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ABSTRACT. Generalized knot groups G, (K) were introduced independently
by Kelly (1991) and Wada (1992). We prove that G2(K) determines the
unoriented knot type and sketch a proof of the same for Gy, (K) for n > 2.

1. THE 2—-GENERALIZED KNOT GROUP

Generalized knot groups were introduced independently by Kelly [5] and Wada
[10]. Wada arrived at these group invariants of knots by searching for homomor-
phisms of the braid group B,, into Aut(F,,), while Kelly’s work was related to knot
racks or quandles [1, 4] and Wirtinger-type presentations.

The Wirtinger presentation of a knot group expresses the group by generators
r1,...,2 and relators rq,...,rx_1, in which each r; has the form

RS
for some map i — j of {1,...,k} to itself and map {1,...,k} — {£1}. The group
G, (K) is defined by replacing each r; by

+n, . Fn, .—1
S S T

In particular, G;(K) is the usual knot group.

In [9], responding to a preprint of Xiao-Song Lin and the first author [6], Tuffley
showed that G,,(K) distinguishes the square and granny knots. G,,(K) cannot dis-
tinguish a knot from its mirror image. But Go(K) is, in fact, a complete unoriented
knot invariant.

Theorem 1.1. The 2—generalized knot group Go(K) determines the knot K up to
reflection.

We will assume K is a non-trivial knot in the following proof, although it is
not essential. It is clear from the proof that the trivial knot is the only knot with
G2(K) =Z.

Wada described G,,(K) as the fundamental group of the space M, (K) obtained
by gluing the boundary torus of the knot exterior to another torus by the map
St x St — §1x St defined by f(z1, 2z2) = (27, 22), where 2; represents the meridian
and z5 represents a longitude. We will use this description. We will call the glued-on
torus the core torus.

Note that My(K) is a closed manifold: it can be described as the result of
gluing Mb x S! into the knot exterior, where Mb denotes the Mobius band. It is
clearly Haken, since its fundamental group has a Z quotient, and it is irreducible
and P2-irreducible since its orientation cover is the double of the knot exterior
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and hence irreducible. It therefore follows by Heil’s non-orientable extension [3]
of Waldhausen’s theorem [10] that M3 (K) is determined by its fundamental group
Gq(K).

The core torus 7 is the product S' x S* in Mb x St C My(K), where the first
S1 is the central circle of the Mobius band. If one cuts My(K) along the core torus
T one recovers the knot complement, from which the knot itself can be recovered
by Gordon and Luecke [2]. Thus the theorem follows from the following lemma.

Lemma 1.2. The core torus T C My(K) is, up to isotopy, the unique one-sided
torus in My (K).

Proof. We will use the “geometric version” of the JSJ decomposition. This is
described, for instance, in [7, Section 4], but only for orientable manifolds, so we
will discuss the non-orientable case briefly here. If the reader prefers to avoid JSJ
for non-orientable manifolds (s)he can easily mirror our argument in the orientation
cover of M.

We restrict to the special case of an irreducible and P?—irreducible manifold M
whose boundary components are tori or Klein bottles. The JSJ decomposition
(geometric version!) then decomposes M along an embedded closed surface and is
characterized by the first three of the following properties.

(1) The surface is a disjoint union of essential tori and Klein bottles,

(2) M is decomposed into simple (i.e., essential tori and annuli are boundary
parallel) and Seifert fibered pieces, with no piece being an interval bundle
over a torus or Klein bottle.

(3) The surface is minimal in the sense that it is, up to isotopy, a subset of any
other surface with the above properties.

(4) Any essential embedded torus or Klein bottle in M can be isotoped to
be a component of the JSJ surface, to lie in a neighborhood of one of its
components, or to lie in a Seifert fibered piece of the decomposition.

A short geometric proof of the existence and uniqueness of this decomposition
was given in [7] in the orientable case and can easily be extended to the non-
orientable case. Alternatively, one decomposes the orientation cover of M (or any
other orientable finite cover) and then uses the naturalness of the geometric JSJ
decomposition to descend to M. One of the features of the geometric version of
JSJ is that it lifts correctly in finite covers, and using standard minimal surface
technology one can isotop it to be preserved by any finite group action.

Consider now the union of the JSJ surface F' for the knot exterior and the
core torus T. This is a surface that satisfies conditions (1) and (2) so it contains
the JSJ surface. It follows easily that the JSJ surface is either F or F UT. In
the latter case we know that any essential torus other than T is isotopic into the
complement of T, hence embeds in S3, and is thus two-sided, so T is the only one-
sided torus. So assume the JSJ surface is F'. This only happens if the piece of the
JSJ decomposition of the knot exterior that contains the boundary is itself Seifert
fibered, so K is either

e a (p,q) torus knot for some 1 < ¢ < p (and F' is empty) or
e a sum of k > 1 prime knots.

1For manifolds covered by a torus bundle over the circle the JSJ decomposition described
here is not necessarily the geometric one (the geometric JSJ decomposition is trivial in this case,
overlooked in section 4 of [7]). It is an exercise to see that Ms(K) is never of this form.
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In the first case M is Seifert fibered over the orbifold P(p,q) which is P? with two
orbifold points of degrees p and g respectively. In the second case the Seifert fibered
component containing 7" fibers over an orbifold (k) which is k-holed disk with one
boundary being a mirror boundary (the image of T').

Any essential surface in a Seifert fibered manifold is isotopic to a vertical surface
(union of fibers) or a transverse one (transverse to all fibers). A transverse surface
could only be closed in the first case, but it is then hyperbolic since it covers the
base orbifold P(p,q) which is hyperbolic. Thus in each case an essential embedded
torus must be vertical. In the first case, if it is one-sided it must lie over an
orientation reversing closed loop in P(p,q), and there is just one such loop up to
isotopy (avoiding the orbifold points), and it gives the torus T. In the second case
an essential torus other than T is the inverse image of a closed loop that does not
meet the mirror boundary or of a connected 1-orbifold (i.e., an arc) with both ends
on the mirror boundary, and any such torus is two-sided. O

2. THE n-GENERALIZED KNOT GROUP

The result holds also for G,,(K) for n > 2. Here is an outline of the argument.

In this case M,,(K) is not a manifold, so we cannot use 3—-manifold JSJ. Instead
we work directly with the group G, (K), using the Scott-Swarup version of JSJ
for groups [8]. For n > 3 Scott-Swarup JSJ decomposes M, (K) as a graph of
groups corresponding to the JSJ decomposition of the knot exterior (in a version
close to classical JSJ rather than geometric JSJ), together with an additional edge
and vertex (of type “Vy” in the terminology of SS-JSJ) as follows: the edge group
and vertex group are the peripheral subgroup of the knot exterior and 71 (T"). The
edge is characterized as the only edge of the graph of groups whose group injects
with finite index in a vertex group. The knot group can thus be recovered as the
fundamental group of the graph of groups which results by removing this edge and
its end vertex. Also, the peripheral subgroup of the knot group is recovered as
the edge group for this edge. Finally, the knot is determined by knot group plus
peripheral subgroup by Gordon and Luecke [2]. For n = 3 (and 2) one can use
essentially the same argument, but there is an extra Vy—vertex corresponding to
the peripheral Z x Z of the knot group, and the vertex for 71 (7T') is a Vi—vertex.

G (K) is also defined for links, but is not a complete invariant. Since it can
be functorially derived from the rack (or quandle) of the link, it cannot determine
more than the rack determines (see [1]). What G,,(K) determines for a decom-
posable link is the exteriors of the indecomposable sublinks, but since they are
recovered without knowledge of their orientation, one cannot reassemble the whole
link exterior. Moreover, since G, (K) (unlike the rack) does not know the peripheral
structure (i.e., the elements given by meridians), it cannot necessarily recover an
indecomposable link (but Chris Tuffley pointed out to us that if one knows G,,(K)
for infinitely many n then one does know meridians up to sign).
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