Now routs of Lie theory


Root systems are beautiful combinatorial and geometric objects which are central to everything that has to do with Lie groups

all these can be classified

a few co series and a few sporadic cases


There are 2 important operations on root systems

$\xrightarrow{\text { duality }}$



The other is going from a root system ㅇ..


The other is going from a root system

to an affine hyperplane arrangement $(x, \alpha) \in \mathbb{Z}$ It remembers the length of roots and is very important


$$
x_{i} \in \mathbb{Z}, \quad \pm x_{i} \pm x_{j} \in \mathbb{Z}
$$

arranglment of subtoi in $\left(\mathbb{C}^{*}\right)^{n}$

$$
\begin{array}{r}
\Leftrightarrow \quad \bigcup_{\alpha}\left\{z^{\alpha}=1\right\} \\
z_{i}=1, z_{i} z_{j}^{ \pm 1}=1
\end{array}
$$

Root systems code the structure of
Compact and reductive Lie groups

e.g. $U(n)=$ unitary $n \times n$ matrices e.g. $G L(n, \mathbb{C})=$ all invertible $n \times n$ madices and of the corresponding Lie algebras

$$
u(n)=\text { skew-Hermitian } \quad \text { of l }(n, \mathbb{C})=
$$ $n \times n$ matrices all $n \times n$ matrices


maximal Abelian

maximal "Kompact" subgroup, unitany $U(n)$
mavimal sorvaBle

a reductive Lie Group e.g. $G L(n)$

These are assembled according to the roots from

$$
\begin{aligned}
& \left\{\binom{a}{a^{-1}}\right\}=\left\{\begin{array}{l}
s_{3}^{\prime} \\
s_{3} \\
s k
\end{array}\right\} \\
& =\left\{\left(\begin{array}{l}
a \\
-\bar{b} \\
-\bar{a}
\end{array}\right)\right\} \\
& |a|^{2}+|b|^{2}=1
\end{aligned}
$$

These are assembled according to the roots from

$$
\begin{aligned}
& \left\{\binom{a}{a^{-1}}\right\}=\cdots \\
& S U(2)= \\
& =\left\{\left(\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right)\right\} \quad \therefore \quad \because=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right\} \\
& |a|^{2}+|b|^{2}=1 \\
& a d-b c=1
\end{aligned}
$$

maximal Abelian

maximal "kompact" subgroup, unitary $U(n)$
maximal solvaBle

$\leftarrow$ a reductive Lie Group e.g. $G(n)$

The role of roots can be explained geometrically in tems of certain vemonkable alfubraic varieties associated to $G$

The conjugacy classes in $K$ or Lie $(K)$ are, in fact, naturally compact complex manifolds, e.g.

$$
\left.\left\{\begin{array}{ll}
\text { Hermitian or } \\
\text { unitary } & \sim\left(\begin{array}{ll}
1 & \\
\text { matrices }
\end{array}\right. \\
{ }^{1} \lambda_{\lambda_{\lambda}}
\end{array}\right)\right\}=\begin{aligned}
& \text { Grassmannian } \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

The conjugacy classes in $K$ or $\mathrm{Lie}^{e}(K)$ sire, in fact, naturally compact complex manifolds, egg.

$$
\left.\left\{\begin{array}{l}
\text { Hermitian or } \\
\text { unitary } \\
\text { matrices }
\end{array} \boldsymbol{1}^{1} \begin{array}{l} 
\\
{ }^{1} \lambda_{\lambda_{\lambda}}
\end{array}\right)\right\}=\begin{gathered}
\text { Grassmanmian } \\
\\
\\
\end{gathered} \operatorname{Gr}_{\lambda}(2,5, \mathbb{C})
$$

for instance, for $K=S U(2)$ we get

$$
G(1,2, \mathbb{C}) \simeq \mathbb{C} \mathbb{P}^{1} \simeq
$$

The conjugacy classes in $K$ or $\mathrm{Lie}^{e}(K)$ sire, in fact, naturally compact complex manifolds, e.g.

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { Hermitian or } \\
\text { unitary } \\
\text { matrices }
\end{array}{\begin{array}{l}
\lambda_{1} \\
\lambda_{2} \lambda_{3 \lambda_{4}} \\
\\
\end{array}} \begin{array}{l}
\lambda_{5}
\end{array}\right\}=\begin{array}{r}
\text { flag manifold } \\
G L(5) / B
\end{array} \\
& \left\{\sqrt{1} \subset \sqrt{2} \subset \sqrt{3} \subset \sqrt{4} \subset \sqrt{5}=\mathbb{C}^{5}\right\} \\
& \uparrow \\
& \text { Span of eigenvector } v_{1_{1}} \\
& \operatorname{Spom}\left(v_{\lambda_{1}}, v_{\lambda_{2}}, v_{\lambda_{3}}\right)
\end{aligned}
$$

The conjugacy classes in $K$ or Lie $(K)$ care, in fact, naturally compact complex manifolds, e.g.

$$
\begin{aligned}
& \left.\left\{\begin{array}{l}
\text { Hermitian or } \\
\begin{array}{c}
\text { unitary } \\
\text { matrices }
\end{array}
\end{array}{ }^{\lambda_{1} \lambda_{2}}{ }^{\lambda_{3}}{ }_{\lambda_{4}} \lambda_{5}\right)\right\}=\begin{array}{l}
\text { flag manifold } \\
\\
\\
\end{array} \\
& \left\{\sqrt{1}^{c} \sqrt{2}^{c} \sqrt{3}^{c} \sqrt{4} c \sqrt{5}=\mathbb{C}^{5}\right\} \\
& \text { Span of eigenvector } v_{l_{1}} \\
& \operatorname{Span}\left(v_{\lambda_{1}}, v_{\lambda_{2}}, v_{\lambda_{3}}\right)
\end{aligned}
$$

skip some steps of the flag when $\lambda_{i}=\lambda_{i+1}$

The conjugacy classes in $G$ or Lie $(G)$ are Complex symplectic manifolds, and the generic one is diffeomophic to

$$
X=T^{*} G / B
$$

The isomorphism class of $X$ as algebraic symplectic variety depends on eigenvalues $\in A$ (abstractly; deformations are parametrized by $H^{2}(X, \mathbb{C}) \approx$ Lie $A$ ) When eigenvalues collide, get a singular union of orbits e.g. of

Recall that roots can be viewed as hypentori in $A$ In terms of $X$ they can le described in two a prior different ways On the one hand,


On the one hand, A acts on $X^{3}$ by conjugation and


Main message: there is a vast extension of the classical Lie theory under construction in which


Then: 1) Deformation roots $\subset H_{2}(X, \mathbb{Z})$ and Action roots $c$ weights of $\operatorname{Aut}(X, \omega)$ have nothing in common (e.g. different rooks)
2) Pemutel by a rather dramatic Langlands-Styte duality: $X \leftrightarrow X^{V}$
also, while there may be a certain Weal group symmetry in the problem, its role is minor and it does not explain most of the roots

in other words, one walls with arrafements that are not invariant w.r.t. reflections in hyperplanes
the class of $X$ that we wont may have little to do with Lie theory at the first sight, however

- quantization $\widehat{X}$ of $X$, that is, noncommatative deformations of functions on $X$ are just as good as

$$
U(o f) / \text { central } \text { character }=T^{*} G / B
$$

including Kazhdan - Lusztig theory both in char =0 and char $=p \gg 0$ a la Bezrukawnikov et al

- natural special functions associated to X etc etc generalize character, spherical functions, Macdonald polys

The spaces $X$ that we want appear as
moduli spaces of vacua
in certan supersymmetic QTs
© steady states Gibbs states etc.

The spaces $X$ that we want appear as
moduli spaces of vacua
in certan supersymmetric QTs
© steady states Gibbs states etc.
cut out by equations like

$$
p=\text { cost } \rho T
$$

in the space of all averages like

$$
T=\langle\text { kinetic energy }\rangle
$$

The spaces X that we wont appear as
moduli spaces of vacua
in certan supersymmetric QFTs
© steady states Gibbs states etc.
often makes moduli
cut out by equations like
spaces of susy states
interesting complex
algebraic varieties

$$
p=\text { cost } \rho T
$$

in the space of all averages like

$$
T=\langle\text { kinetic energy }\rangle
$$

at low energies (or large distances) we can think of all states of the QFT as modulated vacua, i.e. we can think of the QFT as the theory of maps


- Maps can have different topology
- Suse imposes constricts like holomorply on $f$
at low energies (or large distances), we can think of all states of the QFT as modulated vacua, i.e. we can think of the QFT as the theory of maps


Currently, a lot of interest in computing


$$
\text { index }=\mathcal{l}_{\text {even }}-\mathcal{l l} \text { odd }
$$

viewed as a virtual representation of

$$
\text { Ant } \rightarrow \operatorname{Aut}(X, \omega)
$$

and also graded by the topological charge

$$
H_{2}(x, \mathbb{Z})
$$

actual computations take place in " K-theory of the moduli spaces of holomorphic "maps" (with sing)

lots of foundational as well as actual geometric issues

$$
\begin{aligned}
& \quad \operatorname{lndex}=\downarrow \text { (moduli, } z^{\operatorname{deg} f} \text { virtual } \hat{A} \text {-genus) } \\
& \left.K_{\text {Mut }}(p t)[z]\right] \quad \text { Aut-equivariaut } K \text {-theory class }
\end{aligned}
$$

These indices, which are functions of $A \subset$ Ant $(X, \omega)$ and $Z=H^{2}(x, \mathbb{Z}) \otimes \mathbb{C}^{*}$
are by a certain yoga reduced to the case deformation torus for $X^{*}$

where they can be shown to satisfy certain linear 9 -difference equations in both $A$ and $Z$ compatible, ie. flat

These difference equations are of pronounced Lie - theoretic flavor (generalize, in particular q-Kuizunik-Zamolodchifov equations, Macdonald equatios, ... [0., Smirnov - O.]) their singularities in $A$ and $Z$ are regular and datemined by the roots of two kinds as defined above

There is an amazing duality, known as Sd mirror symmetry; symplectic duality etc. that goes back to some insights of Intrilligator and Seiberg. On roots as defined by us above, it should act as follows:


Def roots for $x$
$\qquad$
Equivariant roots for $x$

Def roots for $X v$

Equivariant roots for $X v$


Most basic example: $\quad X=T^{*} \mathbb{P}^{n-1}=T^{*} G r(1, n)$
orbit of $\left(\begin{array}{lll}z & & \\ & 1 & \\ & & 1\end{array}\right) \in G L(n, \mathbb{C})$
action

$$
z \in Z=\mathbb{C}^{*} \text {, root } z=1
$$

$A=\left(\begin{array}{lll}a_{1} & & \\ & & \\ & \ddots & \\ & & a_{n}\end{array}\right)$, roots $a_{i}=a_{j}$
Dual $X^{v}=$ resolution of $\quad x y=w^{n}$
deformation $\quad x y=\Pi\left(w-a_{i}\right)$
action $(x, y, w) \rightarrow\left(z x, z^{-1} y, w\right)$

The first really new example $\quad\left(a x_{1}, a^{-1} x_{2}\right)$

$$
\begin{aligned}
X & =\operatorname{Hilb}\left(\mathbb{C}_{1}^{2} n\right) \\
& =\left\{\text { ideals } I \subset \mathbb{C}\left[x_{1}, x_{2}\right] \text { of codim }=n\right\}
\end{aligned}
$$

self-dual!

$$
\begin{aligned}
\text { roots } z^{k} & =1, k=1, \ldots, n \\
a^{k} & =1
\end{aligned}
$$



Duality connects different theories that have equivalent low-eneryy description. In particular, their indices are the same, with a change of variables $A^{V}=Z, Z^{V}=A$, and a correspondence between boundary conditions on both sides

This correspondence is a certain canonical uniquely defined $A \times A^{v}$-equivariaut elliptic cohomology class on $X \times X^{v}$ with Mina Aganagic, we have shown:

- its existence, in some generality
- it determines the monodroney of the q-difference equations, on both sides
- it makes the indices equal
of course, roots on both sides come into the very middle of this

