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Abstract. We show that the fundamental groups of any two closed irreducible
non-geometric graph-manifolds are quasi-isometric. This answers a question of
Kapovich and Leeb. We also classify the quasi-isometry types of fundamental
groups of graph-manifolds with boundary in terms of certain finite two-colored
graphs. A corollary is the quasi-isometric classification of Artin groups whose
presentation graphs are trees. In particular any two right-angled Artin groups
whose presentation graphs are trees of diameter greater than 2 are quasi-
isometric, answering a question of Bestvina; further, this quasi-isometry class
does not include any other right-angled Artin groups.

A finitely generated group can be considered geometrically when endowed with a
word metric—up to quasi-isometric equivalence, such metrics are unique. (Henceforth
only finitely generated groups will be considered.) Given a collection of groups, G,
Gromov proposed the fundamental questions of identifying which groups are quasi-
isometric to those in G (rigidity) and which groups in G are quasi-isometric to each
other (classification) [10].

In this paper, we focus on the classification question for graph manifold groups
and right-angled Artin groups.

A compact 3-manifold M is called geometric if M \ ∂M admits a geometric
structure in the sense of Thurston (i.e., a complete locally homogeneous Riemannian
metric of finite volume). The Geometrization Conjecture [19, 20, 21] provides
that every irreducible 3-manifold of zero Euler characteristic (i.e., with boundary
consisting only of tori and Klein bottles) admits a decomposition along tori and
Klein bottles into geometric pieces, the minimal such decomposition is called the
geometric decomposition.

There is a considerable literature on quasi-isometric rigidity and classification of
3-manifold groups. The rigidity results can be briefly summarized:

Theorem. If a group G is quasi-isometric to the fundamental group of a 3-manifold
M with zero Euler characteristic, then G is weakly commensurable1 with π1(M ′) for
some such 3-manifold M ′. Moreover, M ′ is closed resp. irreducible resp. geometric
if and only if M is.

This quasi-isometric rigidity for 3-manifold groups is the culmination of the work
of many authors, key steps being provided by Gromov-Sullivan, Cannon-Cooper,
Eskin-Fisher-Whyte, Kapovich-Leeb, Rieffel, Schwartz [4, 6, 9, 12, 22, 23]. The
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reducible case reduces to the irreducible case using Papasoglu and Whyte [18] and
the irreducible non-geometric case is considered by Kapovich and Leeb [12].

The classification results in the geometric case can be summarized by the following;
the first half is an easy application of the Milnor-Švarc Lemma [15], [25]:

Theorem. There are exactly seven quasi-isometry classes of fundamental groups of
closed geometric 3-manifolds, namely any such group is quasi-isometric to one of
the eight Thurston geometries (S3, S2 × E1, E3, Nil, H2 × E1, P̃SL, Sol, H3) but
the two geometries H2 × E1 and P̃SL are quasi-isometric.

If a geometric manifold M has boundary, then it is either Seifert fibered and its
fundamental group is quasi-isometric (indeed commensurable) with F2 × Z [12], or
it is hyperbolic, in which case quasi-isometry also implies commensurability [23].

A graph manifold is a 3-manifold that can be decomposed along embedded tori
and Klein bottles into finitely many Seifert manifolds; equivalently, these are exactly
the class of manifolds with no hyperbolic pieces in their geometric recomposition.
Since the presence of a hyperbolic piece can be quasi-isometrically detected [7] [13]
[1], this implies that the class of fundamental groups of graph manifolds is rigid. We
answer the classification question for graph manifold groups. Before discussing the
general case we note the answer for closed non-geometric graph manifolds, resolving
a question of Kapovich and Leeb [13].

Theorem 2.1. Any two closed non-geometric graph manifolds have bilipschitz
homeomorphic universal covers. In particular, their fundamental groups are quasi-
isometric.

This contrasts with commensurability of closed graph manifolds: already in the
case that the graph manifold is composed of just two Seifert pieces there are infinitely
many commensurability classes (they are classified in that case but not in general,
see Neumann [16]).

We also classify compact graph manifolds with boundary. To describe this we
need some terminology. We associate to the geometric decomposition of a non-
geometric graph manifold M its decomposition graph Γ(M) which has a vertex for
each Seifert piece and an edge for each decomposing torus or Klein bottle. We color
the vertices of Γ(M) black or white according to whether the Seifert piece includes
a boundary component of M or not (bounded or without boundary). We call this
the two-colored decomposition graph. We can similarly associate a two-colored tree
to the decomposition of the universal cover M̃ into its fibered pieces. We call this
infinite valence two-colored tree BS(M), since it is the Bass-Serre tree corresponding
to the graph of groups decomposition of π1(M).

The Bass-Serre tree BS(M) can be constructed directly from the decomposition
graph Γ = Γ(M) by first replacing each edge of Γ by a countable infinity of edges
with the same endpoints and then taking the universal cover of the result. If two
two-colored graphs Γ1 and Γ2 lead to isomorphic two-colored trees by this procedure
we say Γ1 and Γ2 are bisimilar. In Section 4 we give a simpler, algorithmically
checkable, criterion for bisimilarity2 and show that each bisimilarity class contains a
unique minimal element.

Our classification theorem, which includes the closed case (Theorem 2.1), is:

2We thank Ken Shan for pointing out that our equivalence relation is a special case of the
computer science concept bisimilarity, related to bisimulation.



QUASI-ISOMETRIC CLASSIFICATION OF GRAPH MANIFOLDS 3

Theorem 3.2. If M and M ′ are non-geometric graph manifolds then the following
are equivalent:

(1) M̃ and M̃ ′ are bilipschitz homeomorphic.
(2) π1(M) and π1(M ′) are quasi-isometric.
(3) BS(M) and BS(M ′) are isomorphic as two-colored trees.
(4) The minimal two-colored graphs in the bisimilarity classes of the decomposi-

tion graphs Γ(M) and Γ(M ′) are isomorphic.

One can list minimal two-colored graphs of small size, yielding, for instance, that
there are exactly 2, 6, 26, 199, 2811, 69711, 2921251, 204535126, . . . quasi-isometry
classes of fundamental groups of non-geometric graph manifolds that are composed
of at most 1, 2, 3, 4, 5, 6, 7, 8, . . . Seifert pieces.

For closed non-geometric graph manifolds we recover that there is just one quasi-
isometry class (Theorem 2.1): the minimal two-colored graph is a single white
vertex with a loop. Similarly, for non-geometric graph manifolds that have boundary
components in every Seifert component there is just one quasi-isometry class (the
minimal two-colored graph is a single black vertex with a loop).

For graph manifolds with boundary the commensurability classification is also
rich, but not yet well understood. If M consists of two Seifert components glued to
each other such that M has boundary components in both Seifert components one
can show that M is commensurable with any other such M , but this appears to be
already no longer true in the case of three Seifert components.

We end by giving an application to the quasi-isometric classification of Artin
groups. The point is that if the presentation graph is a tree then the group is a
graph-manifold group, so our results apply. In particular, we obtain the classification
of right-angled Artin groups whose presentation graph is a tree, answering a question
of Bestvina. We also show rigidity of such groups amongst right angled Artin groups.

We call a right-angled Artin group whose presentation graph is a tree a right-
angled tree group. If the tree has diameter ≤ 2 then the group is Z, Z2 or (free)×Z.
We answer Bestvina’s question by showing that right-angled tree groups with
presentation graph of diameter > 2 are all quasi-isometric to each other. In fact:

Theorem 5.3. Let G′ be any Artin group and let G be a right-angled tree group
whose tree has diameter > 2. Then G′ is quasi-isometric to G if and only if G′ has
presentation graph an even-labeled tree of diameter ≥ 2 satisfying: (i) all interior
edges have label 2; and (ii) if the diameter is 2 then at least one edge has label > 2.
(An “interior edge” is an edge that does not end in a leaf of the tree.)

The commensurability classification of right-angled tree groups is richer: Any
two whose presentation graphs have diameter 3 are commensurable, but it appears
that there are already infinitely many commensurability classes for diameter 4.

Theorem 5.3 also has implications for quasi-isometric rigidity phenomena in
relatively hyperbolic groups. For such applications see Behrstock–Druţu–Mosher
[1], where it is shown that graph manifolds, and thus tree groups, can only quasi-
isometrically embed in relatively hyperbolic groups in very constrained ways.

In the course of proving Theorem 5.3 we classify which Artin groups are quasi-
isometric to 3-manifold groups. This family of groups coincides with those proven
by Gordon to be isomorphic to 3-manifold groups [8].
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1. Quasi-isometry of fattened trees

Let T be a tree all of whose vertices have valence in the interval [3,K] for some
K. We fix a positive constant L, and assume T has been given a simplicial metric
in which each edge has length between 1 and L. Now consider a “fattening” of T ,
where we replace each edge E by a strip isometric to E × [−ε, ε] for some ε > 0
and replace each vertex by a regular polygon around the boundary of which the
strips of incoming edges are attached in some order. Call this object X. Let X0 be
similarly constructed, but starting from the regular 3-valence tree with all edges
having length 1, and with ε = 1/2.

We first note the easy lemma:

Lemma 1.1. There exists C, depending only on K, L, ε, such that X is C-bilipschitz
homeomorphic to X0. �

Note that if S is a compact riemannian surface with boundary having Euler
characteristic < 0 then its universal cover S̃ is bilipschitz homeomorphic to a fattened
tree as above, and hence to X0. We can thus use X0 as a convenient bilipschitz
model for any such S̃.

Let X be a manifold as above, bilipschitz equivalent to X0 (so X may be a
fattened tree or an S̃). X is a 2-manifold with boundary, and its boundary consists
of infinitely many copies of R.

Theorem 1.2. Let X be as above with a chosen boundary component ∂0X. Then
there exists K and a function φ : R → R such that for any K ′ and any K ′-bilipschitz
homeomorphism Φ0 from ∂0X to a boundary component ∂0X0 of the “standard
model” X0, Φ0 extends to a φ(K ′)-bilipschitz homeomorphism Φ : X → X0 which is
K-bilipschitz on every other boundary component.

Proof. If true for some X, then the theorem will be true (with K replaced by KL)
for any X ′ L-bilipschitz homeomorphic to X, so we may assume X is isometric to
our standard model X0. In this case we will see that K can be arbitrarily close to 1
(with very slightly more effort one can make K = 1).

We will construct the homeomorphism in two steps. The first step will be to
extend near ∂0X and the second to extend over the rest of X.

We consider vertices of the underlying tree adjacent to the boundary component
∂0X. These will have a certain “local density” along ∂0X given by the number of
them in an interval of a given length, measured with respect to the metric on ∂0X
that pulls back from ∂0X0 by Φ0. We first describe how to modify this local density
using a (1, L)-quasi-isometric bilipschitz homeomorphism with L = O(| log(D)|),
where D is the factor by which we want to modify density. We increase density
locally by moves on the underlying tree in which we take a vertex along ∂0X and
a vertex adjacent to it not along ∂0X and collapse the edge between them to
give a vertex of valence 4, which we then expand again to two vertices of valence
3, now both along ∂0X (see Fig. 1). This can be realized by a piecewise-linear
homeomorphism. Since it is an isometry outside a bounded set, it has a finite
bilipshitz bound k say. To increase density along an interval by at most a factor
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of D we need to repeat this process at most log2(D) times, so we get a bilipshitz
homeomorphism whose bilipschitz bound is bounded in terms of D. Similarly we
can decrease density (using the inverse move) by a bilipschitz map whose bilipschitz
bound is bounded in terms of D.

Figure 1. Increasing number of vertices along ∂0X by a depth one splitting

One can then apply this process simultaneously on disjoint intervals to change
the local density along disjoint intervals. For instance, applying the above doubling
procedure to all vertices along ∂0X doubles the density, further, since it affects
disjoint bounded sets, we still have bilipshitz bound k. Similarly, given two disjoint
intervals, one could, for instance, increase the local density by a factor of D on
one of the intervals and decrease it on the other by a different factor D′; since the
intervals are disjoint the bilipschitz bound depending only on the largest factor,
which is uniformly bounded by K ′, the bilipschitz bound for Φ0.

By these means we can, by replacing X by its image under a bilipshitz map with
bilipshitz bound bounded in terms of K ′ and which is an isometry on ∂0X, assure
that the number of vertices along ∂0X and ∂0X0 matches to within a fixed constant
over any interval in ∂0X and the corresponding image under Φ0. We now construct
a bilipshitz map from this new X to X0 by first extending Φ0 to a 1-neighborhood
of ∂0X and then extending over the rest of X by isometries of the components of
the complement of this neighborhood. By composing the two bilipshitz maps we
get a bilipshitz homeomorphism Ψ from the original X that does what we want on
∂0X while on every other boundary component ∂iX it is an isometry outside an
interval of length bounded in terms of K ′.

Now choose arbitrary K > 1. On ∂iX we can find an interval J of length bounded
in terms of K ′ and K that includes the interval J0 on which our map is not an
isometry, and whose length increases or decreases under Ψ by a factor of at most
K (specifically, if the length of J0 was multiplied by s, choose J of length λ`(J0)
with λ ≥ max(K−Ks

K−1 , s−1
K−1 )). Let Ψ′ be the map of J that is a uniform stretch

or shrink by the same factor (so the images of Ψ′ and Ψ|J are identical). The
following self-map α of a collar neighborhood J × [0, ε] restricts to Ψ′ ◦Ψ−1 on the
left boundary J × {0} and to the identity on the rest of the boundary:

α(x, t) =
ε− t

ε
Ψ′ ◦Ψ−1(x) +

t

ε
x.



6 JASON A. BEHRSTOCK AND WALTER D. NEUMANN

This α has bilipshitz constant bounded in terms of the bound on the left boundary
and the length of J , hence bounded in terms of K and K ′. By composing Ψ with
α on a collar along the given interval we adjust Ψ|∂iX to be a uniform stretch
or shrink along this interval. We can do this on each boundary component other
than ∂0X0. The result is a bilipschitz homeomorphism whose bilipschitz bound
L is still bounded in terms of K ′ and K and which satisfies the conditions of the
theorem. �

We now deduce an analogue of the above Theorem in the case where the boundary
curves ∂X are each labelled by one of a finite number of colors, C, and the maps
are required to be color preserving. We call a labelling a bounded coloring if there is
a uniform bound, so that given any point in X and any color there is a boundary
component of that color a uniformly bounded distance away. The lift of a coloring
on a compact surface yields a bounded coloring. We now fix a bounded coloring
on our “standard model” X0, further, we choose this coloring so that it satisfies
the following regularity condition which is stronger than the above hypothesis: for
every point on a boundary component and every color in C, there is an adjacent
boundary component with that color a bounded distance from the given point. Call
the relevant bound B.

Theorem 1.3. Let X be as above with a chosen boundary component ∂0X and fix a
bounded coloring on the elements of ∂X. Then there exists K and a function φ : R →
R such that for any K ′ and any color preserving K ′-bilipschitz homeomorphism Φ0

from ∂0X to a boundary component ∂0X0 of the “standard model” X0, Φ0 extends
to a φ(K ′)-bilipschitz homeomorphism Φ : X → X0 which is K-bilipschitz on every
other boundary component and which is a color preserving map from ∂X to ∂X0.

Proof. As in the proof of Theorem 1.2 we may assume X is isometric to our standard
model X0 and then we proceed in two steps, first extending near ∂0X, then extending
over the rest of X.

To extend near ∂0X we proceed as in the proof of Theorem 1.2, except now we
need to not only match density, but colors as well. Instead of using only a depth one
splitting as in Figure 1, one may perform a depth n splitting by choosing a vertex
at distance n from ∂0X and then moving that vertex to be adjacent to ∂0X; this
bilipschitz map increases the density of vertices along a given boundary component.
Note that a depth n move (and its inverse) can be obtained as a succession of
depth 1 moves and their inverses, so using such moves is only to yield a more
concise language. Since the coloring of X is a bounded coloring, from any point on
∂0X, there is a uniform bound on the distance to a vertex adjacent to a boundary
component of any given color. Thus, with a bounded bilipschitz constant we may
alter the density and coloring as needed.

As in the previous proof, we may extend to a map which does what is required
on ∂0X and which is an isometry, but not preserving boundary colors, outside a
neighborhood of ∂0X, and which is a K-bilipschitz map on the boundary components
other than ∂0X with K close to 1.

Step two will be to apply a further bilipschitz map that fixes up colors on these
remaining boundary components.

Consider a boundary component ∂1X adjacent to ∂0X. We want to make colors
correct on boundary components adjacent to ∂1X. They are already correct on
∂0X and the boundary components adjacent on each side of this. Call these ∂2X
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∂1X

∂0X ∂2X ∂3X

Figure 2. Adjusting colors along ∂1X. Three depth 3 moves are
illustrated. The shaded region shows where metric is adjusted. The
final metric is shown at the bottom. In the first and last pictures
all edges should have the same length since both are isometric to
the standard model (some distortion was needed to draw them).

and ∂′2X. As we move along ∂1X looking at boundary components, number the
boundary components ∂0X, ∂2X, ∂3X, . . . until we come to a ∂j+1X which is the
wrong color. We will use splitting moves to bring new boundary components of the
desired colors in to be adjacent to ∂1X between ∂jX and ∂j+1X. By our regularity
assumption on X0 we will need to add at most 2B new boundary components before
the color of ∂j+1X is needed; thus we need to perform at most 2B splitting moves.
Moreover, the bounded coloring hypothesis implies that each of these splitting moves
can be chosen to be of a uniformly bounded depth (note that the bounded coloring
assumption implies that at any point of X and any direction in the underlying tree
there will be any desired color a uniformly bounded distance away). We repeat
this process along all of ∂1X in both directions to make colors correct. The fact
that we do at most 2B such moves for each step along ∂1X means that we affect
the bilipschitz constant along ∂1X by at most a factor of 2B + 1. Since bounded
depth splitting moves have compact support and since there are at most 2B of these
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performed between any pair ∂jX, ∂j+1X, we see that the bilipschitz constant need
to fix this part of ∂1X is bounded in terms of B and the bounded coloring constant.
Since for i 6= j the neighborhoods affected by fixing the part of ∂1X between ∂jX,
∂j+1X are disjoint from those affected by fixing between ∂iX, ∂i+1X, we see that
fixing all of ∂1X requires a bilipschitz bound depending only on B and the bounded
coloring constant; let us call this bilipschitz bound C.

We claim that repeating this process boundary component by boundary com-
ponent one can keep the bilipschitz constant under control and thus prove the
theorem. To see this, consider Figure 2, which illustrates a typical set of splitting
moves and shows the neighborhoods on which the metric has been altered. Since we
can assure an upper bound on the diameter of these neighborhoods, we can bound
the bilipshitz constants of the modifications, this is the constant C above. Only a
bounded number of the neighborhoods needed for later modifications will intersect
these neighborhoods, this yields an overall bilipschitz bound which is at most a
bounded power of C. �

2. Closed graph manifolds

The following theorem answers Question 1.2 of Kapovich–Leeb [13]. It is a special
case of Theorem 3.2, but we treat it here separately since its proof is simple and
serves as preparation for the general result.

Theorem 2.1. Any two closed non-geometric graph manifolds have bilipschitz
homeomorphic universal covers. In particular, their fundamental groups are quasi-
isometric.

Let us begin by recalling:

Lemma 2.2 (Kapovich-Leeb [13]; Neumann [16]). Any non-geometric graph mani-
fold has an orientable finite cover where all Seifert components are circle bundles
over orientable surfaces of genus ≥ 2. Furthermore, one can arrange that the
intersection numbers of the fibers of adjacent Seifert components are ±1.

If we replace our graph manifold by a finite cover as in the above lemma then we
have a trivialization of the circle bundle on the boundary of each Seifert piece using
the section given by a fiber of a neighboring piece. The fibration of this piece then
has a relative Euler number.

Lemma 2.3 (Kapovich–Leeb [13]). Up to a bilipschitz homeomorphism of the
universal cover, we can assume all the above relative Euler numbers are 0.

A graph manifold G as in the last lemma is what Kapovich and Leeb call a
“flip-manifold.” It is obtained by gluing together finitely many manifolds of the form
(surface)×S1 by gluing using maps of the boundary tori that exchange base and
fiber coordinates. We can give it a metric in which every fiber S1 (and hence every
boundary circle of a base surface) has length 1.

A topological model for the universal cover G̃ can be obtained by gluing together
infinitely many copies of X0 × R according to a tree, gluing by the “flip map”„

0 1
1 0

«
: R× R → R× R when gluing boundary components. We call the resulting

manifold Y .
We wish to show that G̃ is bilipschitz homeomorphic to Y .
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Proof of Theorem 2.1. The universal cover of each Seifert component of G is iden-
tified with S̃i × R, where Si is one of a finite collection of compact surfaces with
boundary. Choose a number K sufficiently large that Theorem 1.2 applies for each
of them. Choose a bilipschitz homeomorphism from one piece S̃i ×R of G̃ to a piece
X0 × R of Y , preserving the (surface)×R product structure. We want to extend to
a neighboring piece of G̃. On the common boundary R× R we have a map that is
of the form φ1×φ2 with φ1 and φ2 both bilipschitz. By Theorem 1.2 we can extend
over the neighboring piece by a product map, and on the other boundaries of this
piece we then have maps of the form φ′1 × φ2 with φ′1 K-bilipschitz. We do this for
all neighboring pieces of our starting piece. Because of the flip, when we extend
over the next layer we have maps on the outer boundaries that are K-bilipschitz
in both base and fiber. We can thus continue extending outwards inductively to
construct our desired bilipschitz map. �

3. Graph manifolds with boundary

A non-geometric graph manifold M has a minimal decomposition along tori and
Klein bottles into geometric (Seifert fibered) pieces, called the geometric decompo-
sition. The cutting surfaces are then π1 injective. In this decomposition one cuts
along one-sided Klein bottles; this differs from JSJ, where one would cut along the
torus neighborhood boundaries of these Klein bottles. (See, e.g., Neumann–Swarup
[17] Section 4.)

We associate to this decomposition its decomposition graph, which is the graph
with a vertex for each Seifert component of M and an edge for each decomposing
torus or Klein bottle. If there are no one-sided Klein bottles then this graph is
the graph of the associated graph of groups decomposition of π1(M). (If there are
decomposing Klein bottles, the graph of groups has, for each Klein bottle, an edge
to a new vertex rather than a loop. This edge corresponds to an amalgamation to
a Klein bottle group along a Z × Z, and corresponds also to an inversion for the
action of π1(M) on the Bass-Serre tree. Using a loop rather than an edge makes
the Bass-Serre tree a weak covering of the decomposition graph.)

We color vertices of the decomposition graph black or white according to whether
the Seifert piece includes a boundary component of M or not (bounded or without
boundary).

A second graph we consider is the two-colored decomposition graph for the
decomposition of the universal cover M̃ into its fibered pieces. We denote it BS(M)
and call it the two-colored Bass-Serre tree, since it is the Bass-Serre tree for our graph
of groups decomposition. It can be obtained from the two-colored decomposition
graph by replacing each edge by a countable infinity of edges between its endpoints,
and then taking the universal cover of the resulting graph.

A weak covering map from a two-colored graph Γ to a two-colored graph Γ′ is a
color-preserving graph homomorphism φ : Γ → Γ′ with the property that for any
vertex v of Γ and every edge e′ at φ(v), there is at least one edge e at v mapping to
e′. An example of such a map is the map that collapses any multiple edge of Γ to a
single edge. Any covering map of non-geometric graph manifolds induces a weak
covering map of their two-colored decomposition graphs.

Note that if a weak covering map exists from Γ to Γ′ then Γ and Γ′ will have
isomorphic two-colored Bass-Serre trees. The equivalence relation on two-colored



10 JASON A. BEHRSTOCK AND WALTER D. NEUMANN

graphs generated by the relation of existence of a weak covering map will be called
bisimilarity. We shall prove in the next section:

Proposition 3.1. If we restrict to countable connected graphs then each equivalence
class of two-colored graphs includes two characteristic elements: a unique tree that
weakly covers every element in the class (the Bass-Serre tree); and a unique minimal
element, which is weakly covered by all elements in the class.

For example, if all the vertices of a graph have the same color, then the minimal
graph for its bisimilarity class is a single vertex with a loop attached and the
Bass-Serre tree is the single-colored regular tree of countably infinite degree.

Our main theorem is:

Theorem 3.2. If M and M ′ are non-geometric graph manifolds then the following
are equivalent:

(1) M̃ and M̃ ′ are bilipschitz homeomorphic.
(2) π1(M) and π1(M ′) are quasi-isometric.
(3) BS(M) and BS(M ′) are isomorphic as two-colored trees.
(4) The minimal two-colored graphs in the bisimilarity classes of the decomposi-

tion graphs Γ(M) and Γ(M ′) are isomorphic.

Proof. Clearly (1) implies (2). The equivalence of (3) and (4) is Proposition 3.1.
Kapovich and Leeb [13] proved that any quasi-isometry essentially preserves the
geometric decomposition of Haken manifolds, and therefore induces an isomorphism
between their Bass-Serre trees. To prove the theorem it remains to show that (3) or
(4) implies (1).

Suppose therefore that M and M ′ are non-geometric graph manifolds that satisfy
the equivalent conditions (3) and (4). Let Γ be the minimal graph in the bisimilarity
class of Γ(M) and Γ(M ′). It suffices to show that each of M̃ and M̃ ′ is bilipschitz
homeomorphic to the universal cover of some standard graph manifold associated to
Γ. There is therefore no loss in assuming that M ′ is such a standard graph manifold;
“standard” will mean that Γ(M ′) = Γ and that each loop at a vertex in Γ corresponds
to a decomposing Klein bottle (i.e., a boundary torus of the corresponding Seifert
fibered piece that is glued to itself by a covering map to the Klein bottle).

Denote the set of pairs consisting of a vertex of Γ and an outgoing edge at that
vertex by C. Since the decomposition graphs Γ(M), Γ(M ′), BS(M), and BS(M ′)
for M , M ′, M̃ , and M̃ ′ map to Γ, we can label the boundary components of the
geometric pieces of these manifolds by elements of C.

Our desired bilipschitz map can now be constructed inductively as in the proof of
Theorem 2.1, at each stage of the process having extended over some submanifold
Y of G̃. The difference from the situation there is that now when we extend the
map from Y over a further fibered piece X × R, we must make sure that we are
mapping boundary components to boundary components with the same C–label.
That this can be done is exactly the statement of Theorem 1.3. �

Remark 3.3. With some work, Theorem 3.2 can be generalized to cover many
situations outside of the context of 3-manifolds; such a formulation will appear in a
forthcoming paper.
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4. Two-colored graphs

Definition 4.1. A graph Γ consists of a vertex set V (Γ) and an edge set E(Γ) with
a map ε : E(Γ) → V (Γ)2/C2 to the set of unordered pairs of elements of V (Γ).

A two-colored graph is a graph Γ with a “coloring” c : V (Γ) → {b,w}.
A weak covering of two-colored graphs is a graph homomorphism f : Γ → Γ′

which respects colors and has the property: for each v ∈ V (Γ) and for each edge
e′ ∈ E(Γ′) at f(v) there exists an e ∈ E(Γ) at v with f(e) = e′.

From now on, all graphs we consider will be assumed to be connected. It is easy
to see that a weak covering is then surjective. The graph-theoretic results are valid
for n–color graphs, but we only care about n = 2.

Definition 4.2. Two-colored graphs Γ1,Γ2 are bisimilar, written Γ1 ∼ Γ2, if Γ1

and Γ2 weakly cover some common two-colored graph.

The following proposition implies, among other things, that this definition agrees
with our earlier version.

Proposition 4.3. The bisimilarity relation ∼ is an equivalence relation. Moreover,
each equivalence class has a unique minimal element up to isomorphism.

Lemma 4.4. If a two-colored graph Γ weakly covers each of a collection of graphs
{Γi} then the Γi all weakly cover some common Γ′.

Proof. The graph homomorphism that restricts to a bijection on the vertex set but
identifies multiple edges with the same ends to a single edge is a weak covering.
Moreover, if we do this to both graphs Γ and Γi of a weak covering Γ → Γi we
still have a weak covering. So there is no loss in assuming all our graphs have no
multiple edges. A graph homomorphism Γ → Γi is then determined by its action on
vertices. The induced equivalence relation ≡ on vertices of Γ satisfies the property:

If v ≡ v1 and e is an edge with ε(e) = {v, v′} then there exists an edge e1

with ε(e1) = {v1, v
′
1} and v′ ≡ v′1.

Conversely, an equivalence relation on vertices of Γ with this property induces a
weak covering. We must thus just show that if we have several equivalence relations
on V (Γ) with this property, then the equivalence relation ≡ that they generate
still has this property. Suppose v ≡ w for the generated relation. Then we have
v = v0 ≡1 v1 ≡2 · · · ≡n vn = w for some n, where the equivalence relations ≡i are
chosen from our given relations. Let e0 be an edge at v = v0 with other end at v′0.
Then the above property guarantees inductively that we can find an edge ei at vi

for i = 1, 2, . . . , n, with other end at v′i and with v′i−1 ≡i v′i. Thus we find an edge
en at w = vn whose other end v′n satisfies v′0 ≡ v′n. �

Proof of Proposition 4.3. We must show that Γ1 ∼ Γ2 ∼ Γ3 implies Γ1 ∼ Γ3. Now
Γ1 and Γ2 weakly cover a common Γ12 and Γ2 and Γ3 weakly cover some Γ23.
The lemma applied to Γ2, {Γ12,Γ23} gives a graph weakly covered by all three of
Γ1,Γ2,Γ3, so Γ1 ∼ Γ3.

The minimal element in a bisimilarity class is found by applying the lemma to
an element Γ and the set {Γi} of all two-colored graphs that Γ weakly covers. �

Proposition 4.5. If we restrict to two-colored graphs all of whose vertices have
countable valence (so the graphs are also countable, by our connectivity assumption),
then each bisimilarity class contains a tree T , unique up to isomorphism, that weakly
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covers every element of the class. It can be constructed as follows: If Γ is in the
bisimilarity class, duplicate every edge of Γ a countable infinity of times, and then
take the universal cover of the result (in the topological sense).

Note that uniqueness of T in the above proposition depends on the fact that
T is a tree; there are many different two-colored graphs that weakly cover every
two-colored graph in a given bisimilarity class.

Proof of Proposition 4.5. Given a two-colored graph Γ, we can construct a tree T
as follows: Start with one vertex x, labeled by a vertex v of Γ. Then for each vertex
w of Γ connected to v by an edge, add infinitely many edges at x leading to vertices
labeled w. Then repeat the process at these new vertices and continue inductively.
Finally forget the Γ–labels on the resulting tree and only retain the corresponding
{b,w}–labels.

If Γ weakly covers a graph Γ′, then using Γ′ instead of Γ to construct the above
tree T makes no difference to the inductive construction. Thus T is an invariant for
bisimilarity. It clearly weakly covers the original Γ, and since Γ was arbitrary in the
bisimilarity class, we see that T weakly covers anything in the class.

To see uniqueness, suppose T ′ is another tree that weakly covers every element
of the bisimilarity class. Then T ′ weakly covers the T constructed above from Γ.
Composing with T → Γ gives a weak covering f : T ′ → Γ for which infinitely many
edges at any vertex v ∈ V (T ′) lie over each edge at the vertex f(v) ∈ V (Γ). It
follows that T ′ itself can be constructed from Γ as in the first paragraph of this
proof, so T ′ is isomorphic to T . �

Using a computer we have found (in about 5 months of processor time):

Proposition 4.6. The number of connected minimal two-colored graphs with n
vertices of which exactly b are black (excluding the two 1–vertex graphs with no
edges) is given by the table:

n b : 0 1 2 3 4 5 6 7 total
1 1 1 0 0 0 0 0 0 2
2 0 4 0 0 0 0 0 0 4
3 0 10 10 0 0 0 0 0 20
4 0 56 61 56 0 0 0 0 173
5 0 446 860 860 446 0 0 0 2612
6 0 6140 17084 20452 17084 6140 0 0 66900
7 0 146698 523416 755656 755656 523416 146698 0 2851540
8 0 6007664 25878921 44839104 48162497 44839104 25878921 6007664 201613875

The proposition shows, for example, that there are 199 quasi-isometry classes
for non-geometric graph manifolds having four or fewer Seifert pieces (199 =
2 + 4 + 20 + 173). In the next subsection we list the corresponding 199 graphs.
These were found by hand before programming the above count. This gives some
confidence that the computer program is correct.

4.1. Enumeration of minimal two-colored graphs up to 4 vertices. We only
consider connected graphs and we omit the two 1-vertex graphs with no edges. In
the following table “number of graphs n + n” means n graphs as drawn and n with
b and w exchanged. Dotted loops in the pictures represent loops that may or may
not be present and sometimes carry labels x, x′, . . . referring to the two-element set
{“present”, “absent”}.
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number of graphs

1 vertex: • ◦ 2

2 vertices: • ◦ 4

3 vertices: • ◦ ◦ 8 + 8

◦ • ◦ 2 + 2 (total: 20)

4 vertices: • ◦ ◦ ◦ 16 + 16

◦ • ◦ ◦ 16 + 16

• • ◦ ◦ 16

• ◦ ◦ • 4 + 4

•
x

◦
y

•
x′

◦
y′

12 (x 6= x′ or y 6= y′)

◦
• •

llllllll

RRRRRRRR 4 + 4

◦

◦
• ◦

llllllll

RRRRRRRR 4 + 4

◦

◦
◦ ◦

llllllll

RRRRRRRR 16 + 16

•
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◦

•
x

◦
mmmmmmmm

QQQQQQQQ 8 + 8 (x 6= x′)

•
x′

• ◦
4 + 4

◦ ◦

• ◦
1

◦ •

Total for 4 vertices: 173

4.2. Algorithm for finding the minimal two-colored graph. Let Γ be a con-
nected two-colored graph. We wish to construct the minimal two-colored graph Γ0

for which there is a weak covering Γ → Γ0. Note that any coloring c : V (Γ) → C of
the vertices of Γ induces a graph homomorphism to a graph Γc with vertex set C
and with an edge connecting the vertices w1, w2 ∈ C if and only if there is some
edge connecting a v1, v2 ∈ V (Γ) with c(vi) = wi, i = 1, 2.

We start with C containing just our original two colors, which we now call 0, 1,
and gradually enlarge C while modifying c until the the map Γ → Γc is a weak
covering. For a vertex v let Adjacent(v) be the set of colors of vertices connected to
v by an edge (these may include v itself). We shall always call our coloring c, even
as we modify it.

(1) CurrentColor = 0; MaxColor = 1;
(2) While CurrentColor ≤ MaxColor;

(a) If there are two vertices v1, v2 with c(vi) = CurrentColor that have
different Adjacent(vi)’s;

(b) Then increment MaxColor and add it to the set C, change the color
of each v with c(v) = CurrentColor and Adjacent(v) = Adjacent(v1)
to MaxColor, and then set CurrentColor = 0;

(c) Else increment CurrentColor;
(d) End If;

(3) End While.

We leave it to the reader to verify that this algorithm terminates with Γ → Γc

the weak covering to the minimal two-colored graph (in step (2b) we could add a
new color for each new value of Adjacent(v) with v ∈ {v : c(v) = CurrentColor}
rather than for just one of them; this seems a priori more efficient but proved hard
to program efficiently). The algorithm is inspired by Brendan McKay’s “nauty” [14];
we are grateful to Dylan Thurston for the suggestion.

Counting the number of minimal two-colored graphs with b black vertices and w
white vertices is now easy. We order the vertices 1, . . . , b, . . . , b + w and consider all
connected graphs on this vertex set. For each we check by the above procedure if it
is minimal and if so we count it. Finally, we divide our total count by b!w! since
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each graph has been counted exactly that many times (a minimal two-colored graph
has no automorphisms).

5. Artin groups

An Artin group is a group given by a presentation of the following form:

A = 〈x1, ..., xn | (xi, xj)mij
= (xj , xi)mji

〉
where, for all i 6= j in {1, . . . , n}, mij = mji ∈ {2, 3, . . . ,∞} with (xi, xj)mij

=
xixjxi... (mij letters) if mij < ∞ and when mij = ∞ we do not add a defining
relation between xi and xj . A concise way to present such a group is as a finite
graph labeled by integers greater than 1: such a graph has n vertices, one for each
generator, and a pair of vertices are connected by an edge labeled by mij if mij < ∞.

An important class of Artin groups is the class of right-angled Artin group. These
are Artin groups with each mij either 2 or ∞, i.e., the only defining relations are
commutativity relations between pairs of generators. These groups interpolate
between the free group on n generators (n vertices and no edges) and Zn (the
complete graph on n vertices).

We shall call a presentation tree big if it has diameter ≥ 3 or has diameter 2 and
at least one weight on it is > 2. An Artin group given by a non-big tree has infinite
center and is virtually (free)×Z. The Artin groups given by non-big presentation
trees thus fall into three quasi-isometry classes (Z, Z2, F2 × Z, where F2 is the
2-generator free group) and are not quasi-isometric to any Artin group with big
presentation trees (this follows, for instance, from [12]). We shall therefore only
be concerned with Artin groups whose presentation trees are big. For right-angled
Artin groups this just says the presentation tree has diameter larger than 2.

We use the term tree group to refer to any Artin group whose presentation
graph is a big tree. Any right-angled tree group is the fundamental group of a
flip graph manifold: this is seen by identifying each diameter 2 region with a
(punctured surface)× S1 and noting that pairs of such regions are glued together
by switching fiber and base directions.

Since any right-angled tree group corresponds to a graph manifold with boundary
components in each Seifert piece, Theorem 3.2 yields immediately the following
answer to Bestvina’s question about their quasi-isometry classification:

Theorem 5.1. Any pair of right-angled tree groups are quasi-isometric.

This raises the following natural question:

Question 5.2. When is a finitely generated group G quasi-isometric to a right-
angled tree group?

The simple answer is that G must be weakly commensurable with the fundamental
group of a non-geometric graph manifold with boundary components in every Seifert
component, this follows from our Theorem 3.2 and Kapovich–Leeb’s quasi-isometric
rigidity result for non-geometric 3-manifolds [12]. But it is natural to ask the
question within the class of Artin groups, where this answer is not immediately
helpful. We give the following answer, which in particular shows that right-angled
tree groups are quasi-isometrically rigid in the class of right-angled Artin groups.

Theorem 5.3. Let G′ be any Artin group and let G be a right-angled tree group.
Then G′ is quasi-isometric to G if and only if G′ has presentation graph a big
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even-labeled tree with all interior edges labeled 2. (An “interior edge” is an edge
that does not end in a leaf of the tree.)

We first recall two results relevant to Artin groups given by trees. The first
identifies which Artin groups are 3-manifold groups and the second says what those
3-manifolds are.

Theorem 5.4 (Gordon; [8]). The following are equivalent for an Artin group A:
(1) A is virtually a 3-manifold group.
(2) A is a 3-manifold group.
(3) Each connected component of its presentation graph is either a tree or a

triangle with each edge labeled 2.

Theorem 5.5 (Brunner [3], Hermiller-Meier [11]). The Artin group associated to
a weighted tree T is the fundamental group of the complement of the following
connected sum of torus links. For each n-weighted edge of T associate a copy of
the (2, n)-torus link and if n is even associate each end of the edge with one of the
two components of this link; if n is odd associate both ends of the edge with the
single component (a (2, n)-knot). Now take the connected sum of all these links,
doing connected sum whenever two edges meet at a vertex, using the associated link
components to do the sum.

(In Theorem 5.5 the fact that for an odd-weighted edge the (2.n) torus knot can
be associated with either end of the edge shows that one can modify the presentation
tree without changing the group. This is a geometric version of the “diagram
twisting” of Brady, McCammond, Mühlherr, Neumann [2].)

Proof of Theorem 5.3. Let G′ be an Artin group that is quasi-isometric to a right-
angled tree group. Right-angled tree groups are one-ended and hence G, and thus G′

as well, is not freely decomposable. Thus the presentation graph for G′ is connected.
By the quasi-isometric rigidity Theorem for 3-manifolds, as stated in the intro-

duction, we know that G′ is weakly commensurable to a 3-manifold group.
Unfortunately it is not yet known if every Artin group is torsion free. If we knew

G′ is torsion free then we could argue as follows. First, since G′ is torsion free, it
follows that G′ is commensurable with a 3-manifold group. Thus by Theorem 5.4
it is a 3-manifold group and is a tree group. By Theorem 3.2 the corresponding
graph manifold must have boundary components in every Seifert component. Using
Theorem 5.5 it is then easy to see that this gives precisely the class of trees of the
theorem. We say more on this in Theorem 5.7 below.

Since we only know that the quotient of G′ by a finite group, rather than G′

itself, is commensurable with a 3-manifold group we cannot use Gordon’s result
(Theorem 5.4) directly. But we will follow its proof.

Gordon rules out most Artin groups being fundamental groups of 3-manifolds
by proving that they contain finitely generated subgroups which are not finitely
presented (i.e., they are not coherent). Since Scott [24] proved 3-manifold groups are
coherent, and since coherence is a commensurability invariant, such Artin groups are
not 3-manifold groups. Since coherence is also a weak commensurability invariant,
this also rules out these Artin groups in our situation.

The remaining Artin groups which Gordon treats with a separate argument are
those that include triangles with labels (2, 3, 5) or (2, 2,m). The argument given by
Gordon for these cases also applies for weak commensurability. (A simpler argument
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than Gordon’s in the (2, 2,m) case is that A then contains both a Z3 subgroup and
a non-abelian free subgroup, which easily rules out weak commensurability with a
3-manifold group.) �

The above argument leads also to the following generalization of Gordon’s theo-
rem.

Theorem 5.6. An Artin group A is quasi-isometric to a 3-manifold group if and
only if it is a 3-manifold group (and is hence as in Theorem 5.4).

Proof. Fix an Artin group A which is quasi-isometric to a 3-manifold group. By
Papasoglu-Whyte [18], the reducible case reduces to the irreducible case, so we
assume the Artin group has a connected presentation graph.

The quasi-isometric rigidity Theorem for 3-manifolds implies that A is weakly
commensurable (or in some cases even commensurable) with a 3-manifold group, so
as in the previous proof an easy modification of Gordon’s argument applies. �

We can, in fact, more generally describe the quasi-isometry class of any tree group
A in terms of Theorem 5.3. That is, we can describe the two-colored decomposition
graph for the graph manifold G whose fundamental group is A.

Theorem 5.7. The colored decomposition graph is obtained from the presentation
tree of the Artin group by the following sequence of moves:

(1) Color all existing vertices black.
(2) For each odd-weighted edge, collapse the edge, thus identifying the vertices at

its ends, and add a new edge from this vertex to a new leaf which is colored
white.

(3) Remove any 2-weighted edge leading to a leaf, along with the leaf; on each
2-weighted edge which does not lead to a leaf, simply remove the weight.

(4) The only weights now remaining are even weights > 2. If such a weight is
on an edge to a leaf, just remove the weight. If it is on an edge joining two
nodes, remove the weight and add a white vertex in the middle of the edge.

Proof. By Theorem 5.5 our graph manifold G is a link complement. Eisenbud and
Neumann in [5] classify link complements (in arbitrary homology spheres) in terms
of “splice diagrams.” We first recall from [5] how to write down the splice diagram
in our special case. The splice diagram for the (2, n)–torus link, in which arrowheads
correspond to components of the link, is as follows:

oo // n = 2

◦

k
n = 2k > 2

◦oo //

◦ 2 ◦ n

��

◦

n = 2k + 1 > 2

(Omitted splice diagram weights are 1.) The splice diagram for a connected sum of
two links is obtained by joining the splice diagrams for each link at the arrowheads
corresponding to the link components along which connected sum is performed,
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changing the merged arrowhead into an ordinary vertex, and adding a new 0–
weighted arrow at that vertex. For example the splice diagram corresponding to the
Artin presentation graph

◦ 2 ◦ 4 ◦ 3 ◦
would be

◦ ◦

◦oo 0

OO

◦
2

◦
0

OO

◦
2

3

◦
Now the nodes of the splice diagram correspond to Seifert pieces in the geometric
decomposition of the graph manifold. Thus the colored decomposition graph is
obtained by taking the full subtree on the nodes of the diagram with nodes that
had arrowheads attached colored black and the others colored white. This is as
described in the theorem. �
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