Problem set 6

Due Wednesday, March 8

For G = GL(n), Weyl character formula gives symmetric Laurent polynomials

$$s_{\lambda}(x_1,\ldots,x_n) = \frac{\det\left(x_i^{\lambda_j+n-j}\right)}{\prod_{i< j}(x_i-x_j)}$$

that go back to at least Jacobi and are called Schur functions. Here

$$\lambda = (\lambda_1 \ge \cdots \ge \lambda_n) \in \mathbb{Z}^n$$

is a highest weights of GL(n). Since

$$s_{\lambda+(1,\dots,1)}(x) = \left(\prod x_i\right) \, s_{\lambda}(x)$$

we may assume $\lambda_n \geq 0$ without loss of generality. In this case, λ is called a partition.

1. Show that

$$s_{(\lambda_1,\ldots,\lambda_n,0)}(x_1,\ldots,x_n,0) = s_{\lambda}(x_1,\ldots,x_n),$$

and that Schur functions form a \mathbb{Z} -basis in the ring

$$\Lambda = \varprojlim \mathbb{Z}[x_1, \dots, x_n]^{S(n)}$$

an element of which is a sequence of symmetric polynomials $f_n(x_1, \ldots, x_n)$ of bounded degree defined for $n \gg 0$ such that

$$f_{n+1}(x_1,\ldots,x_n,0) = f_n(x_1,\ldots,x_n).$$

2. If

$$\lambda = (\underbrace{1, 1, \dots, 1}_{k})$$

then $s_{\lambda}(x)$ is the elementary symmetric function e_k . What is the representation-theoretic meaning of this ? Similarly, if

$$\lambda = (k, 0, 0, \dots)$$

then $s_{\lambda}(x)$ is the sum of all monomials of degree k, normally called the complete homogeneous symmetric function and denoted h_k .

3. Show that e_1, e_2, \ldots are free commutative generators of Λ . Similarly for h_1, h_2, \ldots .

4. Clear denominators to find a formula for the expansion of $e_k s_{\lambda}$ in Schur functions.

5. Similarly, clear denominators to find a formula for the expansion of $p_k s_{\lambda}$ in Schur functions, where

$$p_k = \sum x_i^k \,.$$