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Abstract. In this note we give the quasi-isometry classification for a class of

right angled Artin groups. In particular, we obtain the first such classification
for a class of Artin groups with dimension larger than 2; our families exist in

every dimension.

1. Introduction

1.1. Background. A right-angled Artin group is a finitely presented group G which
can be described by a finite graph Γ, the presentation graph, in the following
way: the vertices of Γ are in bijective correspondence with the generators of G
and the defining relations in G consist of a commuting relation between each pair
of generators connected by an edge in G. Right-angled Artin groups interpolate
between free groups (defined by graphs with no edges) and free abelian groups
(defined by complete graphs). In between these two extremes, right-angled Artin
groups include a rich source of interesting groups. In this paper we will describe the
quasi-isometric classification of a family of such groups.

The two main families of right-angled Artin groups which have been classified are
those whose presentation graphs are trees or atomic. It was proven by Behrstock
and Neumann [BN] that all right-angled Artin groups which have a presentation
graph a tree of diameter greater than two are quasi-isometric to each other and are
not quasi-isometric to any other right-angled Artin groups; trees of diameter two
give the product of a nonabelian free group with an infinite cyclic group and these
are all quasi-isometric to each other and to no other right angled Artin group by
work of Kapovich and Leeb [KL2]; the tree of diameter 1 corresponds to Z2, which
is not quasi-isometric to any other right-angled Artin group. Atomic graphs were
introduced by Bestvina, Kleiner and Sageev; these are connected graphs with no
valence one vertices, no cycles of length less than five, and no separating closed vertex
stars; they proved that right-angled Artin groups with presentation graphs that are
atomic are quasi-isometric if and only if the groups have isomorphic presentation
graphs [BKS]. Note that both trees and atomic graphs yield Artin groups with
cohomological dimension at most 2 since the cohomological dimension of the group
is the number of vertices of a maximal complete subgraph (cf. [CD]).

The only other family of connected right-angled Artin groups we are aware of
which is completely classified is given by complete graphs; this follows since Zn

is quasi-isometric to Zm if and only if n = m. Since all other right-angled Artin
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groups have free subgroups it follows that these groups are not quasi-isometric to
any other right-angled Artin group.

1.2. Results. Define Tn to be the smallest class of n-dimensional simplicial com-
plexes satisfying:

• The n–simplex is in Tn;
• If K1 and K2 are complexes in Tn then the union of K1 and K2 along any

(n− 1)–simplex is in Tn.

For n = 1 this is the class of finite trees. For K ∈ Tn let AK denote the right-
angled Artin group whose presentation graph is the 1–skeleton of K, we call this
a right-angled n–tree group. (Note that Z3 and the right-angled 1–tree groups are
exactly the right-angled Artin groups which are the fundamental groups of compact
3–manifolds, [HM].) If K has a vertex that is distance 1 from all other vertices,
then it is the cone on some K ′ ∈ Tn−1 and hence AK

∼= Z×AK′ ; we say that such
an AK is reducible.

To each K ∈ Tn we associate a tree Γ(K) with a vertex-coloring in a way to be
described in section 2. The colors consist of n + 1 “p–colors” and one “f-color”.
In that section we also describe a “bisimilarity” relation, as used in [BN], for such
trees.

The following is our main result, which is proven in sections 3 and 4. This gives
the first non-trivial classification theorem of high dimensional right-angled Artin
groups.

Theorem 1.1. Given K,K ′ ∈ Tn. The groups AK and AK′ are quasi-isometric if
and only if Γ(K) and Γ(K ′) are bisimilar after possibly reordering the p–colors by
an element of the symmetric group on n+ 1 elements.

As an immediate consequence we obtain the following, which generalizes [BN,
Theorem 3.2], where the n = 1 case was established. We define an element K ∈ Tn
to be maximally branched if each n–simplex has other simplices glued to it either
along exactly one (n− 1)–face or along all of its (n− 1)–faces; we say that AK is
maximally branched if K is maximally branched.

Corollary 1.2. For any fixed n, any two irreducible maximally branched right angle
n–tree groups are quasi-isometric.

A consequence of Theorem 1.1 together with a theorem of Papasoglu and Whyte
concerning quasi-isometric invariance of free product decompositions [PW, Theo-
rem 0.4] is the following:

Corollary 1.3. Let K = {K1, . . . ,Kn} and K′ = {K ′1, . . . ,K ′m} be finite sets of
elements with Ki ∈ Tn(i) and K ′j ∈ Tn(j). Let AK be the right-angled Artin group
whose presentation graph is the disjoint union of the 1–skeleton of the Ki, define
AK′ similarly.

Then the group AK is quasi-isometric to AK′ if and only if for each Ki there
exists j with n(i) = n(j) and Γ(Ki) bisimilar to Γ(K ′j) and for each K ′p there exists
Kq with n(p) = n(q) and Γ(K ′p) bisimilar to Γ(Kq).

In a previous paper, we showed that in the case where all the Ki and Kj are
simplicies, then the quasi-isometric classification of free products agrees with the
commensurability classifications [BJN]. Already in the class of groups {AK : K ∈ T1}
are infinite families of quasi-isometric, but pairwise non-commensurable groups.



QI CLASSIFICATION OF SOME HIGH DIMENSIONAL RIGHT-ANGLED ARTIN GROUPS 3

A question that remains open is to find the commensurabilty classification of the
groups discussed here. In the remainder of the paper, unless we specify otherwise,
we will only consider connected presentation graphs.

Acknowledgements. We thank the anonymous referees for useful comments; in
particular for the suggestion of adding Remark 4.5.

2. Preliminaries

2.1. Geometric models. We describe the geometric models that we will work with.
Fix a complex K ∈ Tn. We define a piece to be the star in K of an (n− 1)–simplex
of K which is the boundary of at least 2 n–simplices. Let P denote a piece of K.
Then, P consists of a finite collection of n–simplices attached along the common
(n − 1)–simplex, i.e., the join of the (n − 1)–simplex with a finite set of points
p1, . . . , pk. The Artin group AP is thus the product of a free group of rank k with
Zn. Giving the free group the redundant presentation

〈p0, p1, . . . , pk : p0p1 . . . pk = 1〉

allows us to naturally think of it as the fundamental group of a (k + 1)–punctured
sphere Sk+1. Hence, AP is the fundamental group of M = Sk+1 × Tn, with the k
n–simplices of P representing the fundamental groups of k of the k + 1 boundary
components.

When two pieces P and P ′ of K intersect in an n–simplex this corresponds to
gluing the corresponding manifolds, M and M ′, along a boundary component by
a flip — a map that switches the base coordinate of one piece with one of the S1

factors of the torus fiber of the other piece. Since the torus has n+ 1 factors S1,
there are n possible flips we can use for such a gluing. In this way we associate to
any complex K ∈ Tn a space XK with fundamental group AK which is a manifold
away from a certain “branch locus”. This branch locus consists of the collection
of (n + 1)–tori corresponding to n–simplices in K which are contained in more
than two pieces. Note that for n = 1 the branch locus is always empty, whereas
for n > 1 it is empty if and only if every n–simplex is contained in at most two
pieces: such minimally branched complexes yield a family of “high dimensional
graph manifolds” (i.e., manifolds glued from trivial bundles of tori over compact
surfaces with boundary) which are quasi-isometrically classified as a special case of
Theorem 1.1.

We call the decomposition of XK into its pieces the geometric decomposition.
There is a corresponding graph-of-groups decomposition of AK with two kinds of
vertex groups, the fundamental groups of the pieces and the fundamental groups
of the separating tori; the edge groups are copies of the fundamental groups of the
separating tori, one copy for each geometric piece that the torus bounds.

Remark 2.1. For a complex K ∈ Tn and for any piece P as above, AP is quasi-
isometrically embedded in AK . This holds since there exists a retraction from
AK to AP , cf. [BDM, Proposition 10.4]. (This is more generally true for any full
subcomplex.)

2.2. Labelled graphs. To each K ∈ Tn we will associate a labelled bipartite tree,
Γ(K), whose underlying graph is the graph of the graph-of-groups decomposition of
AK described above.
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To each piece in K we assign a vertex labelled p (for piece). To each of the
n–simplices which is in more than one piece we assign a vertex labelled f (for face).
Each f–vertex is connected by an edge to each of the p–vertices which corresponds
to a piece containing the n–simplex.

Since for any K ∈ Tn there is simplicial map to an n–dimensional simplex ∆,
which is unique up to permutation of ∆, it follows that labelling the vertices of ∆ by
1 to n+ 1 pulls back to a consistent labelling on all the vertices of K. Note that in
any piece all the vertices of their common (n− 1)–simplex (the “spine” of the piece)
are given the same label. We label each p–vertex by the index of the n-simplex
vertex which is not on the spine of the corresponding piece. Hence the label set for
the p–vertices are the elements of the set {1, . . . , n + 1}. The possible labels for
vertices are thus p1, p2, . . . , p(n+ 1) and f, for a total of n+ 2 possible labels.

The p/f–distinction gives a bipartite structure on our tree Γ(K). The p–vertices
to which a given f–vertex is connected have distinct labels, so a f–vertex has valence
at most n + 1 (and at least 2). A p–vertex can be connected to any number of
f–vertices.

2.3. Bisimilarity.

Definition 2.2. A graph Γ consists of a vertex set V (Γ) and an edge set E(Γ) with
a map ε : E(Γ)→ V (Γ)2/Z2 to the set of unordered pairs of elements of V (Γ).

A colored graph is a graph Γ, a set C, and a “vertex coloring” c : V (Γ)→ C.
A weak covering of colored graphs is a graph homomorphism f : Γ→ Γ′ which

respects colors and has the property: for each v ∈ V (Γ) and for each edge e′ ∈ E(Γ′)
at f(v) there exists an e ∈ E(Γ) at v with f(e) = e′.

Henceforth, we assume all graphs we consider to be connected. It is easy to see
that a weak covering is then surjective.

Definition 2.3. Colored graphs Γ1,Γ2 are bisimilar, written Γ1 ∼ Γ2, if Γ1 and Γ2

weakly cover some common colored graph.

Our applications of bisimilarity rely on the following.

Proposition 2.4 ([BN]). The bisimilarity relation ∼ is an equivalence relation,
and each equivalence class has a unique minimal element up to isomorphism. �

The following also holds, with a proof as in [BN] .

Proposition 2.5. If we restrict to connected bipartite colored graphs of the type in
the previous subsection (p/f–bipartite, and the p–vertices attached to an f–vertex
have distinct colors from the set {1, . . . , n + 1}), which are countable but may be
infinite, then each bisimilarity class contains a tree T , unique up to isomorphism,
which weakly covers every element of the class. It can be constructed as follows:
If Γ is in the bisimilarity class, duplicate every f–vertex and its adjacent edges a
countable infinity of times, and then take the universal cover of the result (in the
topological sense). �

2.4. Examples.

Example 2.6. In Figure 1 we give three minimally branched complexesK1,K2,K3 ∈
T2 and their associated labelled graphs Γ(Ki). Notice that Γ(K1) is easily checked
to be minimal. It is also easy to check that Γ(K2) weakly covers Γ(K1) by sending
both the p2 vertices together and the p1 vertices together and hence Γ(K1) is the
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minimal graph in the bisimilarity class of Γ(K2). On the other hand, the graph
Γ(K3) is minimal and hence not bisimilar to either of the other two graphs. See
[BN] for an algorithm to determine minimality.
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P1 P2 P3F F

P1 P2 P3F F P2F F P1

P1 P2 P3F F F P1 P2F

K1

K2

K3

Figure 1. Three minimally branched complexes in T2 and their
associated labelled graphs.

Example 2.7. In Figure 2 we give two examples of maximally branched complexes
B1, B2 ∈ T2 and their associated labelled graphs Γ(Bi). One can check by hand that
Γ(B2) weakly covers Γ(B1). In fact Γ(B1) is the minimal graph in this bisimilarity
class. Corollary 1.2 generalizes this example.
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P3 F P1

P2
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B2

Figure 2. Two maximally branched complexes in T2 and their
associated labelled graphs.
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Proof of Corollary 1.2. The minimal graph associated to an irreducible maximally
branched right-angled n–tree group is a star consisting of a single central f–vertex
connected to n+ 1 p–vertices, one of each color. �

Example 2.8. For each n ≥ 2, any pair of complexes K,K ′ ∈ Tn which use
only two p–colors yield quasi-isometric groups and the minimal such graph, up to
permutation of labels, corresponds to a graph of the form p1—f—p2. Any such
group is reducible; more generally, a group corresponding to a complex K ∈ Tn is
reducible if and only if its graph uses less than n+ 1 p–colors. See Figure 3 for an
example of a group in the quasi-isometry class of such a K ∈ T2, but whose graph
is not minimal.

The number of minimal graphs with k p–vertices chosen from a set of 3 p–colors
grows with k. For k = 3 there are two minimal graphs, for k = 4 there are three,
for k = 5 there are twelve such graphs, and for k = 6 there are forty-five.

Note there are two quasi-isometry types corresponding to graphs with one p–
vertex, one when the piece is just a simplex and the other when the piece is built
from more than one simplex, and just one minimal graph with two p–vertices, this
is the example given in Figure 3 whose minimal graph is p1—f—p2. Hence, there
are exactly 65 quasi-isometry types of right-angled 2–tree groups built from 6 or
less pieces.

1

2

3
P1P1 P2F F

Figure 3. A complex in T2 built from three pieces and its associ-
ated labelled graph.

3. Bisimilar implies quasi-isometric

The following will prove the “if” direction of Theorem 1.1.

Theorem 3.1. Fix K,K ′ ∈ Tn. If the graphs Γ(K) and Γ(K ′) are bisimilar, then
AK and AK′ are quasi-isometric.

Proof of Theorem 3.1. Fix a pair of complexes K,K ′ ∈ Tn for which Γ(K) and
Γ(K ′) are bisimilar and let Γ denote the minimal graph in this bisimilarity class.

Each group AK and AK′ is represented as the fundamental group of the gener-
alized “graph space” XK and XK′ (it need not be a manifold, since it has up to
(n+ 1) pieces glued together along each gluing torus), and is thus quasi-isometric
to the universal cover of this space. Below we follow the same induction as in the
proof of [BN, Theorem 3.2] to show that the universal covers of XK and XK′ are
bilipschitz homeomorphic, implying the quasi-isometry of AK and AK′ .

The universal cover of a piece of XK or XK′ is identified with S̃i ×Rn, where Si

is one of a finite collection of compact riemannian surfaces with boundary (each of
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these is a sphere minus a finite number, at least three, of open disks). Note that
these Si all have bilipschitz homeomorphic universal covers.

Let X0 denote the universal cover of a fixed riemannian metric on a sphere minus
three disks. Let C be a finite set of “colors”. A bounded C-coloring on the boundary
components of X0 is an assignment of a color in C to each boundary component of
X0 such that every point of X0 is within a uniformly bounded distance of boundary
components of every color. Choose a fixed boundary component of the universal
cover, denoted ∂0X0. The following is Theorem 1.3 of [BN].

Theorem 3.2. For any manifold X bilipschitz homeomorphic to X0 with a bounded
C–coloring on the elements of ∂X, there exists L and a function φ : R → R such
that for any L′ and any color-preserving L′–bilipschitz homeomorphism Φ0 from a
boundary component ∂0X of X to ∂0X0, then Φ0 extends to a φ(L′)–bilipschitz home-
omorphism Φ: X → X0 which is L–bilipschitz on every other boundary component
and which is a color-preserving map from ∂X to ∂X0. �

Each piece of K or K ′ is associated with some p–vertex v of the minimal graph
Γ; we then say the piece has type v, and similarly for the pieces of the geometric
realizations XK and XK′ and their universal covers X̃K and X̃K′ . We let Cv denote
the set of outgoing edges at the p–vertex v, so there is a natural Cv–labelling of the
boundary components of any type v geometric piece of X̃K or X̃K′ .

Choose a number L sufficiently large so that Theorem 3.2 applies for the universal
cover of each of the Si. Choose a bilipschitz homeomorphism from one type v
piece S̃i ×R of X̃K to a type v piece X0 ×Rn of X̃K′ , preserving the (surface)×Rn

product structure and the Cv–colors of boundary components; this can be done
since the graphs are bisimilar. We want to extend to a neighboring piece of X̃K .
On the common boundary R× Rn we have a map that is of the form φ1 × φ2 with
φ1 and φ2 both bilipschitz. Since Γ(K) and Γ(K ′) are bisimilar, each neighboring

piece in X̃K′ has the same label as the corresponding piece in X̃K and thus we can
extend over each neighboring piece by a product map. Further, by Theorem 3.2, we
can assume this map preserves boundary colors and on the other boundaries of this
piece is given by maps of the form φ′1 × φ2 with φ′1 L–bilipschitz. We do this for all
neighboring pieces of our starting piece. Because of the flip, when we extend over
the next layer we have maps on the outer boundaries that are L–bilipschitz in both
base and fiber. We can thus continue extending outwards inductively to construct
our desired bilipschitz map. �

4. Quasi-isometries preserve the decomposition into pieces

As described above, the group AK with K ∈ Tn is the fundamental group of
a “graph space” XK whose universal cover X̃K is a quasi-isometric model for AK .
This X̃K has its geometric decomposition into pieces which overlap each other in
separating flats. (Equivalently, the same decomposition is given directly on AK up to
quasi-isometry by writing AK as the union of the cosets of the p–vertex groups of its
geometric graph-of-groups decomposition.) The asymptotic cone Aω of AK (which

equals the asymptotic cone of X̃K) admits a similar decomposition into subsets
coming from asymptotic cones of the pieces of AK , which we call pieces as well; note
that the asymptotic cone of any piece is isometric to T ×Rn where T is a metric tree
(all the asymptotic cones we consider are taken with respect to an arbitrary, but
fixed, choice of ultrafilter and scaling constants). Below, we apply Kapovich–Leeb’s
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argument that quasi-isometries preserve the geometric decomposition of 3-manifolds
[KL2], to the present situation.

The following lemma in the case n = 1 was proven in [KL1, Lemma 2.14]; the
same argument holds to prove:

Lemma 4.1. Fix a metric tree T . If f : Rn+1 → T ×Rn is a bilipschitz embedding,
then the image, f(Rn+1), is a subset which is isometric to Rn+1. �

An immediate corollary of this lemma is that any subset of Aω which is contained
in the asymptotic cone of one of the pieces and which is bilipschitz to Rn+1 must
actually be an isometrically embedded flat.

In a similar direction, the following also holds as in [KL2, Lemma 3.3]:

Lemma 4.2. Let T be a geodesically complete tree and C ⊆ Rn a closed subset. If
f : C → T ×Rn is a bilipschitz embedding whose image separates, then C = Rn and
the projection of the image to T is contained in a segment with no branch point
in its interior. In particular, if T branches everywhere, then the image is a fiber
{t} × Rn. �

The arguments of [KL2] then apply to show that any bilipschitz embedding of a
tree cross Rn into Aω must lie inside a piece, which then implies:

Proposition 4.3. Let K,K ′ ∈ Tn and let Aω, A
′
ω denote asymptotic cones of

AK , AK′ . Let φ : Aω → A′ω be a bilipschitz homeomorphism. Then φ sends pieces
to pieces and separating flats to separating flats. �

Using the CAT(0) structure on Aω and identical arguments as for [KL2, Theorem
4.6], one shows that any quasiflat which is not sublinearly close to a separating flat
must diverge from it linearly and in particular that any quasi-isometry from AK to
AK′ sends flats to flats. As in [KL2, Theorem 1.1], this result applied in the present
context implies the following theorem:

Theorem 4.4. Let φ : AK → AK′ be a quasi-isometry. Then φ preserves the
geometric decompositions of X̃K and X̃K′ in the following sense: for any geometric
piece X of X̃K there exists a geometric piece X ′ of X̃K′ within a uniformly bounded
Hausdorff distance from φ(X). Moreover, φ induces an isomorphism of trees dual

to the geometric decomposition of X̃K and X̃K′ . �

To complete the “only if” direction of Theorem 1.1, we must show the induced
map of trees also preserves the p–vertex labelling up to a permutation of labels, since
this dual tree is then the unique labelled tree in the bisimilarity class corresponding
to the associated Artin group. To do this, it suffices to show that if we know the
geometric decomposition of X̃K up to quasi-isometry then we can tell when two
p–vertices v and v′ of the decomposition tree have the same color.

The path from v to v′ consists of alternating p– and f–vertices,

v = v0, w1, v1, . . . , wr, vr = v′ ,

say. The Tn in the geometric piece for vertex v0 defines an n–dimensional sub-flat
Rn of the flat Rn+1 in Aω corresponding to w1. As we move along the path we
intersect this subflat repeatedly with the projection to this flat of the codimension–1
subflats for the vertices v1, v2, . . . (alternatively, this can be interpreted as the coarse
intersection of the subflats associated to the center of the respective pieces; hence
this is quasi-isometrically invariant since the center in a piece corresponds to the
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coarse intersection of all the maximal flats). Whenever we pass a vi of a color we
have not yet seen, the dimension of the intersection drops by 1. Otherwise, we know
we have already seen the color along the path, and by using the same procedure to
check backwards along the path from vi, we can find which vertex had the same
color. If it was not v0 we then continue the same way along the path. In this way
we either show that vr has the same color as v0, or the dimension of our subspace
has reached 0 by the time we get to vr, in which case we have seen every color along
the path. By induction we can assume that we have already determined which vi’s
that are closer together along the path have the same color. But then, by checking
forwards along the path from v0 and backwards from vr we can tell that they both
have different colors from every other vi along the path, so must have the same
color.

This completes the proof of the “only if” direction of Theorem 1.1, and since the
“if” direction is Theorem 3.1, Theorem 1.1 is proved. �

Remark 4.5. The above argument shows that the construction of labels in Sec-
tion 2.2 could be done purely geometrically. As an example to see this, compare
the example in Figure 4 to example B1 in Figure 2. To see how to label the shaded
piece, N , consider the associated space X̃B′

1
, and note that in this space N has

three-dimensional intersection with the P3 piece and two-dimensional intersection
with both the pieces labelled P1 and P2. The intersection of the torus associated to
the center of N with the center of P1 is one dimensional, while its intersection with
the center of P2 is trivial. Since a path starting from the P1 or P3 piece would not
need to traverse all the labels, whereas a path starting at the P2 piece would have
traversed the P2 and P3 labels, we thus see that the N must be labelled by a 1, as
given by the labelling in Section 2.2.

1

2

3

P3

P1 P2F

B’1 P1 F

Figure 4. Compare with example B1 in Figure 2.
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