Problem set 9

Due Wednesday, April 5

1. Show that every line bundle on the projective space \(\mathbb{P}^n \) is of the form \(\mathcal{O}(m) \) for some \(m \).

2. Show that \(\mathcal{O}(m) \) is naturally equivariant for the natural action of \(G = GL(n + 1) \) on \(\mathbb{P}^n \). When can \(\mathcal{O}(m) \) be made equivariant for the action of

\[
\text{Aut}(\mathbb{P}^n) = PGL(n + 1) = GL(n + 1)/\text{center}
\]

3. Compute the cohomology groups of \(\mathcal{O}(m) \) from the standard Čech complex. Identify them as representation of \(G \).

4. Construct a minimal \(G \)-equivariant resolution of the skyscraper sheaf \(\mathcal{O}_0 \) of the origin

\[
0 \in \mathbb{A}^{n+1}.
\]

Obtain a relation in \(K_G(\mathbb{P}^n) \) by restricting this resolution to \(\mathbb{A}^{n+1} \setminus \{0\} \).