ON INTERSECTIONS OF FINITELY GENERATED SUBGROUPS
OF FREE GROUPS

WALTER D. NEUMANN

Let U and V be non-trivial finitely generated subgroups of ranks u and v respec-
tively in a free group F and let N = U NV, of rank n. In [N] Hanna Neumann,
improving on a result of Howson [H], proved the inequality

n—1<2u-1){v-1),

and asked if the factor 2 can be dropped. If one translates her approach (which is
a slight modification of Howson’s) to graph-theoretic terms, it easily shows that the
answer is often “yes”—in fact, for most U the answer is “yes” for all V.

According to Gersten [G], the above problem has come to be known as the “Hanna
Neumann Conjecture.” Using ideas of immersions of graphs originating from Stallings
([St]), Gersten solved the problem in some special cases (his approach is close to the
one of Howson and Hanna Neumann, but seems weaker in practice). I am grateful to
Alan Reid for bringing Gersten’s paper to my attention, and also to Peter Neumann
for leading me to other literature. In particular, [I] gives the same graph-theoretical

translation of Hanna Neumann’s proof ! , and [Ni] and [Se] use similar methods to prove
Burns’ bound [B]:

n—1<2u—-1)(v—1)—min(u—1, v-—-1),

which is the best general bound known so far. We give a version of their proof in the
final section.

Hanna Neumann’s question can be strengthened to ask about the sum of rank N—1
as N runs through a set of representatives of conjugacy classes of non-trivial intersec-
tions N = y~! UyNz~! Vz, and as we shall describe, the bounds that we can give,
including Burns’ bound, remain the same.

The support of the NSF and of the Center for Mathematical Analysis in Canberra is gratefully
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! as does D. E. Cohen, who also calls Hanna Neumann’s question a conjecture, in his 1989 text, dedicated
in part to Hanna Neumann’s memory, “Combinatorial Group Theory: a topological approach” (London

Math. Soc. Student Texts 14, 1989, Prop. 8.35, p. 294, and p. ii). I am grateful to O. Kegel for this
reference.
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1. HANNA NEUMANN’S PROOF

We shall write for short
Xo(H) = max (0, rank H — 1)

if H is a finitely generated free group.
We can assume with no loss of generality that F is of rank 2, generated by elements
a and b, say, and that N = UNV is non-trivial. Let G denote the labelled figure eight

graph
>

whose fundamental group is F'. For any subgroup H of F,let G(H) denote the covering
of G with fundamental group H. The vertex set of G(H) can be identified with the set
H\F of right H-cosets, in which case the a-labelled edges are the pairs (Hg, Hga) and
the b-labelled edges are the pairs (Hg, Hgb). If H is non-trivial, let Gy(H) denote
the spine of G(H), that is, the minimal deformation retract of G(H). (It is obtained
by cutting off all maximal branches of G(H), where a branch is a contractible subgraph
of G(H) which meets the rest of G(H) only at one end of one edge: alternatively, it
is the union of the supports of all reduced circuits of G(H), a reduced circuit being a
closed path that is not homotopic to a shorter closed path.) After choosing a base point,
Go(H) has fundamental group a conjugate of H. If H has finite rank then Gy (H) is
finite and, moreover,

(1) 2(H)= Y dp) -2,

pEvert Gy (H)

where 9(p) is the valency (number of incidences of edges) at vertex p. Indeed, as an
equation for minus twice the euler characteristic of a finite graph, this equation is well
known and is easily proved by induction.

The graph G(N) is a mutual covering of the graphs G(U) and G(V). The pro-
Jection maps G(N) — G(U) and G(N) — G(V) map the spine G4(N) into the spines
Go(U) and Go(V) respectively. Let mp: Go(N) — Go(U) and 7y : Go(N) — Go(V)
denote these maps. Note that the map of vertex sets vert G(N) — vert G(U)x vert G(V)
is injective, so the same holds for 7 = (7, 7y ): vert Go(N) — vert Gy (U) x vert Gy (V).
For any p € vert Go(N), we clearly have

0 < 9(p) -2 < min (3(my(p)) — 2, A(my(p)) - 2)
<

(2)
Ay (p)) — 2) (8(my (p) — 2).
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Thus, by (1) and (2) and the injectivity of =,

2x%(N)= ), ) -2

pEvert Gy (N)

< Y (@) - 2) @y () - 2)

pEvert Go(N)

< > (8(g) —2)(8(r) - 2)

(g,r)Evert Go(U)xvert Go(V)

=( > (a(q)—z))( > (3(r)—2))

gEvert Gy(U) révert Gg(V)
= 2xo(U) 2x0(V),

which is the desired inequality. 0

2. IMPROVING THE PROOF, I.

Instead of just asking about rank(U N V), one can ask about the ranks of all
intersections y~*Uy N 271V 2. Any such intersection is conjugate to one of the form
UNz~1Vz. Moreover, if y is in the double coset VU, then UNz™ Ve and UNy~1Vy
are conjugate. Thus we need only let z run through a set S of double coset represen-
tatives for V\F/U. Let T be the subset of z € § with U Nz~!Vz nontrivial. Denote

xr(U, V)= xo(UNz"'Va).
rzeT

The size of T and xp(U, V) depend only on the conjugacy classes of U and V. Hanna
Neumann’s inequality can be strengthened as follows (see also [I2]).

PROPOSITION 2.1. T is finite and x p(U, V) < 2x0(U)xo (V).

PROOF. We can again assume F has rank 2 (since embedding F into a larger
free group at worst increases the size of T and xp(U,V)). So let G(U) and G(V') be
as before. Let G(U) x G(V) denote the graph with vertex set vert G(U) x vert G(V)
and with an a-labelled edge from (p,¢) to (p',¢') if and only if G(U) and G(V) have
a-labelled edges from p to p' and ¢ to ¢’ respectively; similarly for b-labelled edges.
We claim that the components of G(U) x G(V) are just the graphs G(N) as N runs
through the groups UNz~'Vz, ¢ € S. Given this claim, if we denote by G4(U,V)
the disjoint union of the Gy(N) as N ranges over the intersections U N z71Vz with
z € T then Gy(U,V) is the union of the spines of the non-contractible components of
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G(U) x G(V), so it is a subgraph of G(U) x Go(V). In particular, it is finite, so T is
finite. Also, by equation (1),

(3) ar(UV)= Y (3p)-2),
pEvert Go(U,V)
and applying the computation of section 1 to this proves the Proposition.

To see the claim, recall that we can identify the vertices of G(U) and G(V') with
cosets of U and V in F. A component of G(U) x G(V') containing the vertex (Uy, Vz)
contains the vertex (U,Vzy™!), so every component contains a vertex of the form
(U,Vz). The fundamental group of this component consists of all z € F with Uz =U
and Vzz = Vz; that is, z € U Nz~ Vz. Moreover, another vertex (U, Vy) will be in
the same component if and only if thereisa 2 € F with Uz = U and Vzz = Vy. That
is, Voz = Vy for some 2 € U, in other words, y is in the double coset VaU . 0

Note that although T is finite, easy examples (e.g., U = V = (a")) show that its
size cannot be bounded in terms of x,(U) and x,(V). But probably the number of
conjugacy classes of non-trivial subgroups U N z~!'Vz can be so bounded. Only those
of rank 1 are at issue, since those of rank > 2 number at most xz(U, V).

The above Proposition suggests the following:
QUESTION 2.2 (STRENGTHENED H. NEUMANN QUESTION).
Is xp(U, V) < xo(U)xo(V)?

We shall say “HN{F;U,V} holds” if this question has positive answer for {U,V}.

It is easy to see that it holds if either U or V has finite index in F. In fact, in this case
Xr(U,V) = xo(U)xo(V)/ xo(F).

This is implied by the stronger result:

ProProsITION 2.3. If U, has finite index d in U then xp(U;,V) =dxp(U, V).

PROOF. G,(U,,V) is a d-fold covering of Go(U,V). 0

In particular, if U; and V] have finite index in U and V respectively, then
HN{F;U,V} holds if and only if HN{F;U,,V;} holds.

3. IMPROVING THE PROOF, II.

The above proof only used the valencies of vertices of the graphs; by taking account
of the form of the vertices we can do better.

Only nodes (vertices of valency 8(p) > 3) contribute in formulae (1) and (3). There
are five forms that a node can take, and they can be listed and named as in the following
poset.
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type 0 ——a
—»—b

type 1 type 2 type 3 type 4

S SUR SERNIR SN

For any non-trivial subgroup H of finite rank m in F', denote the number of type ¢
nodes of Go(H) by k;(H) for i =0,...,4, so k(H) = Y i_, k;(H) is the total number

=1 ™"z
of valency 3 nodes. Then equation (1) can be re-written

(4) 2xo(H) = 2ko(H) + h(H).

On the other hand, a vertex p of G,(U, V) is a node of type ¢ only if the image vertices
ny(p) € vert Go(U) and wy,(p) € vert G,(V) are each nodes of type ¢ or type 0. Thus,
if we use equation (3) to compute 2x (U, V), then p € vert Go(U, V) contributes at
most 2, 1, 1, or 0 according as 7 (p) and my(p) are both nodes of type 0, one of type
0 and the other of type 1 # 0, both of the same type ¢ # 0, or none of the above. Thus

(8)  2xp(U,V) < 2ko(U)ko (V) + ko(T)R(V) + ko(VIE(U) + Y k(U)k; (V).

i=1

By (4) with H =U, (4) with H =V, and (5),

4xo(U)xo(V) = 4xp(U, V) > (2ky(U) + K(D)) (2k (V) + (V)
=22k (Do) + KoUKV + (VD) + S B(O(V) ).

This simplifies to

Axo@)xo (V) = xp(U, V)] 2 K(UR(V) ~ 2 k(U)ky(V)
(6) =

= S O) ~ 2k UPk(V),
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Suppose this is negative. Then for some

(7) k(U)—2k{(U) <0.

By symmetry, for some j

(8) k(V) —2k;(V) < 0.

We claim j = 7. To see this note that the set of 4-tuples (k;{V),...,k,(V)) of non-
negative reals satisfying (8) for some j has four components, one for each value of j.
The set of 4-tuples making (6) negative is convex, hence contained in just one of the

components determined by (8), but it contains the 4-tuple (0,...,k;(V) = k(V),...,0)
which is in the ¢-th one. We have proven:

PROPOSITION 3.1. A counter-example to HN{F;U,V} (Question 2.2) would have
to have over half the valency 3 nodes of G,(U) and over half the valency three nodes
of G4(V) all of type ¢ for some ¢ = 1,2,3,0r 4. 0

In particular, if at most half the valency 3 nodes of G,(U) are of each type then
HN{F;U,V} holds for any V.
For “random” U the probability that over half the valency 3 nodes of Gy(U) have

a given type ¢ is at most 1/16 and is asymptotic to

1 ( 3 ) K(U) /2

V21k(U) \ 4
as k(U) — oo. (Note that for U of fixed rank u, k(U) = 2u — 2 with probability 1,
in the sense that among all such U with Gy(U) of bounded size, the proportion with
k(U) = 2u — 2 approaches 1 as the bound on size increases.)

4, REMARKS ON RANK 2

Suppose U has rank 2, that is, x,(U) = 1. Then the only possibilities are
(1) ko(U) =1, ki (U) =--- =k, (U) =0,

(i1)  ko(U) =0, exactly two of k;(U),...,k,(U) equal 1 and the other two equal 0,
(ii1) ko(U) =0, some k;(U) equals 2 and the others equal 0.

By Proposition 3.1, only in the last case could U be part of a counterexample to
Question 2.2. (For example, the examples of [G; Prop. 6.12] are of type (ii).) All
“small” examples of type (iii) can be changed to one of the first two types by applying
an automerphism of the free group F'. However, we have more than just automorphisms
of F' at our disposal, as we now describe.

Write U < F if U is a finitely generated subgroup of the free group F and
HN{F;U,V} holds for all finitely generated V < F. The following proposition implies
that the set of U of rank < 2 satisfying U < F is a sub-semilattice of the semilattice
of all finite rank subgroups of F.
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PROPOSITION 4.1. (i) If U; hasrank 2 and U, <U; < F then U, < F.
(ii) If U, and U, have rank 2 then U; N U, has rank < 2; if, moreover, U, < F' and
Uy, <F then U NU, < F.

LEMMA 4.2. Suppose U, and U, are subgroups of F' of ranks u, and u, respec-
tively. Suppose U, < F and for each subgroup V of U;, HN{G;U,,V} holds for some
G containing U, and U,. Then

xr(U; N U2, V) < xo(Uy)xo(Ug)xo(V)-

PROOF OF PROPOSITION. The first statement of part (ii) of the Proposition is
Burns’ bound quoted in the Introduction and otherwise the Proposition is immediate
from the Lemma. 0

PROOF OF LEMMA. Let S be a set of double coset representatives for V\F/U, . For
each z in §, choose a set of double coset representatives for (U; Nz~ *Vz)\U,/(U,NT,)
and call it S, say. Since y~'U,;y = U, for each y € S, and as S is part of a set of
double coset representatives for (U; Nz~ 1Vz)\G/U,, '

(9) xc(Uy, Uy Nz™Va) > Z Xo(Up NU Ny te™ Vay).
y€Sz

Further, any double coset Vz(U, N U,) inside VaU; can be written in the form
Vay(U, NU,) with y € U,, and therefore also with y € S,. Thus each double coset in
VAF/(U, NU,) has at least one representative in $' = {zy [z € S, y € S, }. Now,
using (9) and HN{G;U,,U, Nz71Vz} and HN{F;U,,V}, we get

xr(UyNU,, V) < Z Xo(U NV, Ny~ 2™ Vay)

zy€eS’
= Z Z Xo(U NUy Ny~ 12" Vay)
€S y€Sy
< Z xa(Uz, Uy N " Vaz)
€S
< Z Xo(Uz)xo(U; N2~ Va)
€S
= XO(UQ)XF(UI’V)
< Xo(Ua)xo(Up)xo (V). 0

Using automorphisms of F' and Proposition 4.1 one can c¢asily show that if U has

rank 2 and G(U) is not too large (certainly up to seven edges, but one can probably
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go quite a bit further) then HN{F;U,V} holds for any V. However, there exist U
of rank 2 for which Gy(U) is of type (iii) whatever basis of F' one chooses and U is
contained in no larger rank 2 proper subgroup of F', so these techniques do not suffice
to resolve the question.

The strengthened form of Burns’' bound (Proposition 5.1 below) implies that
HN{F;U,V} holds if both U and V have rank 2. In particular, U N 27'Vz can
have rank at most 2, and has rank 2 for at most one double coset VzU . This has some
trivial but amusing consequences, whose proofs we leave to the reader.

PROPOSITION 4.3. (i) If U hasrank 2and V C U then UNz !'Vz has rank > 2
only if x € U. In particular, HN{F;U,V} holds.
(i1) If U and V are finitely generated subgroups of a rank 2 subgroup G of the free
group F then x(U,V) = xp(U, V). 0

5. IMPROVING THE PROOF, III.

We discuss a further strengthening of the approach of section 3.

Let G be one of the graphs Gy(U), Go(V) or Go(U,V') under discussion. Rather
than assigning to a node ¢ of G one of the five types discussed in section 3, we can
consider the “type” of ¢ to be the isomorphism class of the pair (é, §) consisting of
the universal cover G together with a lift of the point ¢. Thus a “type” is an infinite
contractible labelled graph with no vertices of valency 1 and with a chosen node as
“base-point” (with additional properties that are not relevant to us here). Partially
order such types by embeddability in each other and call two types “comparable” if
they have a common lower bound in the poset of types.

Observe that the type of a node p of G4(U,V) embeds in the types of ¢ = m;(p)
and r = 7y (p), so ¢ and r are comparable. The same derivation as for equation (6) of
section 3 gives

(10) Axo(Mxe(V) = xp (U, V)] 2 D elg,m),

g7

where the sum is over the valency 3 nodes ¢ of Gy(U) and r of Gy(V) and ¢(g,r) = —1
or 1 according as ¢ and r are comparable or not.

We describe why Burns’ inequality holds in the strengthened form
PROPOSITION 5.1. xx(U,V) < 2x0(U)xo(V) — min(x,(U), X0 (V)).

PrOOF. We follow Servatius’ proof [Se], which proceeds essentially as follows:
(a) Form a bipartite graph  with vertex set the union of the sets of valency 3
nodes of G(U) and G((V') and with an edge connecting a node ¢ of G4(U) to a node
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r of Gy(V) if and only if ¢ and r are comparable. An easy calculation shows that if
this graph is disconnected then (10) implies the result.
(b) By embedding F in itself using the embedding with graph

—-—>—a
—»—b

all our graphs become covers of this graph, so there are no vertices of valency 4.
(c) If no vertex has valency 4 then the bipartite graph Q of (a) is disconnected.
Nickolas [Ni] gives a simpler proof of (c), which we paraphrase. Consider a minimal
counterexample to (c) (least number of vertices of G4(U) U Go(V)). We construct a
smaller one to get a contradiction. All the nodes of Gy(U)U G, (V') must have the same
type in the sense of section 2. By renaming we may assume it is

a aq
%b

If a chain of two or more b’s occurs in either Gy(U) or Gy(V'), then replacing every
chain of b’s by a single b gives a smaller counterexample to (c), so no such chain of b’s
occurs. If a chain bab™! occurs anywhere, then replacing each such chain by a single
b gives a smaller counterexample (the graphs are still reduced since they had no chain
bb), so no such chain occurs. But now a chain ba must occur somewhere, and replacing
each occurrence of ba by b gives a smaller counterexample. 0

Following Nickolas, we can use the same argument to get the minor result:

PROPOSITION 5.2. Suppose rankU > 2. Then xp(U,U) < 2x,(U)? = 2x,(U)+1,
and if V. C U then xp(U,V) € 2xo(U)xo (V) = xo(V).

PROOF. Asabove, we may assume G,(U) has only valency 3 nodes. The Servatius-
Nickolas argument applied to Gy(U/) alone shows that these nodes can be partitioned
into two non-empty mutually incomparable subsets S; and S,. Equation (10) implies
the first inequality, and also the second on noting that the type of any node of Gy (V)
is bounded above by the type of some node of G,(U), so it is incomparable with all
nodes of S; or all nodes of S,.

It is worth mentioning that (10) is actually an equality if Go(U) and Gy(V) have

no valency 4 nodes. More generally, if valency 4 nodes occur then

4o (U)xe(V) = xp(U, V)] =) e(g,m),

q)r
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where the sum is now over all nodes ¢ of Gy(U) and r of Gy(V) and c(q,r) is defined
by the last column of the following table whose first column is {d(q), d(r)} and whose
second is the valency of the greatest lower bound type of the types of ¢ and r (or 0 if
no such type exists).

{3,3}
{3,3}
{3,4}
{3,4}
{4,4}
{4,4}
{4,4} 4

W o W o wo
O N O N

It is not clear how useful this is. For instance, one might hope to answer Question
2.2 affirmatively for rankU = 2 by showing that if G,(U) has two valency 3 nodes
then cach valency 3 node of Go(V) is comparable with at most one of them, but simple
examples show that this can fail.
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