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Let U and V be non-trivial finitely generated subgroups of ranks u and v respec- 

tively in a free group F and let N = U V/V, of rank n. In IN] Hanna Neumann, 

improving on a result of Howson [HI, proved the inequality 

- 1 ~< 2 ( 4 -  1)(v - 1), 

and asked if the factor 2 can be dropped. If one translates her approach (which is 

a slight modification of Howson's) to graph-theoretic terms, it easily shows that  the 

answer is often "yes"- - in  fact, for most U the answer is "yes" for all V. 

According to Gersten [G], the above problem has come to be known as the "Haana 

Neumann Conjecture." Using ideas of immersions of graphs originating from Stallings 

([St]), Gersten solved the problem in some special cases (his approach is close to the 

one of Howson and Hanna Neumann, but seems weaker in practice). I am grateful to 

Alan Reid for bringing Gersten's paper to my attention, and also to Peter Neumann 

for leading me to other literature. In particular, [I] gives the same graph-theoretical 

translation of Hanna Neumann 's  proof 1, and [Ni] and [Se] use similar methods to prove 

Burns '  bound [B]: 

n -  1 ~< 2(u - 1)(v - 1) - min (u  - 1, v -  1), 

which is the best general bound known so far. We give a version of their proof in the 

final section. 

Hanna  Neumann 's  question can be strengthened to ask about  the sum of rank N -  1 

as N runs through a set of representatives of conjugacy classes of non-trivial intersec- 

tions N = y-1 Uy n z - i  Vz, and as we shall describe, the bounds that  we can give, 

including Burns '  bound,  remain the same. 

The support of the NSF and of the Center for Mathematical Analysis in Canberra is gratefully 
acknowledged. 
1 as does D. E. Cohen, who also calls Hanna Neumann's question a conjecture, in his 1989 text, dedicated 
in part to Hanna Neumann's memory, "Combinatorial Group Theory: a topological approach" (London 
Math. Soc. Student Texts 14, 1989, Prop. 8.35, p. 294, and p. ii). I am grateful to O. Kegel for this 
reference. 
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1. HANNA NEUMANN'S PROOF 

We shall write for short 

Xo(H) = max(0 ,  r a n k H  - 1) 

if H is a finitely generated free group. 

We can assume with no loss of generality tha t /v '  is of rank 2, generated by elements 

a and b, say, and that  N = U N V is non-trivial. Let G denote the labelled figure eight 

graph 

whose fundamental  group is F .  For any subgroup H of F ,  let G(H) denote the covering 

of G with fundamental  group H .  The vertex set of G(H) can be identified with the set 

H\F of right H-cosets ,  in which case the a-labelled edges are the pairs (Hg, Hga) and 

the b-labelled edges are the pairs (Hg, Hgb). If H is non-trivial, let Go(H ) denote 

the spine of G(H), that  is, the minimal deformation retract  of G(H). (It is obtained 

by cutt ing off all maximal branches of G ( H ) ,  where a branch is a contractible subgraph 

of G(H) which meets the rest of G(H) only at one end of one edge: alternatively, it 

is the union of the supports  of all reduced circuits of G(H), a reduced circuit being a 

closed pa th  that  is not homotopic to a shorter  closed path.)  After choosing a base point, 

Go(H ) has fundamental  group a conjugate of H .  If H has finite rank then Go(H ) is 
finite and, moreover, 

(1) 2x°(H) = E O(p)- 2, 
pEvert Go(H ) 

where O(p) is the valency (number of incidences of edges) at vertex p. Indeed, as an 

equation for minus twice the euler characteristic of a finite graph, this equation is well 

known and is easily proved by induction. 

The graph G(N) is a mutual  covering of the graphs G(U) and G(V). The pro- 

jection maps G(N) ~ G(U) and G(N) --+ G(V) map the spine Go(N ) into the spines 

Go(U ) and Go(V ) respectively. Let 7rv: Go(N ) ~ Go(U ) and ~rv: Go(N ) ~ Go(V ) 
denote these maps. Note that  the map of vertex sets vert G(N) ---* vert G(U) xve r t  G(V) 
is injective, so the same holds for 7r = (~rv, 7rv): vert Go(N ) --+ vert G 0 ( U ) x v e r t  Go(V ). 
For any p E vert G0(N) ,  we clearly have 

( 2 )  
0 < 0 ( , )  - 2 .<< m i .  - 2 .  - 2 )  

.< - - 2 ) .  
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Thus,  by (1) and (2) and the injectivity of ~r, 

2)¢0(N ) = ~ O(p)- 2 
pEvert G O (N) 

<~ ~ (O(~u(p)) -- 2) (O( rv (p )  ) - 2) 
pEvert Go (N) 

<<. ~ (O(q)-- 2)(O(r) -- 2) 
( q,r) E vert Go ( U ) × vert Go ( V) 

= (qever~-~tGo(U)(O(q)--2)) ( Ever~tGo(V)(O(r)--2) ) 

= 2x0(u) 2x0(v),  

which is the desired inequality. D 

2. IMPROVING THE PROOF, I. 

Instead of just asking about  rank(U M V),  one can ask about  the ranks of all 

intersections y- lUy M z - lVz .  Any such intersection is conjugate to one of the form 

UMx-IVx.  Moreover, if y is in the double coset VxU, then UMx-IVx and UMy-IVy 
axe conjugate. Thus we need only let x run through a set S of double coset represen- 

tatives for V\F/U.  Let T be the subset of x E S with U M x - l V x  nontrivial. Denote 

xF(u, v) = Z xo(C n x-lVx). 
xET 

The  size of T and XF(U, V) depend only on the conjugacy classes of U and V. Hanna 

Neumann 's  inequality can be strengthened as follows (see also [I2]). 

PROPOSITION 2.1. T is t~nite and XF(UI V) <~ 2Xo(U)Xo(V). 

PROOF. We can again assume F has rank 2 (since embedding F into a larger 

free group at worst increases the size of T and xF(U, Y)). So let G(U) and G(V) be 

as before. Let G(U) × G(V) denote the graph with vertex set vert G(U) × vert G(V) 
and with an a-labelled edge from (p, q) to (p', q') if and only if G(U) and G(V) have 

a-labelled edges from p to pt and q to q' respectively; similarly for b-labelled edges. 

We claim that  the components  of G(U) × G(V) axe just  the graphs G(N) as N runs 

through the groups U M x - l V x ,  x E S. Given this claim, if we denote by G0(U , V) 

the disjoint union of the Go(N ) as N ranges over the intersections U M x - l V x  with 

x E T then Go(U , V) is the union of the spines of the non-contractible components  of 
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G(U) x G(V) ,  so it is a subgraph of Go(U ) × Go(V ). In particular,  it is finite, so T is 

finite. Also, by equation (1), 

(3) 2 F(u, v )  = (0 ( ; )  - 2),  
pEvert Go(U, V ) 

and applying the computat ion of section 1 to this proves the Proposit ion.  

To see the claim, recall that  we can identify the vertices of G(U) and G(V) with 

cosets of U and V in F .  A component  of G(U) × G(V) containing the vertex (Uy, Vz) 
contains the vertex (U, Vzy-1) ,  so every component  contains a vertex of the form 

(U, Vx).  The  fundamental  group of this component consists of all z C F with Uz = U 
and Vxz  = Vx; that  is, z E U N x - l V x .  Moreover, another  vertex (U, Vy) will be in 

the same component  if and only if there is a z E F with Uz -= U and Vxz  = Vy.  That  

is, Vxz  = Vy for some z E U, in other words, y is in the double coset VxU.  D 

Note that  al though T is finite, easy examples (e.g., U = V = {a n}) show that  its 

size cannot be bounded in terms of Xo(U) and Xo(V). But probably the number  of 

conjugacy classes of non-trivial subgroups U N x -1Vx  can be so bounded.  Only those 

of rank 1 are at issue, since those of rank /> 2 number  at most xF(U, V).  

The above Proposi t ion suggests the following: 

QUESTION 2.2 (STRENGTHENED H. NEUMANN QUESTION). 

Is xr(u, v)  <. Xo(U)xo(V)? 

We shall say " H N { F ;  U, V} holds" if this question has positive answer for {U, V}. 

It is easy to see that  it holds if either U or V has finite index in F .  In fact, in this case 

XF(U, V) = xo(g)xo(V) /xo(F) .  

This is implied by the stronger result: 

PROPOSITION 2.3. I£ U 1 has tlnite index d in U then XF(U1,  V )  = dXF(U , V) .  

PROOF. Go(U1, V) is a d-fold covering of Go(U , Y) .  ['] 

In particular,  if U 1 and V 1 have finite index in U and V respectively, then 

H N { F ;  U, V} holds if and only if H N { F ;  U1, V1 } holds. 

3. IMPROVING THE PROOF, II. 

The  above proof only used the valencies of vertices of the graphs; by taking account 

of the form of the vertices we can do better.  

Only nodes (vertices of valency O(p) >~ 3) contr ibute in formulae (1) and (3). There  

are five forms that  a node can take, and they can be listed and named as in the following 
poset. 
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type 0 

type I type 2 type 3 type 4 

- ) - ) )?, )) "~. )) i 

) o 

>) b 

For any non-trivial subgroup H of finite rank rn in F ,  denote the number  of type i 

nodes of Go(H ) by ki(H ) for i 0 , . . . , 4 ,  so k(H) 4 = = E I = I  k i ( H )  i s  t h e  t o t a l  n u m b e r  

of valency 3 nodes• Then  equation (1) can be re-writ ten 

(4) 2x0(H)  = 2k0(n  ) + k(H). 

On the other  hand,  a vertex p of Go(U, V) is a node of type i only if the image vertices 

7cu(p) C vert Go(U ) and roy(p) E vert Go(V ) are each nodes of type i or type 0. Thus, 

if we use equation (3) to compute  2xF(U, V),  then p E vert  G0(U , V) contributes at 

most 2, 1, 1, or 0 according as ~rv(p) and Try(p) are both  nodes of type 0, one of type 

0 and the other  of type i # 0, both  of the same type i # 0, or none of the above. Thus 

4 

(5) 2xF(U, V) <~ 2ko(U)ko(V ) + ko(U)k(V ) + ko(V)k(U ) + E ki(U)ki(V)" 
i=1 

By (4) with H = U, (4) with H = Y, and (5), 

4Xo(U)Xo(V ) -4XF(U, V)>~ (2k0(U) + k(U)) (2k0(V ) + k(V)) 
/ 4 \ 

- 2(2ko(U)ko(V) + ko(U)k(V)+ ko(V)k(U) + E ki(U)ki(V))" 
\ i : 1  / 

This simplifies to 

(6) 

4 

4[xo(U)xo(V)  - x F ( u ,  v)]/> k ( U ) k ( V )  - 2 ki(U)k (V) 
i----1 

4 

= E(k(U)  - 2ki(U))ki(V), 
i=1  
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Suppose this is negative. Then  for some i 

(7) k(U) - 2ki(U ) < 0. 

By symmetry,  for some j 

(8) k(V) - 2kj(Y) < 0. 

We claim j = i. To see this note that  the set of 4-tuples (k~(V), . . .  ,k4(V)) of non- 

negative reals satisfying (8) for some j has four components,  one for each value of j .  

The  set of 4-tuples making (6) negative is convex, hence contained in just  one of the 

components  determined by (8), but  it contains the 4-tuple ( 0 , . . . ,  ki(Y ) = k ( Y ) , . . . ,  0) 

which is in the i - th  one. We have proven: 

PROPOSITION 3.1. A counter-example to H N { F; U, V} (Question 2.2) would have 
to have over hadf the vaJency 3 nodes of Go(U ) and over half the vaJency three nodes 
of  Go(V ) aJl of type i for some i = 1, 2, 3, or 4. ['] 

In particular,  if at most half the valency 3 nodes of Go(U ) are of each type then 

H N { F ;  U, V} holds for any V. 

For " random" U the probabili ty that  over half the valency 3 nodes of Go(U ) have 

a given type i is at most 1/16 and is asymptot ic  to 

1 ( 3 )  k(U)/2 

as k(U) ---, oo. (Note that  for U of fixed rank u, k(U) = 2u - 2 with probabil i ty 1, 

in the sense that  among all such U with Go(U ) of bounded size, the proport ion with 

k(U) = 2u - 2 approaches 1 as the bound on size increases.) 

4 .  R E M A R K S  ON RANK 2 

Suppose U has rank 2, that  is, Xo(U) -- 1. Then  the only possibilities are 

(i) k0(U ) = 1, k l (U ) . . . . .  k4(U ) = O, 

(ii) ko(U ) = 0, exactly two of kx(U), . . .  , k4(V ) equal 1 and the other  two equal 0, 

(iii) ko(U ) = 0, some ki(Y ) equals 2 and the others equal 0. 

By Proposi t ion 3.1, only in the last case could U be par t  of a counterexample to 

Question 2.2. (For example, the examples of [G; Prop. 6.12] are of type (ii).) All 

"small" examples of type (iii) can be changed to one of the first two types by applying 

an au tomarphism of the free group F .  However, we have more than just automorphisms 

of F at our disposM, as we now describe. 

Write U -~ F if U is a finitely generated subgroup of the free group F and 

H N { F ;  U, V} holds for all finitely generated V < F .  The following proposit ion implies 

that  the set of U of rank E 2 satisfying U ~ F is a sub-semilattice of the semilattice 

of all finite rank subgroups of F .  
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PROPOSITION 4.1. (i) I f  U 1 has rank 2 and U S -4 U 1 -~ F then U S -4 F .  

(ii) I f  U 1 and U 2 have rank 2 then U 1 n U S has rank <~ 2; if, moreover, U~ -4 F and 

U 2 - ~ F  then U 1QU 2 - 4 F .  

LEMMA 4.2. Suppose U 1 and U 2 are subgroups of F of  ranks  u 1 and  u 2 respec- 

tively. Suppose U, -4 F and for each subgroup V of U1, HN{G;  U2, V}  holds for some 

G containing U 1 and U S . Then 

)(.F(U1 n U2, V) < Xo(U1)Xo(U2)Xo(V). 

PROOF OF PROPOSITION. The  first s ta tement  of par t  (ii) of the Proposi t ion is 

Burns '  bound  quoted in the In t roduct ion and otherwise the Proposi t ion is immedia te  

f rom the Lemma.  ['] 

PROOF OF LEMMA. Let S be a set of double coset representat ives for V \ F / U  1 . For 

each x in S,  choose a set of double coset representat ives for (U~ n x - 1 Y x ) \ U  1/(U 2 N U 1) 

and call it S , ,  say. Since y - l U l y  = U 1 for each y E S , ,  and as S ,  is par t  of a set of 

double coset representat ives for (U 1 n x - 1Vx ) \G / U2 ,  

(9)  xG(U2, U, n x - l y x )  ~ ~ Xo(U2 N U 1 n y - l x - lVxy ) .  
yES= 

Further ,  any double coset Vz(U 2 n U1) inside V xU 1 can be wri t ten in the form 

Vxy(U 2 N U 1) with y 6 U~, and therefore also with y 6 S , .  Thus  each double coset in 

V \ F / ( U  2 N U  1) has at least one representat ive in S '  = {xy  Ix  6 S, y 6 S , } .  Now, 

using (9) and HN{G;  U2, U 1 N x - ' V x }  and H N { F ;  U~, V} ,  we get 

xr(u,  n v) xo(U  n u, n vx ) 
zyE S' 

E x0(y2 n vlny-' ,-'vxy) 
xGS y6Sx 

<~ ~ xa(U2,U1 n x - l V x )  
zES 

< ~ Xo(U2)xo(U, n x - ' V x )  
xES 

= xo(V )xr(u,, v )  

<<. xo(U )xo(U,)xo(V), rl 

Using au tomorph i sms  of F and Proposi t ion 4.1 one can easily show tha t  if U has 

rank 2 and Go(U ) is not too large (certainly up to seven edges, but  one can probably  
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go quite a bit fur ther)  then H N { F ;  U,V} holds for any V. However, there exist U 

of rank 2 for which Go(U ) is of type (iii) whatever  basis of F one chooses and U is 

contained in no larger rank 2 proper  subgroup of F ,  so these techniques do not suffice 

to resolve the question. 

The  s t rengthened form of Burns '  bound (Proposi t ion 5.1 below) implies tha t  

H N { F ; U , V }  holds if bo th  U and V have rank 2. In part icular ,  U n  x - l V x  can 

have rank  at most  2, and has rank 2 for at most  one double coset VxU.  This has some 

trivial but  amusing consequences, whose proofs we leave to the reader.  

PROPOSITION 4.3. (i) If  U has rank 2 and V C U then U A x- lVx  has rank >/2 
only i f  x E U. In particular, H N { F ;  U, V} holds. 
(ii) If  U and V are lqnitely genera ted subgroups of a rank  2 subgroup G of the free 

group F then xo(U, v)  : xF(u, v) .  n 

5. IMPROVING THE PROOF, Ill. 

We discuss a further strengthening of the approach of section 3. 

Let G be one of the graphs  Go(U), Go(V ) or Go(U , V) under  discussion. Ra ther  

than  assigning to a node q of G one of the five types discussed in section 3, we can 

consider the " type"  of q to be the i somorphism class of the pair  (G, ~) consisting of 

the universal  cover G together  with a lift of the point  q. Thus  a " type" is an infinite 

contract ible labelled graph  with no vertices of valency 1 and with a chosen node as 

"base-point"  (with addit ional  propert ies  that  are not relevant to us here). Part ial ly 

order such types by embeddabi l i ty  in each other  and call two types "comparable"  if 

they have a common lower bound in the poset of types. 

Observe tha t  the type of a node p of Go(U , V) embeds  in the types of q = ~rv(p) 
and r = Try(p) , so q and r are comparable.  The  same derivation as for equation (6) of 

section 3 gives 

(10) 4[Xo(U)Xo(V) - XF(U, U)] /> ~ c(q, r),  
q , r  

where the sum is over the valency 3 nodes q of Go(U ) and r of Go(V ) and c(q, r) = - 1  

or 1 according as q and r are comparable  or not. 

We describe why Burns '  inequality holds in the s t rengthened form 

PROPOSITION 5.1. XF(U, V) <~ 2Xo(U)Xo(V ) - min(x0(U),  Xo(V)). 

PROOF. We follow Servatius '  proof  [Se], which proceeds essentially as follows: 

(a) Form a bipar t i te  graph f~ with vertex set the union of the sets of valency 3 

nodes of Go(U ) and Go(V ) and with an edge connecting a node q of Go(U ) to a node 
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r of Go(V ) if and only if q and r are comparable. An easy calculation shows that  if 

this graph is disconnected then (10) implies the result. 

(b) By embedding F in itself using the embedding with graph 

( 

S .. , o  
\ , j  ,,b 

all our graphs become covers of this graph, so there are no vertices of valency 4. 

(c) If no vertex has valency 4 then the bipart i te  graph f/ of (a) is disconnected. 

Nickolas [Ni] gives a simpler proof  of (c), which we paraphrase.  Consider a minimal 

counterexample to (c) (least number  of vertices of Go(U ) O Go(V)). We construct a 

smaller one to get a contradiction. All the nodes of Go(U ) U G o (V) must have the same 

type in the sense of section 2. By renaming we may assume it is 

0 O 

If a chain of two or more b's occurs in either Go(U ) or Go(V), then replacing every 

chain of b's by a single b gives a smaller counterexample to (c), so no such chain of b's 

occurs. If a chain bab -1 occurs anywhere, then replacing each such chain by a single 

b gives a smaller counterexample (the graphs are still reduced since they had no chain 

bb), so no such chain occurs. But now a chain ba must occur somewhere, and replacing 

each occurrence of ba by b gives a smaller counterexample. ['! 

Following Nickolas, we can use the same argument to get the minor result: 

PROPOSITION 5.2. Suppose rank U t> 2. Then xF(U, U) <~ 2x0(U) 2 - 2x0(U ) + 1, 

and i f  V c_ U then x f (V ,  V) <.<. 2Xo(U)xo(V) - Xo(V). 

PROOF. As above, we may assume Go(U ) has only valency 3 nodes. The  Servatius- 

Nickolas argument  applied to Go(U ) alone shows that  these nodes can be part i t ioned 

into two non-empty  mutual ly  incomparable subsets S 1 and S 2. Equation (10) implies 

the first inequality, and also the second on noting that  the type of any node of Go(V ) 
is bounded above by the type of some node of G0(U),  so it is incomparable with all 

nodes of S 1 or all nodes of S 2 . 

It is worth mentioning that  (10) is actually an equality if Go(U ) and Go(V) have 

no valency 4 nodes. More generally, if valency 4 nodes occur then 

4[x0(U)x0(V) - ~F(U, V)] = ~ c(q, r),  
q , r  
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where  the  sum is now over all nodes  q of  Go(U ) and  r o f  G o ( V  ) and c (q , r )  is defined 

by  the last co lumn of  the  following table  whose first co lumn is {a(q) ,  cO(r)} and  whose 

second is the  valency of  the  greates t  lower b o u n d  type  of  the  types  of  q and  r (or 0 if 

no  such type  exists). 

{3,3} 0 1 

{3,3} 3 - 1  

{3,4} 0 2 

{3,4} 3 0 

{4,4} 0 4 

{4,4} 3 2 

{4,4} 4 0 

It  is no t  clear how useful this is. For  instance,  one migh t  hope  to  answer  Ques t ion  

2.2 aff i rmat ively  for r a n k U  = 2 by  showing tha t  if Go(U ) has two valency 3 nodes  

then  cach valency 3 node  of G o ( V  ) is comparab le  wi th  at mos t  one of them,  bu t  s imple 

examples  show tha t  this can fail. 
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