a multiple root of xp − t, of
multiplicity p.

The key property of the field Fp(t) which made the above example work
was that t was not a pth power in Fp(t). More generally, define a field
F of characteristic p to be perfect if every element of F is a pth power,
or equivalently if the Frobenius homomorphism F → F is surjective. For
example, we shall show below that a finite field is perfect. An algebraically
closed field is also perfect. We also declare every field of characteristic zero
to be perfect. By a problem on HW, if F is a perfect field and f(x) ∈ F [x]
is an irreducible polynomial, then there does not exist an extension field E
of F and a multiple root of f(x) in E.
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4 Finite fields

Our goal in this section is to classify finite fields up to isomorphism and,
given two finite fields, to describe when one of them is isomorphic to a
subfield of the other. We begin with some general remarks about finite
fields.

Let F be a finite field. As the additive group (F,+) is finite, char F =
p > 0 for some prime p. Thus F contains a subfield isomorphic to the prime
field Fp, which we will identify with Fp. Since F is finite, it is clearly a finite-
dimensional vector space over Fp. Let n = dimFp F. Then #(F) = pn. It is
traditional to use the letter q to demote a prime power pn in this context.

We note that the multiplicative group (F∗, ·) is cyclic. If γ is a generator,
then every nonzero element of F is a power of γ. In particular, F = Fp(γ) is
a simple extension of Fp.

With #(F) = pn = q as above, by Lagrange’s theorem, since F∗ is a
finite group of order q − 1, for every α ∈ F∗, αq−1 = 1. Hence αq = α for
all α ∈ F, since clearly 0q = 0. Thus every element of F is a root of the
polynomial xq − x.

Since char F = p, the function σp : F → F is a homomorphism, the
Frobenius homomorphism. Clearly Kerσp = {0} since αp = 0 ⇐⇒ α = 0,
and hence σp is injective. (In fact, this is always true for homomorphisms
from a field to a nonzero ring.) As F is finite, since σp is injective, it is also
surjective and hence an isomorphism (by the pigeonhole principle). Thus,
every element of F is a pth power, so that F is perfect as defined above. Note
that every power σkp is also an isomorphism. We have

σ2
p(α) = σp(σp(α)) = σp(αp) = (αp)p = αp

2
,

and so σ2
p = σp2 , where by definition σp2(α) = αp

2
. More generally, an

easy induction shows that σkp = σpk , where by definition σpk(α) = αp
k
. In

particular, taking k = n, where #(F) = q = pn, we see that σq(α) = αq = α.
Thus σq = Id. (Warning: although αq = α for every α ∈ F, it is not true
that xq − x ∈ F[x] is the zero polynomial.)

With this said, we can now state the classification theorem for finite
fields:

Theorem 4.1 (Classification of finite fields). Let p be a prime number.

(i) For every n ∈ N, there exists a field F with q = pn elements.

(ii) If F1 and F2 are two finite fields with #(F1) = #(F2), then F1 and F2

are isomorphic.
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(iii) Let F and F′ be two finite fields, with #(F) = q = pn and #(F′) = q′ =
pm. Then F′ is isomorphic to a subfield of F ⇐⇒ m divides n ⇐⇒
q = (q′)d for some positive integer d.

Proof. First, we prove (i). Viewing the polynomial xq−x as a polynomial in
Fp[x], we know that there exists an extension field E of Fp such that xq − x
is a product of linear factors in E[x], say

xq − x = (x− α1) · · · (x− αq)

where the αi ∈ E. We claim that the αi are all distinct: αi = αj for some
i 6= j ⇐⇒ xq − x has a multiple root in E ⇐⇒ xq − x and D(xq − x) are
not relatively prime in Fp[x]. But D(xq − x) = qxq−1 − 1 = −1, since q is a
power of p and hence divisible by p. Thus the gcd of xq − x and D(xq − x)
divides −1 and hence is a unit, so that xq − x and D(xq − x) are relatively
prime. It follows that xq − x does not have any multiple roots in E.

Now define the subset F of E by

F = {α1, . . . , αq} = {α ∈ E : αq − α = 0} = {α ∈ E : αq = α}.

By what we have seen above, #(F) = q. Moreover, we claim that F is a
subfield of E, and hence is a field with q elements. It suffices to show that
F is closed under addition, subtraction, multiplication, and division. This
follows since σq is a homomorphism. Hence, if α, β ∈ F, i.e. if αq = α
and βq = β, then (α ± β)q = αq ± βq = α ± β, (αβ)q = αqβq = αβ,
and, if β 6= 0, then (α/β)q = αq/βq = α/β. In other words, then α ± β,
αβ, and (for β 6= 0) α/β are all in F. Hence F is a subfield of E, and in
particular it is a field with q elements. (Remark: F is the fixed field of σq,
i.e. F = {α ∈ E : σq(α) = α}.)

Next we prove (iii). Let F and F′ be two finite fields with #(F) = q = pn

and #(F′) = q′ = pm. Clearly, if F′ is isomorphic to a subfield of F, which
we can identify with F′, then F is an F′-vector space. Since F is finite, it is
finite-dimensional as an F′-vector space. Let d = dimF′ F = [F : F′]. Then
pn = q = #(F) = (q′)d = pmd, proving that m divides n and that q is
a power of q′. Conversely, suppose that F is the finite field with q = pn

elements constructed in the proof of (i), so that xq − x factors into linear
factors in F[x]. Let F′ be a finite field with #(F′) = q′ = pm and suppose
that q = pn = (q′)d, or equivalently n = md. We shall show first that F
contains a subfield isomorphic to F′ and then that every field with q elements
is isomorphic to F, proving the converse part of (iii) as well as (ii).

As we saw in the remarks before the statement of Theorem ??, there
exists a β ∈ F′ such that F′ = Fp(β). Since β ∈ F′, σq′(β) = (β)q

′
= β, and
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hence σq(β) = σdq′(β) = β. Thus β is a root of xq − x. Hence irr(β,Fp, x)
divides xq −x in Fp[x]. On the other hand, xq −x factors into linear factors
in F[x], so that one of these linear factors must divide irr(β,Fp, x) in F[x].
It follows that there exists a root γ of irr(β,Fp, x) in F. Since irr(β,Fp, x) is
a monic irreducible polynomial and γ is a root of irr(β,Fp, x), we must have
irr(γ,Fp, x) = irr(β,Fp, x). Let p(x) = irr(γ,Fp, x) = irr(β,Fp, x). Then
since F′ = Fp(β), evβ induces an isomorphism ẽvβ : Fp[x]/(p(x)) ∼= F′. On
the other hand, we have evγ : Fp[x] → F, with Ker evγ = (p(x)) as well, so
there is an induced injective homomorphism ẽvγ : Fp[x]/(p(x)) → F. The
situation is summarized in the following diagram:

Fp[x]/(p(x))
eevγ−−−−→ F

eevβy∼=
F′

The homomorphism ẽvγ ◦ (ẽvβ)−1 is then an injective homomorphism from
F′ to F and thus identifies F′ with a subfield of F. This proves the converse
direction of (iii), for the specific field F constructed in (i), and hence for any
field which is isomorphic to F.

Now suppose that F is the specific field with q elements constructed in
the proof of (i) and that F1 is another finite field with q elements. By what
we have proved so far above, F1 is isomorphic to a subfield of F, i.e. there is
an injective homomorphism ρ : F1 → F. But since F1 and F have the same
number of elements, ρ is necessarily an isomorphism, i.e. F1

∼= F. Hence, if
F2 is yet another field with q elements, then also F2

∼= F and hence F1
∼= F2,

proving (ii). Finally, the converse direction of (iii) now holds for every field
with q elements, since every such field is isomorphic to F.

If q = pn, we often write Fq to denote any field with q elements. Since any
two such fields are isomorphic, we often speak of the field with q elements.

Remark 4.2. Let q = pn. The polynomial xq − x is reducible in Fp[x]. For
example, for every a ∈ Fp, x − a is a factor of xq − x. Using Theorem ??,
one can show that the irreducible monic factors of xq − x are exactly the
irreducible monic polynomials in Fp[x] of degree m, where m divides n.
From this, one can show the following beautiful formula: let Np(m) be the
number of irreducible monic polynomials in Fp[x] of degree m. Then∑

d|n

dNp(d) = pn.
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