Problem set 4

Due Wednesday, February 22

1. Let \(\{ e^{(i)}_\alpha \} \) and \(\{ e^{(i)}_{-\alpha} \} \) be dual bases of \(g_\alpha \) and \(g_{-\alpha} \), that is, suppose
\[
(e^{(i)}_\alpha, e^{(j)}_{-\alpha}) = \delta_{ij},
\]
with respect to the invariant symmetric form on a symmetrizable Kac-Moody Lie algebra \(g \). Show that
\[
\sum_i e^{(i)}_{-\alpha} \otimes [x, e^{(i)}_\alpha] = \sum_i [x, e^{(i)}_{-\beta}] e^{(i)}_\beta
\]
for any \(x \in g_{\beta-\alpha} \).

2. In the notation of Problem 1, show that
\[
\sum_i [e^{(i)}_{-\alpha}, [x, e^{(i)}_\alpha]] = \sum_i [x, e^{(i)}_{-\beta}] e^{(i)}_\beta \in g_{\beta-\alpha}
\]
and, similarly,
\[
\sum_i e^{(i)}_{-\alpha} [x, e^{(i)}_\alpha] = \sum_i [x, e^{(i)}_{-\beta}] e^{(i)}_\beta \in \mathcal{U}(g)_{\beta-\alpha}.
\]

3. Let \(M \) be a \(g_\alpha \)-module such that for any \(m \in M \),
\[
g_\alpha m = 0
\]
for all but finitely many positive \(\alpha \). (For example, if \(h \)-action on \(M \) is diagonalizable and all weights are bounded from above.) Show that the operator
\[
\Omega' = 2 \sum_{\alpha>0,i} e^{(i)}_{-\alpha} e^{(i)}_\alpha + \sum_i e^{(i)}_0 e^{(i)}_0
\]
is well-defined on \(M \) and commutes with \(h \).

4. Let \(M \) be as above and let \(\rho \in h \) be such that
\[
(\rho, h_i) = \frac{1}{2} a_{ii}.
\]
Show that the operator
\[\Omega = \rho + \Omega' \]
commutes with the action of \(g \).

5. Let \(M \) be a Verma module for \(g \), that is a module freely generated by a vector \(|\lambda\rangle, \lambda \in \mathfrak{h}^* \), such that
\[h|\lambda\rangle = \lambda(h)|\lambda\rangle \]
and
\[e_i|\lambda\rangle = 0. \]
Show that \(\Omega \) acts by a scalar operator in \(M \) and compute that scalar.