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a classical problem in geometry is to count curves of given 

degree and genus (here, d=3 g=0) meeting given cyles (here, 

8 points) in a variety X (here, plane) 



the answer is the 3rd term in sequence 1, 1, 12, 620, 87304, 
26312976, 14616808192, 13525751027392, 19385778269260800, 

40739017561997799680,120278021410937387514880,482113680

618029292368686080, 2551154673732472157928033617920, .... 

[Kontsevich] 

another popular sequence: 2875, 609250, 317206375, 
242467530000, 229305888887625, 248249742118022000, 

295091050570845659250, 375632160937476603550000, 

503840510416985243645106250, 704288164978454686113488249750, 

1017913203569692432490203659468875,15123239019341393347516752

34074638000, ...[Givental....] 

enumerative geometry is a land of large numbers and very 

complicated formulas 



the 1st thing one learns about enumerative geometry: it is 

important to put things in general position

the 2nd thing one learns: don't be a slave of general position



one should be able to count solutions even when they are 

not isolated ... 

Maybe, we can take the Euler characteristic of the set of 

solutions ? Fails badly in the very first example: 
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The right answer is that the enumerative constraints and 

deformations of curves in X put a certain sheaf Ō

on the set of solutions, and we should take the Euler 

characteristic χ(Ō) of this sheaf. 

Ō ≈ polynomial functions (meaning, it is a coherent sheaf) 

and taking its Euler characteristic is a very standard 

thing to do in algebraic geometry. 

Such formulation has many advantages, e.g. ... 



If there is symmetry under the action of a group G, then 

χ(Ō) is a virtual representation of G. This is what it 
means to count in "equivariant K-theory". 

Also, the problem and the answer make sense even if 

the classical enumerative problem is over/under 

determined.



Often, χ(Ō) has a direct interpretation in modern high 
energy physiscs as supertrace of a certain interesting 

operator over the Hilbert space of the theory 



Today, we will talk about Donaldson-Thomas theory, 

which is an enumerative theory of curves in smooth 

algebraic 3-folds X, like the projective space P3. There is no 

need to assume X is Calabi-Yau, or anything like this, for 

the problem to be interesting and relevant. 



In DT theory, one thinks about a curve C by thinking about 

equations that C satisfies. In other words, the DT moduli 

spaces are the Hilbert schemes (or closely related objects) 

which parametrize ideals the algebra of functions on X.  

One can specify ideals by their generators, but can't get 

very far with the Hilbert scheme by working with such 

explicit data (Even the dimension of the Hilbert scheme is 

unknown !) Computations in DT theory are hard ...

... which is a good thing because most enumerative 

problems of interest, e.g. the two above, embed there 



One gets most mileage out of breaking complicated curve 

counts into simpler standard pieces, which can be 

analyzed by specific means.  Such reductions is an art, 

practiced e.g. by [MOOP], and elevated to near perfection 

by Pandharipande and Pixton 

Today we will talk about those standard pieces. They 

are defined like this ... 



Let S be an algebraic surface, such as 

               S=C2=coordinate plane=A0 

What one really needs are the surfaces An which resolve 

the singularity xy=zn+1     



We take X=S × P
1

and consider an open 

set U in the Hilbert 

scheme of curves in X 

formed by curves C 

that intersect S × {∞} in 

points. 



On U, we have the intersection map δ

and we can push forward Ō under δ, i.e. count curves in 

the fibers of δ,  as long as  



1) we keep track of discrete 

invariants of C by weighting the 

count by z[C], where [C] is the class 

2) keep track of the action of 

q ∈ GL(1) on the P1-direction in X 

The result 

has various names, including the "vertex"



these vertices contain a profusion of enumerative 

information, the data of all possible ways a curve of 

some degree and genus can meet S in this geometry, like 

e.g. a 3fold tangency at some given point of S

remarkably, can be repackaged much more 

economically ... 



Fundamental fact :  fundamental class

where U is the fundamental solution of a certain linear 

difference equation with regular singularities in z. This 

linear equation ("quantum connection") achieves a very 

dense packing of enumerative information.  

the shifts in this difference equations 

are line bundles on Hilb(S) 



a poetic, but also technical, analogy:

quantum 

connection

vertices

3-folds



in cohomology instead of K-thery, the computation of the 

corresponding differential equation is the main result of 

the book by [Maulik-O]. In turn, it generalizes ealier 

formulas of [OP] and [Maulik-Oblomkov], as well as key 

insights of [Nekrasov-Shatashvili] and Bezrukavnikov 

and his collaborators. 

the computation of this quantum connection, in fact, for 

all Nakajima varieties and not just Hilbert schemes of ADE 

surfaces, is a recent result of Andrey Smirnov and the 

speaker. 



 to write a difference equation, we need a supply of 

operators and, in fact, there is a geometrically defined 

action of a very big algebra 

that extends the work of Nakajima. Here 



"Hopf algebra"  means that there is tensor product on its 

representation, which, however, is not commutative ! 

This is what it means to be a "quantum group"  



in fact, geometrically, the fundamental object is precisely 

the braiding: 

which is constructed first, and then it gives birth to 

everything else [Maulik-O] 



E.g. one can take matrix 

elements of the braiding in 

one factor, to get operators 

in the other ! 

The braid relation (Yang-Baxter equation) then tells 

you how these operators commute. 

Especially convenient for construction actions of algebras 

whose generators and relations are not known ahead of 

time 



In this quantum group, generalizing the work of Etingof 

and Varchenko for Kac-Moody Lie algebras, we construct 

an action of a "quantum dynamical affine Weyl group", 

which is really a braid grouppoid of a certain 

hyperplane arrangement, namely the arrangement given 

by the roots of  



Every wall w in the 

arrangement of affine roots 

corresponds a rank=1 

subalgebra 

We construct the "going over the wall" operators by associating 

a certain universal element to any braided Hopf algebra U

dynamical, or degree, variables



The lattice Pic(Hilb(S)) lies in 

the dynamical braid grouppoid

and we prove: 

Theorem(O-Smirnov) The corresponding operators 

give the quantum difference connection, in fact, 

for any Nakajima variety 



For example, for Hilb(C2,points), we have  

with roots Z\{0} and the operators αn 

acting by correspondences on Hilb(k) x Hilb(k+n) contructed 

by Nakajima 



affine roots =Z2\{0} and 

the corresponding 

operators on K(Hilb) 

were studied by many 

authors with A.Negut 

giving perhaps the most 

geometric description  

each root and its opposite belong to a Heisenberg subalgebra 

of the form 



and the purely-quantum part of the difference 

connection becomes 

where 



In summary, I tried to explain that representation 

theory, in one of its forms, is a silkworm.



I did not have time to talk about the applications we 

have in mind, but ... 

Just like the determination of quantum differential 

equation is a key step in the proof of the known cases of 

GW/DT correspondence, there is every reason to expect our 

result to be very relevant for 

- conjectural equivalence of K-theoretic DT counts with 

the 5-dimensional membrane counting [Nekrasov-O], as 

well as 

- conjectural equvalence of K-theoretic curve counts in 

symplectically dual varieties

- ... 



a discussion of some of 

these conjecctures may be 

found here 



Thank you




