Problem set 5

Due Wednesday, March 1

For an arbitrary matrix $C = (a_{ij}) \in \text{Mat}(n, k)$ we can define a Lie algebra \mathfrak{g} as the quotient

$$0 \rightarrow \mathfrak{r} \rightarrow \tilde{\mathfrak{g}} \rightarrow \mathfrak{g} \rightarrow 0$$

by the ideal \mathfrak{r} that is maximal among all ideals intersecting \mathfrak{h} trivially.

1. What are the generators of \mathfrak{r} if $C = 0$? The Lie algebra \mathfrak{g} corresponding to $C = 0$ is called the Heisenberg Lie algebra.

2. Describe irreducible module in category \mathcal{O} for the Heisenberg Lie algebra.

3. Let \mathfrak{g} be arbitrary and let $M(\lambda) \in \mathcal{O}$ be a Verma module. Show that

$$\text{Hom}_\mathcal{O}(M(\lambda), M(\lambda)) = k.$$

4. Show that any nonzero map $M(\mu) \rightarrow M(\lambda)$ is injective.

5. Let $\mathcal{O}_{\leq \lambda} \subset \mathcal{O}$ be the subcategory of modules of the form

$$M = \bigoplus_{\mu = \lambda - \sum \alpha_i} M_\mu.$$

Show that $M(\lambda)$ is projective in $\mathcal{O}_{\leq \lambda}$. Give an example (the case $\mathfrak{g} = \mathfrak{sl}_2$ will suffice) showing that $M(\lambda)$ may not be projective in \mathcal{O}.

6. As in the proof of the Gabber-Kac theorem, construct an exact sequence of the form

$$0 \rightarrow \mathfrak{r}_-/[\mathfrak{r}_-, \mathfrak{r}_-] \rightarrow \bigoplus_{i=1}^n M(-\alpha_i) \rightarrow M(0) \rightarrow k \rightarrow 0$$

where k is a trivial 1-dimensional \mathfrak{g}-module.