
Binary operations

1 Binary operations

The essence of algebra is to combine two things and get a third. We make
this into a definition:

Definition 1.1. Let X be a set. A binary operation on X is a function
F : X ×X → X.

However, we don’t write the value of the function on a pair (a, b) as
F (a, b), but rather use some intermediate symbol to denote this value, such
as a + b or a · b, often simply abbreviated as ab, or a ◦ b. For the moment,
we will often use a ∗ b to denote an arbitrary binary operation.

Definition 1.2. A binary structure (X, ∗) is a pair consisting of a set X
and a binary operation on X.

Example 1.3. The examples are almost too numerous to mention. For
example, using +, we have (N,+), (Z,+), (Q,+), (R,+), (C,+), as well as
vector space and matrix examples such as (Rn,+) or (Mn,m(R),+). Using
subtraction, we have (Z,−), (Q,−), (R,−), (C,−), (Rn,−), (Mn,m(R),−),
but not (N,−).

For multiplication, we have (N, ·), (Z, ·), (Q, ·), (R, ·), (C, ·). If we define
Q∗ = {a ∈ Q : a 6= 0}, R∗ = {a ∈ R : a 6= 0}, C∗ = {a ∈ C : a 6= 0},
then (Q∗, ·), (R∗, ·), (C∗, ·) are also binary structures. But, for example,
(Q∗,+) is not a binary structure. Likewise, (U(1), ·) and (µn, ·) are binary
structures. In addition there are matrix examples: (Mn(R), ·), (GLn(R), ·),
(SLn(R), ·), (On, ·), (SOn, ·).

Next, there are function composition examples: for a set X, (XX , ◦) and
(SX , ◦).

We have also seen examples of binary operations on sets of equivalence
classes. For example, (Z/nZ,+), (Z/nZ, ·), and (R/2πZ,+) are examples of
binary structures. (But there is no natural binary operation of multiplication
on R/2πZ.)
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Finally, there are many more arbitrary seeming examples. For example,,
for a set X, we could simply define a∗b = b for all a, b ∈ X: to “combine” two
elements, you always pick the second one. Another example is a “constant”
binary operation: for a nonempty set X, choose once and for all an element
c ∈ X, and define a ∗ b = c for all a, b ∈ X.

If X is a finite set with n elements, say we enumerate X = {x1, . . . , xn},
then a binary operation on X can be described by a table:

∗ x1 x2 . . . xn

x1 x1 ∗ x1 x1 ∗ x2 . . . x1 ∗ xn
x2 x2 ∗ x1 x2 ∗ x2 . . . x2 ∗ xn
... . . . . . . . . . . . .

xn xn ∗ x1 xn ∗ x2 . . . xn ∗ xn

From this, it follows that the number of different binary operations on a
finite set X with #(X) = n is nn

2
.

Remark 1.4. In grade school, when discussing binary operations, one often
mentions the “closure property,” which roughly says that, for a, b ∈ X,
a ∗ b ∈ X. For us, this property is built into the definition of a binary
operation, which is defined to be a function from X ×X to X.

2 Isomorphisms

A key concept is the notion of when two binary structures are essentially
the same.

Definition 2.1. Let (X1, ∗1) and (X2, ∗2) be two binary structures. An
isomorphism f from (X1, ∗1) to (X2, ∗2) is a bijection f : X1 → X2 such
that, for all a, b ∈ X1,

f(a ∗1 b) = f(a) ∗2 f(b).

In other words, when we use f to “rename” the elements of X1, the binary
operations correspond.

We say that two binary structures (X1, ∗1) and (X2, ∗2) are isomorphic
if there exists an isomorphism f from (X1, ∗1) to (X2, ∗2), and write this
as (X1, ∗1) ∼= (X2, ∗2) (congruence sign). Of course, if (X1, ∗1) and (X2, ∗2)
are isomorphic, there might be many possible choices of an isomorphism f .

2



Thus, given two binary structures (X1, ∗1) and (X2, ∗2), to show that a
function f : X1 → X2 is an isomorphism (of the given binary structures), we
must (1) show that f is a bijection (recall that this is usually best done by
finding an inverse function) and then establishing the “functional equation”
or identity f(a ∗1 b) = f(a) ∗2 f(b) for all a, b ∈ X1.

Example 2.2. (1) For every binary structure (X, ∗), IdX : X → X is an
isomorphism of binary structures since it is a bijection and, for all a, b ∈ X,
IdX(a ∗ b) = a ∗ b = IdX(a) ∗ IdX(b).

(2) Define f : Z→ Z by f(n) = −n. Then f is an isomorphism from (Z,+)
to (Z,+): first, f is a bijection since it has an inverse; in fact f−1 = f .
Then, for all n,m ∈ Z,

f(n+m) = −(n+m) = −n−m = (−n) + (−m) = f(n) + f(m).

Thus f is an isomorphism.

(3) Similarly, fix a nonzero real number t and define f : R→ R by f(x) = tx.
Then f is an isomorphism from (R,+) to (R,+). First, f is a bijection since
it has an inverse; in fact f−1(x) = t−1x. For all x, y ∈ R,

f(x+ y) = t(x+ y) = tx+ ty = f(x) + f(y).

Thus f is an isomorphism. Similar examples work for (Q,+) and (C,+).

(4) Fix an element A ∈ GLn(R). Then A defines an isomorphism from
(Rn,+) to (Rn,+). By definition, A has an inverse and hence is a bijection.
Moreover, as a general property of linear functions, for all v,w ∈ Rn,

A(v + w) = Av +Aw,

which says that A is an isomorphism.

(5) It is also interesting to look for examples where the binary structures
seem to be quite different. For one very basic example, let R>0 denote the
set of positive real numbers:

R>0 = {x ∈ R : x > 0}.

Then (R>0, ·) is a binary structure. We claim that (R,+) ∼= (R>0, ·). To
see this, we need to find a bijection from R to R+ which takes addition to
multiplication. A familiar example is the exponential function f(x) = ex.
As we know from calculus, or before, ex is injective and its image is R>0.
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Thus f is a bijection. Finally, the fact that f is an isomorphism is expressed
by the functional equation: for all x, y ∈ R,

ex+y = ex · ey.

(6) Recall that µ4 = {1, i,−1,−i}. It is easy to verify directly that (Z/4Z,+) ∼=
(µ4, ·), under the bijection defined by [0] 7→ 1, [1] 7→ i, [2] 7→ −1, [3] 7→ −i.
More generally, (Z/nZ,+) ∼= (µn, ·), and we will have a more systematic
way to understand this later.

(7) For our last example, note that U(1) is the set of complex numbers of
absolute value 1, and every such complex number can be uniquely written
in the form cos θ+ i sin θ. Similarly, as we have seen in the homework, every

element of SO2 can be uniquely written as

(
cos θ − sin θ
sin θ cos θ

)
. It follows easily

that (U(1), ·) ∼= (SO2, ·), where the first multiplication is multiplication
of complex numbers and the second is multiplication of 2 × 2 matrices.
Moreover both binary structures are isomorphic to (R/2πZ,+).

Let us collect some general facts about isomorphisms, which we have
implicitly touched on above:

Proposition 2.3. (i) For every binary structure (X, ∗), IdX is an iso-
morphism of binary structures from (X, ∗) to (X, ∗).

(ii) Let (X1, ∗1) and (X2, ∗2) be two binary structures. If f is an isomor-
phism from (X1, ∗1) to (X2, ∗2), then f−1, which exists because f is a
bijection, is an isomorphism from (X2, ∗2) to (X1, ∗1).

(iii) Let (X1, ∗1), (X2, ∗2), and (X3, ∗3) be three binary structures. If f
is an isomorphism from (X1, ∗1) to (X2, ∗2) and g is an isomorphism
from (X2, ∗2) to (X3, ∗3), then g ◦ f is an isomorphism from (X1, ∗1)
to (X3, ∗3).

Here, we have already noted (i), and (ii) and (iii) are left as home-
work. The proposition implies in particular that (i) For every binary struc-
ture (X, ∗), (X, ∗) ∼= (X, ∗); (ii) Given two binary structures (X1, ∗1) and
(X2, ∗2), if (X1, ∗1) ∼= (X2, ∗2) then (X2, ∗2) ∼= (X1, ∗1); (iii) Given three
binary structures (X1, ∗1), (X2, ∗2), and (X3, ∗3), if (X1, ∗1) ∼= (X2, ∗2) and
(X2, ∗2) ∼= (X3, ∗3), then (X1, ∗1) ∼= (X3, ∗3). Thus the relation ∼= is reflex-
ive, symmetric, and transitive.
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3 Basic properties of binary operations

From discussing properties of numbers in grade school, we are familiar with
certain basic properties.

Associativity: We say a binary structure (X, ∗) (or the binary operation
∗) is associative if, for all a, b, c ∈ X,

a ∗ (b ∗ c) = (a ∗ b) ∗ c.

Associativity is so basic a property that we will almost always assume it; it
is very hard to work with non-associative operations. All of the operations
we have denoted + or · or ◦ are associative. Aside from the case of numbers,
this usually comes down to the fact that function composition is associative.
One can write down interesting non-associative operations. For example,
subtraction, on Z, say, is not associative, because

a− (b− c) = a− b+ c 6= (a− b)− c

unless c = 0. For a related example, define the binary operation ∗ on N by
exponentiation: for all a, b ∈ N, a ∗ b = ab. Then

(a ∗ b) ∗ c = (ab)c = abc,

by the laws of exponents, and in general this is not equal to a ∗ (b ∗ c) = ab
c
.

Note that, for subtraction, the “primary” operation is addition, and this is
in fact associative. Similarly, exponentiation is derived from multiplication
which is associative, so in both of these non-associative examples, there is
an associative operation lurking in the background.

For an associative binary operation ∗, we often omit the parentheses and
simply write a ∗ (b ∗ c) = (a ∗ b) ∗ c as a ∗ b ∗ c. There are infinitely many
other identities which are a consequence of associativity and which we don’t
write down explicitly. For example,

a ∗ (b ∗ (c ∗ d)) = (a ∗ b) ∗ (c ∗ d) = a ∗ ((b ∗ c) ∗ d) = . . . .

Commutativity: A binary structure (X, ∗) (or the binary operation ∗) is
commutative if, for all a, b ∈ X,

a ∗ b = b ∗ a.

All of the operations we have denoted by + are commutative, and by con-
vention a binary operation denoted + is always assumed to be commuta-
tive. Operations denoted by multiplication are commutative for numbers,
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so (N, ·), (Z, ·), (Q, ·), (R, ·), (C, ·) are all commutative. However, matrix
multiplication is usually not commutative, in fact (Mn(R), ·), (GLn(R), ·),
(SLn(R), ·), (On, ·) are not commutative for n ≥ 2 and (SOn, ·) is not com-
mutative for n ≥ 3. For a set X with #(X) ≥ 2, (XX , ◦) is not commutative,
and (SX , ◦) is not commutative for #(X) ≥ 3; in particular (Sn, ◦) is not
commutative for n ≥ 3.

A binary operation on a finite set is commutative ⇐⇒ the table is
symmetric about the diagonal running from upper left to lower right. (Note
that it would be very hard to decide if a binary operation on a finite set is
associative just by looking at the table.)

Because of the many interesting examples of binary operations which are
not commutative, we shall usually not make the assumption that a binary
operation is commutative.

Identity element: An identity for (X, ∗) is an element e ∈ X such that,
for all x ∈ X, e ∗x = x ∗ e = x. Note that we have to check that e functions
as an identity on both the left and right if ∗ is not commutative. Sometimes
we call such an e a two sided identity, and define a left identity to be an
element eL of X such that, for all x ∈ X, eL ∗ x = x. Similarly, a right
identity is an element eR of X such that, for all x ∈ X, x ∗ eR = x. It is
possible that a right identity exists but not a left identity, and if a right or
left identity exists it does not have to be unique. The situation is different
if both a right and left identity exist:

Proposition 3.1. Suppose that (X, ∗) is a binary structure and that a right
identity eR and a left identity eL both exist. Then eL = eR, and hence
eL = eR is an identity for (X, ∗).

Proof. By the definition of right and left identities,

eR = eL ∗ eR = eL.

Corollary 3.2. Suppose that (X, ∗) is a binary structure. If an identity
exists for (X, ∗), then it is unique.

Proof. Suppose that e and e′ are both identities for (X, ∗). Then in partic-
ular e is a left identity and e′ is a right identity, so that by the proposition
e = e′.

If (X, ∗) is a finite binary structure with identity e, then by convention
we let e be the first element of X. Thus, in a table, the first row and column
are as follows:
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∗ e a b . . .

e e a b . . .

a a . . . . . . . . .

b b . . . . . . . . .
... . . . . . . . . . . . .

Notation: If the binary operation on X is denoted by +, and there is an
identity, we shall always denote the identity by 0. If the binary operation on
X is denoted by ·, and there is an identity, we shall often (but not always)
denote the identity by 1.

Inverses: Suppose that (X, ∗) is a binary structure with identity e. Given
x ∈ X, an inverse for x is an element x′ such that x′ ∗ x = x ∗ x′ = e. For
example, e has an inverse and in fact e′ = e. An element with an inverse
will be called invertible. Clearly, if x is invertible with inverse x′, then the
equalities x′ ∗ x = x ∗ x′ = e say that x′ is invertible with inverse x, i.e.
(x′)′ = x. To say more we need associativity. A left inverse for x is an
element x′L such that x′L ∗ x = e, and a right inverse for x is an element x′R
such that x ∗ x′R = e.

Proposition 3.3. Suppose that (X, ∗) is an associative binary structure.

(i) Let x ∈ X. If x′L is a left inverse for x and x′R is a right inverse, then
x′L = x′R. Thus inverses, if they exist, are unique.

(ii) Suppose that x, y ∈ X are both invertible. Then x∗y is also invertible,
and

(x ∗ y)′ = y′ ∗ x′.

Proof. (i) Consider the product x′L ∗x ∗x′R. Using associativity, we see that

x′L ∗ x ∗ x′R = (x′L ∗ x) ∗ x′R = e ∗ x′R = x′R.

But also
x′L ∗ x ∗ x′R = x′L ∗ (x ∗ x′R) = x′L ∗ e = x′L.

Thus x′L = x′L. Uniqueness of inverses follows as in the proof of Corollary ??.
(ii) We must check that

(x ∗ y) ∗ (y′ ∗ x′) = (y′ ∗ x′) ∗ x ∗ y = e.

We shall just check that (x ∗ y) ∗ (y′ ∗ x′) = e. Using associativity,

(x ∗ y) ∗ (y′ ∗ x′) = x ∗ (y ∗ y′) ∗ x′ = x ∗ e ∗ x′ = (x ∗ e) ∗ x′ = x ∗ x′ = e.

The equality (y′ ∗ x′) ∗ x ∗ y = e is similar.
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Note that e is always invertible, and in fact e′ = e. Also, if x is invertible,
with inverse x′, then the equation x′∗x = x∗x′ = e says that x′ is invertible,
with inverse x. In other words, (x′)′ = x.
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