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Abstract. The paper studies the Lipschitz geometry of germs of complex algebraic

varieties and introduces the notion of a choking horn. A choking horn is a family of

cycles on an algebraic variety with the property that the cycles cannot be boundaries

of nearby chains. The presence of choking horns is an obstruction to metric conicalness

and the authors use this to prove that some classical isolated hypersurface singularities

are not metrically conical. They also show that there exist countably infinitely many

singular varieties, which are locally homeomorphic, but not locally subanalytically bi-

Lipschitz equivalent with respect to the inner metric. An appendix by W. Neumann uses

separating sets to provide another example of the same phenomenon.

1. Introduction

Complex analytic subsets of Cn come equipped with two metrics: the outer metric

where the distance between two points of the subset is their distance measured in Cn

and the inner metric where the distance between two points is the infimum of the length

of rectifiable curves in the subset connecting the two points. It has been known for a

long time that at a singular point the germ of a complex analytic curve equipped with

the inner metric is bi-Lipschitz homeomorphic to finitely many cones over a circle. In

other words, the local inner geometry of a complex curve at a singular point is that of a

metric cone. This is the geometric analog for curves of the classical result that a complex

analytic subset is topologically conical; that is, in the neighborhood of a singular point,

it is homeomorphic to the cone over its link.

In higher dimensions, however, it has become apparent that despite being topologically

conical at singularities, complex analytic subsets need not be metrically conical. Indeed,

a series of recent papers [3, 4, 5, 6, 8] have shown that the inner geometry of complex
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analytic subsets is both subtle and rich, and have begun to work through the structure

and details, mostly in the case of isolated singularities of complex surfaces, of the inner

geometry of singularities that are not bi-Lipschitz homeomorphic to some conical subset

of Euclidean space. In particular the existence of a fast loop (a 1-cycle bounding a 2-

chain that contracts the cycle faster than linearly [3, 10, 8]) or a separating set (a real

hypersurface germ with small density at the singularity which disconnects the germ of the

singularity into two or more connected components each of large density at the singularity

[3, 6]) are obstructions to the metric conicalness of the local inner geometry at the singular

point.

This paper addresses the following two questions about the local inner geometry of

complex analytic singularities:

- First, is it possible to identify objects that obstruct the metric conicalness of the local

inner geometry of complex analytic sets near a singular point?

- The Briançon-Speder family [6] is topologically constant but carries two Lipschitz struc-

tures. This motivates our second question: how many local inner geometries near the

singularities can a fixed homeomorphic type of a complex analytic isolated singularity

carry? In particular, can a single topological class have infinitely many Lipschitz models?

In order to answer these questions we introduce a new bi-Lipschitz invariant object,

which we call a choking horn. This object is a horn, that is a continuous image of

a cylinder over a Euclidean sphere along the unit interval with the property that one

boundary sphere maps onto the singular point and the tangent cone of the image at the

singular point is a real half-line, with the additional property that the intersection of

this image with any Euclidean (2n − 1)-sphere of sufficiently small radius centered at

the singular point is either a non-trivial cycle in the homology of the link or a trivial

cycle which can only be a boundary of a chain with “large” diameter. It turns out that

metrically conic singularities cannot admit a choking horn (Theorem 2.6). The choking

horns are higher dimensional analogs of so-called fast loops of the second kind, described

in the paper of Birbrair, Neumann and Pichon [8]. Moreover, the idea of choking horn is

closely related to Metric Homology [1, 2] and Vanishing Homology [15], which study the

families of homology cycles (trivial or nontrivial) with respect to the metric properties

near the singular points. Moreover this new object can be realized in some families of

Brieskorn hypersurface singularities as the real locus of the complex singularity. We show

that the presence of choking horns in the family of Brieskorn singularities (An2k+1)k≥1 also

implies that any two disjoint elements of this family cannot have the same local inner

geometry at the singular point (Theorem 3.2), despite this family being topologically

constant (Theorem 3.3).

Notes: Unless explicitly mentioned otherwise, any subset we will work with always comes

equipped with the inner metric.
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2. Elementary properties of choking horns

Given the germ at the origin of a subset Z of an Euclidean space, the t-link Zt of Z is

the locus of points of Z whose (Euclidean) distance to the origin is equal to t.

Let (X,0) be the germ of a connected subanalytic subset of an Euclidean space equipped

with a metric d which is either the outer metric douter, or the inner metric dinner.

Definition 2.1. A horn in X is the image of a subanalytic continuous map

φ : [0, 1]× Sp → X,

where Sp is the real unit sphere of positive dimension p, and such that there exists a

constant C > 0 such that

1. For any (t, u) ∈ [0, 1]× Sp the image φ(t, u) satisfies

t

C
≤ douter((φ(t, u)),0) ≤ Ct

2. The tangent cone of the image of φ at 0 is just a single real half-line.

We observe that a horn is subanalytic and in particular the mapping φ collapses the

boundary sphere 0× Sp onto the singular point 0.

Definition 2.2. Let Y be horn in (X, d). The subset Y is said to be a choking horn if for

every t small enough and any family of chains ξt (we do not suppose any sort of regularity

of the family) such that supp(ξt) ⊂ Xt and ∂ξt = Yt, then the d-diameter of supp(ξt),

necessarily, satisfies

diam(supp(ξt)) ≥ Kt

for some real number K > 0 independent of t.

The definition of a choking horn in X depends a priori on the choice of the metric d

(outer or inner metric) on X. Nevertheless this possible ambiguity is sorted out by the

following:

Proposition 2.3. Let Y be a horn in X. Then, Y is a choking horn with respect to the

inner metric if, and only if, it is a choking horn with respect to the outer metric on X.

Proof. Whenever Y is a choking horn with respect to the outer metric then it is a choking

horn with respect to the inner metric on X. The converse is a direct consequence of

Lemma 2.4 below. �

Lemma 2.4. There exists a constant L > 0 such that, for any closed and connected

subanalytic subset Z of X, the inner-diameter of Z (diameter with respect to the inner

metric on X) is at most L times the outer-diameter of Z (diameter with respect to the

outer metric on X).



4 L. BIRBRAIR, A. FERNANDES, V. GRANDJEAN, AND D. O’SHEA

Proof. Let {Λi}li=1 be a subanalytic decomposition of the subset X into closed pancakes

[11, 12, 13, 14]. The existence of such a decomposition ensures there are positive real

numbers {λi}li=1 such that, for each i = 1, . . . , l, the inner-distance on Λi is at most λi

times the outer-distance on Λi.

We define the constant L of the statement as L :=
∑l

i=1 λi.

Let Z be a closed connected subanalytic subset of X. In order to show that the inner-

diameter of Z is at most L times the outer-diameter of Z, let p, q be points of Z such that

inner-diameter of Z is realized as dinner(p, q) the inner distance between p and q. Since

Z is connected, there is a subanalytic arc Γ in Z connecting p and q. Let γ : [0, 1] → Γ

be a continuous subanalytic and injective parameterization of the arc Γ. We can find

k + 1 ≤ l + 1 points of Γ

γ0 := p, γ1 := γ(t1), . . . , γk−1 := γ(tk−1), γk := q

such that 0 < t1 < . . . < tk−1 < 1, and each consecutive pair of points γj−1 and γj belong

to a same pancake but neither γj−2, nor γj+1 belongs to this pancake. In other words,

γj−1, γj ∈ Z ∩ Λij for some ij ∈ {1, . . . , l}, but γj−2, γj+1 /∈ Λij .

Since the inner-distance on Λi is at most λi times the outer-distance on Λi, we deduce

the following inequalities

dinner(p, q) ≤
k∑
j=1

dinner(γj−1, γj)

≤
k∑
j=1

λijdouter(γj−1, γj)

≤
k∑
j=1

λijdiamouter(Z)

≤ Ldiamouter(Z)

where diamouter(Z) denotes the outer-diameter of Z. �

We remark that Lemma 2.4 bounding the inner metric diameter from above in terms

of the outer metric diameter is what makes the choice of diameter in measuring the size

of bounding cycles in the definition of a choking horn attractive. Other measures of size,

such as volumes, do not seem to admit such easily accessible bounds. The proposition

and lemma above immediately yield the following.

Proposition 2.5. Let (X,0) be the germ of a connected subanalytic subset of an Euclidean

space equipped with the inner metric.

1. The existence of a choking horn in X is invariant by subanalytic bi-Lipschitz home-

omorphisms;

2. If X admits a choking horn Y contained in a subgerm W , then the subset Y is

also a choking horn in W .
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We recall that a subanalytic germ at the origin of an Euclidean space equipped with

the intrinsic metric is metrically conical if it is bi-Lipschitz homeomorphic to the cone

over its link at the origin (where the cone over a subset K of Euclidean space is the set of

points {tx : x ∈ K, t ∈ [0, 1]}).

The first result of this note establishes that choking horns are obstructions to the metric

conicalness of the local inner geometry at the singularity:

Theorem 2.6. A closed subanalytic metrically conical set-germ (X, 0) does not admit a

choking horn.

Proof. By hypothesis we can assume that X is the cone over its link with vertex at 0.

Let us consider a subanalytic continuous mapping

φ : [0, 1]× Sd
∼−→ Y ⊂ X

parameterizing a horn Y in X. Let Yt be the t-link of Y . Since X is a cone the Hausdorff

limit of 1
t
Yt as t→ 0, taken in the Euclidean unit sphere of the ambient Euclidean space,

is a single point corresponding to a point x in the link of X. Let us denote the link of

X by L. Let Bδ(x) denote the Euclidean ball centered at x with radius δ > 0. By the

topological local structure of subanalytic sets, we know that Bδ(x) ∩ L is contractible

for all δ > 0 small enough. Since 1
t
Yt is collapsing onto x, as t → 0, we have that

Hausdorff distance between 1
t
Yt and x, which we denote by δ(t), tends to 0 as t > 0.

Moreover, since 1
t
Yt is a subset of the contractible set L ∩ B2δ(t)(x), there is a chain ξt

with supp(ξt) ⊂ L∩B2δ(t)(x) and satisfying ∂ξt = 1
t
Yt. Since supp(ξt) ⊂ L∩B2δ(t)(x), we

know that diam(supp(ξt))→ 0 as t→ 0.

Now, let us consider the chain ηt = tξt which is in the t-link of X. Note that,

∂ηt = Yt and diam(supp(ηt)) = t · diam(supp(ξt)),

hence there is no a positive number K (independent of t) such that diam(supp(ηt)) ≥ Kt

for all t > 0 small enough. This means exactly that Y does not choke X. �

3. Xn
k Brieskorn hypersurface singularities

Let Xn
k be the complex isolated hypersurface singularity of Cn+1 defined as

Xn
k = {(z1, . . . , zn, w) ∈ Cn+1 : z21 + . . . z2n − wk = 0}.

We are mostly interested in Xn
k as a germ at the origin 0 ∈ Cn+1.

The next theorem shows that choking horns exist in the simplest Brieskorn singularities.

Theorem 3.1. For each n > 1 and each k > 2, the hypersurface Xk
n admits a choking

horn, namely the real part Xn
k ∩ (R× 0)n+1.
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Proof. Let

Xn
k (R) := {(x1, . . . , xn, y) ∈ Rn+1 : x21 + . . .+ x2n − yk = 0 and y ≥ 0}

be the real algebraic variety embedded as the real part Xn
k ∩ Rn+1 of the hypersurface

Xn
k , where Rn+1 ⊂ Cn+1 is the usual embedding of Rn+1 in Cn+1. Consider the parame-

terization

φ : [0, 1]× Sn−1 → Xn
k

of the horn Xn
k (R) ⊂ Cn+1 defined by φ(t, u1, . . . , un) = ((t

k
2u1, 0) . . . , (t

k
2un, 0), (t, 0))

where Sn−1 is the Euclidean unit sphere centered at origin of Rn.

Claim 1. The t-link of Xn
k (R) is not contractible in Xn

k \ {w = 0}.
We start the proof of this claim by showing that for 0 < t ≤ 1 the subset

Xn
k (t) := {(z1, . . . , zn) ∈ Cn : z21 + . . .+ z2n = t}

retracts within Cn \ {z21 + . . .+ z2n = 0} to

{(z1, . . . , zn) ∈ Cn : z1, . . . , zn ∈ R and z21 + . . . z2n ≥ t}.

In fact, if we define zj := uj + ivj with uj, vj ∈ R, then

z21 + . . .+ z2n = t⇔ u21 + . . .+ u2n − (v21 + . . .+ v2n) = t and u1v1 + . . .+ unvn = 0.

At the points (z1, . . . , zn) such that z21 + . . .+ z2n = t we consider the retraction

(s, (z1, . . . , zn)) 7−→ (u1 + isv1, . . . , un + isvn) where 0 ≤ s ≤ 1.

Then

(u1 + isv1)
2 + . . .+ (un + isvn)2 = u21 + . . .+ u2n − s2(v21 + . . .+ v2n)− 2i(u1v1 + . . .+ unvn)

= t+ (1− s2)(v21 + . . .+ v2n)

≥ t

The proof of the claim will be finished once we have showed that the following subset

{(z1, . . . , zn) ∈ Cn : z1, . . . , zn ∈ R and z21 + . . .+ z2n ≥ t}

retracts within itself to the subset

{(z1, . . . , zn) ∈ Cn : z1, . . . , zn ∈ R and z21 + . . .+ z2n = t}.

In fact, for each point (z1, . . . , zn) ∈ Cn such that z1, . . . , zn ∈ R and z21 + . . .+z2n = T ≥ t,

we use the R+-action onXn
k to map (z1, . . . , zn, T ) to (skz1, . . . , s

kzn, s
2T ) where s = 2k

√
t

T
.

Thus, we see that the subset

Xn
k (t) = {(z1, . . . , zn) ∈ Cn : z21 + . . .+ z2n = t}

retracts to Xn
k (R) in Xn

k \ {w = 0}. Let g : (Cn,0) → (C, 0) be the function defined as

g(z1, . . . , zn) = z21 + . . .+ z2n. Since for non-zero t the subset Xn
k (t) is the Milnor Fiber of



CHOKING HORNS IN LIPSCHITZ GEOMETRY OF COMPLEX ALGEBRAIC VARIETIES. 7

the function g, we deduce this subset is not contractible in Xn
k \ {w = 0}. Thus Claim 1

is proved.

The next argument will complete the proof of the theorem. If ξt is a chain with support

contained in the t-link of Xn
k and such that its boundary ∂ξt is the t-link of Xn

k (R), then

lim
t→0

1

t
diam(supp(ξt)) ≥

π

2
.

In particular, for t > 0 small enough, we get diam(supp(ξt)) ≥ π
4
t. �

Theorem 3.2. For each n > 1 and any pair k > l > 1, the complex isolated hypersurface

singularities Xn
k and Xn

l are not subanalytically bi-Lipschitz homeomorphic.

Before getting into its proof, we note that Theorem 3.2 suggests that a local complex

singularity topological type carry different local subanalytic inner Lipschitz geometries at

the singular points.

Theorem 3.3. For any odd integer n, the family of germs {(Xn
2k+1,0)}k>0 admits infin-

itely many subanalytically bi-Lipschitz classes, despite being of constant topological type.

Proof. When n is odd Brieskorn [9] shows that the link at the origin of Xn
2k+1 is a Z-

homology sphere, hence is homeomorphic to the Euclidean (2n − 1)-sphere. From The-

orem 3.2, we deduce that the given family consists of infinitely many complex algebraic

varieties which are (semialgebraically) homeomorphic but not subanalytically bi-Lipschitz

homeomorphic. �

Proof of Theorem 3.2. Suppose the contrary. So for some k > l, let f : Xn
k → Xn

l be a

subanalytic bi-Lipschitz homeomorphism. Let us consider Xn
k (R) the choking horn in Xn

k

and the parameterisation

φ : [0, 1]× Sn−1 → Xn
k

as defined in the proof of Theorem 3.1 . So, the image of f ◦ φ, which we denote by Y , is

a choking horn in Xn
l . We claim that the tangent cone of Y at 0 is a real half-line in the

w-complex axis (so we may take to be the y-real positive half-line after multiplying by

eiθ). Before we prove what we claimed above, let us prove that if ξ ∈ Cn+1 is a vector that

does not lie in the w-axis, then for any sufficiently small conical neighborhood of ξ, which

we denote by Cε(ξ), there is at least one coordinate hyperplane Hi = {zi = 0} such that

the projection Xn
l ∩ Cε(ξ)→ Hi is subanalytically bi-Lipschitz. In fact, since ξ 6∈ w-axis

at least one of the first coordinates of ξ must differ from zero. Let us assume, without

loss of generality, that ξ1 6= 0 and let us consider the projection on H1 = {z1 = 0}. In

this case, locally on Xn
k we have that z1 is a function depending on z2, . . . , zn, w and

∂z1
∂zi

= − zi
z1

for i = 2, . . . , n and
∂z1
∂w

=
k

2

wk−1

z1
.
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Since z1 is bounded away from zero for all z ∈ Cε(ξ), all partial derivatives above are

bounded. We conclude that z1 is a locally Lipschitz function, as we desired to show.

Since we have proved that some projection Xn
l ∩ Cε(ξ) → Hi is subanalytically bi-

Lipschitz, if the tangent cone T0Y were to be tangent to ξ 6∈ w-axis, we would have a

choking horn in a metrically conical set which is impossible by Theorem 2.6.

Now, we know that T0Y is the y-real positive half-line. Let us consider the following

R+-action on Xn
l :

(t, z1, . . . , zn, w) 7−→ t · (z1, . . . , zn, w) = (t
l
2 z1, . . . , t

l
2 zn, tw).

Let u(t), v(t) be points belonging to Yt. Then, we know that

‖u(t)− v(t)‖ ≤ dXn
l
(u(t), v(t)) ≤ λdiam((Xn

k (R))t) ≈ t
k
2 as t→ 0.

Choosing the preimages of u(t) and v(t) so that their distance realizes the diameter of

the t-link of Xn
k , we can use the R+-action on Xn

l to push Yt to the 1-slice of Xn
l . Then,

u(t) = (u1(t), . . . , un(t), t) and v(t) = (v1(t), . . . , vn(t), t)

whence

t−1 · u(t) = (t−
l
2v1(t), . . . , t

− l
2un(t), 1) and t−1 · v(t) = (t−

l
2v1(t), . . . , t

− l
2vn(t), 1).

Hence

‖t−1 · u(t)− t−1 · v(t)‖ ≤ max
i
t−

l
2 |ui(t)− vi(t)| . t−

l
2 t

k
2 → 0 as t→ 0

since k > l.

But, then the 1-slice of Y is homologous to a cycle that gets inside a contractible

neighborhood in the 1-slice of Xn
l , so Y cannot be a choking horn, which is a contradiction.

This establishes the proof of the theorem. �

4. Further comments

Choking horns give an example of a structure that obstructs metric conicalness in any

complex dimension greater than one. It seems likely that singular germs with a more

sophisticated geometry should contain other objects (neither fast loops, nor separating

sets nor choking horns) which are features of the local inner geometry at the singularity. A

related series of questions comes from the fact that the choking horns we find above are the

real part of a particular realization of the Xk
n singularities. It is irresistible to ask whether

one can detect failure of metric conicalness from the real parts of other realizations. On

a related note, our proofs depended heavily on the C∗ action on the singularity. Given

a real singularity which is a horn, it is natural to ask whether its complexification must

necessarily be metrically conic. A proof of anything along these lines would require very

different techniques than ours.
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5. Appendix: separating sets. By Walter D. Neumann

This appendix describes a different proof of some of the results of this paper. We rely

on the paper [6] of Birbrair, Fernandes and Neumann, in which is shown, among other

things:

Theorem 5.1. If the tangent cone TpX of a normal complex germ (X, p) has a complex

subcone V of complex codimension ≥ 1 which separates TpX, then there is a corresponding

separating set in (X, p) with tangent cone V .

The actual theorem in [6] is Theorem 5.1, which deals with the more general context of

real semialgebraic sets, using a slightly more general definition of “separating set” than is

needed in the complex setting. Here we define a separating set to be a real semialgebraic

subgerm (W, p) ⊂ (X, p) whose tangent cone has real codimension at least 2 and which

separates X into pieces whose tangent cones have full dimension.

The theorem is applied in [6] to the example of the Brieskorn variety

X = X(a1, . . . , an) := {(z1, . . . , zn) ∈ Cn | za11 + · · ·+ zann = 0}

with a1 = a2 = a ≥ 2 and ak > a for k > 2. The tangent cone at the origin is the union

of the a complex hyperplanes {z1 = ξz2} with ξ an a-th root of −1. These intersect along

the (n−2)-plane V = {z1 = z2 = 0}, which separates the tangent cone into a pieces. So X

has a separating set decomposing it into a pieces having tangent cones the a hyperplanes

above. By Brieskorn [9], if n > 3 then the link

Σ(a1, a2, . . . , an) := X(a1, a2, . . . , an) ∩ S2n−1

is a topological sphere if at least two of the aj’s have no common factor with any other

aj. We thus see examples in any dimension n ≥ 3 of singularities with link a topological

sphere and having separating sets which decompose X into arbitrarily many pieces. This

gives a proof of Theorem 3.3 for all dimensions ≥ 3.

In fact we can be very explicit in this example. Choose any positive ε < 1. Then

putting

Y := {z ∈ X |
n∑
i=3

|zi|ai ≤ ε(|z1|a + |z2|a)}, Z := X \ Y ,

the following facts are easily verified:

(1) T0Z = {z ∈ Cn | z1 = z2 = 0};
(2) the image π(Y ) of the projection of Y to the z1z2-plane has a components;

(3) the inverse image of each component of π(Y ) is a component of Y , so Y has a

components.



10 L. BIRBRAIR, A. FERNANDES, V. GRANDJEAN, AND D. O’SHEA

Indeed, (1) follows immediately from the fact that the exponents ai for i ≥ 3 are greater

than a. For (2) we note that for any z = (z1, . . . , zn) ∈ Y :

|za1 + za2 | = |
n∑
i=3

zaii | ≤
n∑
i=3

|zi|ai

< |z1|a + |z2|a .

This inequality implies that the coordinates z1 and z2 are both non-zero, and z2/z1 cannot

be a positive multiple of any a-th root of unity. This condition divides π(Y ) into a pieces

according to the argument of z2/z1. For each a-th root of −1 we denote by Y ′ξ the piece

of π(Y ) which contains points with z2/z1 = ξ and denote Yξ = π−1(Y ′ξ ). It is not hard to

check that Yξ is connected and its projection to the hyperplane z1 = 0 is a bijective map

to its image which is subanalytically bi-Lipschitz in a neighbourhood of the origin. In

fact, (X, p) = (Y, p) ∪ (Z, p), glued along their common boundary, which is topologically

the cone over a disjoint union of a copies of S2n−5 × S1.

The previous decomposition (X, p) = (Y, p) ∪ (Z, p) is the “thick-thin decomposition”

of (X, p). This thick-thin decomposition is discussed in detail for normal surface singular-

ities in [8] (works in progress about such a decomposition in any dimension by Birbrair,

Fernandes, Grandjean, Neumann, O’Shea, Pichon, Verjovsky). In the case of an isolated

complex singularity germ (X, p) one can construct it as follows: call a tangent line L in

TpX “very exceptional” if no curve in X with tangent L has a metrically conical neigh-

bourhood. One obtains the thin zone by taking a suitable horn neighbourhood of the

union of all very exceptional tangent lines, and the thick zone is then the closure of the

complement of the thin zone.

Similarly, the example X(2, . . . , 2, k) ⊂ Cn+1 of the body of this paper has thick-thin

decomposition whose thin part is a k/2-horn neighbourhood of the zn+1-axis, which has

boundary the cone over S1 × Σ(2, . . . , 2).
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