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Abstract. We describe a natural decomposition of a normal complex surface

singularity (X, 0) into its “thick” and “thin” parts. The former is essentially
metrically conical, while the latter shrinks rapidly in thickness as it approaches

the origin. The thin part is empty if and only if the singularity is metrically

conical; the link of the singularity is then Seifert fibered. In general the thin
part will not be empty, in which case it always carries essential topology. Our

decomposition has some analogy with the Margulis thick-thin decomposition

for a negatively curved manifold. However, the geometric behavior is very dif-
ferent; for example, often most of the topology of a normal surface singularity

is concentrated in the thin parts.

By refining the thick-thin decomposition, we then give a complete descrip-
tion of the intrinsic bilipschitz geometry of (X, 0) in terms of its topology and

a finite list of numerical bilipschitz invariants.

1. Introduction

Lipschitz geometry of complex singular spaces is an intensively developing sub-
ject. In [42], L. Siebenmann and D. Sullivan conjectured that the set of Lipschitz
structures is tame, i.e., the set of equivalence classes of complex algebraic sets in
Cn, defined by polynomials of degree less than or equal to k is finite. One of the
most important results on Lipschitz geometry of complex algebraic sets is the proof
of this conjecture by T. Mostowski [27] (generalized to the real setting by Parusiński
[36, 37]). But so far, there exists no explicit description of the equivalence classes,
except in the case of complex plane curves which was studied by Pham and Teissier
[39] and Fernandes [10]. They show that the embedded Lipschitz geometry of plane
curves is determined by the topology. The present paper is devoted to the case of
complex algebraic surfaces, which is much richer.

Let (X, 0) be the germ of a normal complex surface singularity. Given an embed-
ding (X, 0) ⊂ (Cn, 0), the standard hermitian metric on Cn induces a metric on X
given by arc-length of curves in X (the so-called “inner metric”). Up to bilipschitz
equivalence this metric is independent of the choice of embedding in affine space.

It is well known that for all sufficiently small ε > 0 the intersection of X with the
sphere Sε ⊂ Cn about 0 of radius ε is transverse, and the germ (X, 0) is therefore
“topologically conical,” i.e., homeomorphic to the cone on its link X ∩ Sε (in fact,
this is true for any semi-algebraic germ). However, (X, 0) need not be “metrically
conical” (bilipschitz equivalent to a standard metric cone). The first example of a
non-metrically-conical (X, 0) was given in [2], and the examples in [3, 4, 5] then
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suggested that failure of metric conicalness is common. In [5] it is also shown that
bilipschitz geometry of a singularity may not be determined by its topology.

In those papers the failure of metric conicalness and differences in bilipschitz
geometry were determined by local obstructions: existence of topologically non-
trivial subsets of the link of the singularity (“fast loops” and “separating sets”)
whose size shrinks faster than linearly as one approaches the origin.

In this paper we first describe a natural decomposition of the germ (X, 0) into
two parts, the thick and the thin parts, such that the thin part carries all the “non-
trivial” bilipschitz geometry, and we later refine this to give a classification of the
bilipschitz structure. Our thick-thin decomposition is somewhat analogous to the
Margulis thick-thin decomposition of a negatively curved manifold, where the thin
part consists of points x which lie on a closed essential (i.e., non-nullhomotopic)
loop of length ≤ 2η for some small η. A (rough) version of our thin part can be
defined similarly using essential loops in X r {0}, and length bound of the form
≤ |x|1+c for some small c. We return to this in section 8.

Definition 1.1 (Thin). A semi-algebraic germ (Z, 0) ⊂ (RN , 0) of pure dimension
k is thin if its tangent cone T0Z has dimension strictly less than k.

This definition only depends on the inner metric of Z and not on the embedding
in RN . Indeed, instead of T0Z one can use the metric tangent cone T0Z of Bernig
and Lytchak in the definition, since it is a bilipschitz invariant for the inner metric
and maps finite-to-one to T0Z (see [1]). The metric tangent cone is discussed
further in Section 9, where we show that it can be recovered from the thick-thin
decomposition.

“Thick” is a generalization of “metrically conical.” Roughly speaking, a thick
algebraic set is obtained by slighly inflating a metrically conical set in order that
it can interface along its boundary with thin parts. The precise definition is as
follows:

Definition 1.2 (Thick). Let Bε ⊂ RN denote the ball of radius ε centered at the
origin, and Sε its boundary. A semi-algebraic germ (Y, 0) ⊂ (RN , 0) is thick if there
exists ε0 > 0 and K ≥ 1 such that Y ∩ Bε0 is the union of subsets Yε, ε ≤ ε0
which are metrically conical with bilipschitz constant K and satisfy the following
properties (see Fig. 1):

(1) Yε ⊂ Bε, Yε ∩ Sε = Y ∩ Sε and Yε is metrically conical as a cone on its link
Y ∩ Sε.

(2) For ε1 < ε2 we have Yε2∩Bε1 ⊂ Yε1 and this embedding respects the conical
structures. Moreover, the difference (Yε1 ∩ Sε1)r (Yε2 ∩ Sε1) of the links of
these cones homeomorphic to ∂(Yε1 ∩ Sε1)× [0, 1).

Clearly, a semi-algebraic germ cannot be both thick and thin. The following
proposition helps picture “thinness”. Although it is well known, we give a quick
proof in Section 5 for convenience.

Let 1 < q ∈ Q. A q-horn neighbourhood of a semialgebraic germ (A, 0) ⊂ (RN , 0)
is a set of the form {x ∈ Rn ∩Bε : d(x,A) ≤ c|x|q} for some c > 0.

Proposition 1.3. Any semi-algebraic germ (Z, 0) ⊂ (RN , 0) is contained in some
q-horn neighborhood of its tangent cone T0Z.

For example, the set Z = {(x, y, z) ∈ R3 : x2 +y2 ≤ z3} gives a thin germ at 0 since
it is a 3-dimensional germ whose tangent cone is the z-axis. The intersection Z∩Bε



BILIPSCHITZ CLASSIFICATION OF NORMAL SURFACE SINGULARITIES 3

0

Sε

Sε0

Yε

Yε0

Figure 1. Thick germ

is contained in a closed 3/2-horn neighborhood of the z-axis. The complement in
R3 of this thin set is thick.

For any subgerm (A, 0) of (Cn, 0) or (RN , 0) we write

A(ε) := A ∩ Sε ⊂ Sε .

In particular, when A is semi-algebraic and ε is sufficiently small, A(ε) is the ε-link
of (A, 0).

Definition 1.4 (Thick-thin decomposition). A thick-thin decomposition of the nor-
mal complex surface germ (X, 0) is a decomposition of it as a union of germs of
pure dimension 4:

(1) (X, 0) =

r⋃
i=1

(Yi, 0) ∪
s⋃
j=1

(Zj , 0) ,

such that the Yi r {0} and Zj r {0} are connected and:

(1) Each Yi is thick and each Zj is thin.
(2) The Yi r {0} are pairwise disjoint and the Zj r {0} are pairwise disjoint.
(3) If ε0 is chosen small enough that Sε is transverse to each of the germs (Yi, 0)

and (Zj , 0) for ε ≤ ε0, then X(ε) =
⋃r
i=1 Y

(ε)
i ∪

⋃s
j=1 Z

(ε)
j decomposes the

3-manifold X(ε) ⊂ Sε into connected submanifolds with boundary, glued
along their boundary components.

We call the links Y
(ε)
i and Z

(ε)
j of the thick and thin pieces thick and thin zones of

the link X(ε).

Definition 1.5. A thick-thin decomposition is minimal if

(1) the tangent cone of its thin part
⋃s
j=1 Zj is contained in the tangent cone

of the thin part of any other thick-thin decomposition and
(2) the number s of its thin pieces is minimal among thick-thin decompositions

satisfying (1).

The following theorem expresses the existence and uniqueness of a minimal thick-
thin decomposition for a normal complex surface germ (X, 0).
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Theorem 1.6. A minimal thick-thin decomposition of (X, 0) exists. For any two
minimal thick-thin decompositions of (X, 0) there exists q > 1 and a homeomor-
phism of the germ (X, 0) to itself which takes the one decomposition to the other
and moves each x ∈ X distance at most |x|q.

The homeomorphism in the above theorem is not necessarily bilipschitz, but the
bilipschitz classification which we describe later leads to a “best” minimal thick-thin
decomposition, which is unique up to bilipschitz homeomorphism.

Theorem 1.7 (Properties). A minimal thick-thin decomposition of (X, 0) as in
equation (1) satisfies r ≥ 1, s ≥ 0 and has the following properties for 0 < ε ≤ ε0:

(1) Each thick zone Y
(ε)
i is a Seifert fibered manifold.

(2) Each thin zone Z
(ε)
j is a graph manifold (union of Seifert manifolds glued

along boundary components) and not a solid torus.

(3) There exist constants cj > 0 and qj > 1 and fibrations ζ
(ε)
j : Z

(ε)
j → S1

depending smoothly on ε ≤ ε0 such that the fibers ζ−1
j (t) have diameter at

most cjε
qj (we call these fibers the Milnor fibers of Z

(ε)
j ).

The minimal thick-thin decomposition is constructed in Section 2. Its minimality
and uniqueness are proved in Section 8.

We will take a resolution approach to construct the thick-thin decomposition,
but another way of constructing it is as follows. Recall (see [43, 25]) that a line
L tangent to X at 0 is exceptional if the limit at 0 of tangent planes to X along
a curve in X tangent to L at 0 depends on the choice of this curve. Just finitely
many tangent lines to X at 0 are exceptional. To obtain the thin part one intersects
X r {0} with a q-horn disk-bundle neighborhood of each exceptional tangent line
L for q > 1 sufficiently small and then discards any “trivial” components of these
intersections (those whose closures are locally just cones on solid tori; such trivial
components arise also in our resolution approach, and showing that they can be
absorbed into the thick part takes some effort, see section 6).

In [3] a fast loop is defined as a family of closed curves in the links X(ε) := X∩Sε,
0 < ε ≤ ε0, depending continuously on ε, which are not homotopically trivial in
X(ε) but whose lengths are proportional to εk for some k > 1, and it is shown that
fast loops are obstructions to metric conicalness1

In Theorem 7.5 we show

Theorem (7.5). Each thin piece Zj contains fast loops. In fact, each boundary
component of its Milnor fiber gives a fast loop.

Corollary 1.8. The following are equivalent, and each implies that the link of
(X, 0) is Seifert fibered:

(1) (X, 0) is metrically conical;
(2) (X, 0) has no fast loops;
(3) (X, 0) has no thin piece (so it consists of a single thick piece).

Bilipschitz classification. We will give a complete classification of the geometry
of (X, 0) up to bilipschitz equivalence, based on a refinement of the thick-thin

1We later call these fast loops of the the first kind, since in section 7 we define a related concept
of fast loop of the second kind and show these also obstruct metric conicalness.
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decomposition. We will describe this refinement in terms of the decomposition of
the link X(ε).

We first refine the decomposition X(ε) =
⋃r
i=1 Y

(ε)
i ∪

⋃s
j=1 Z

(ε)
j by decomposing

each thin zone Z
(ε)
j into its JSJ decomposition (minimal decomposition into Seifert

fibered manifolds glued along their boundaries [17, 35]), while leaving the thick

zones Y
(ε)
i as they are. We then thicken some of the gluing tori of this refined

decomposition to collars T 2 × I, to add some extra “annular” pieces (the choice
where to do this is described in Section 10). At this point we have X(ε) glued
together from various Seifert fibered manifolds (in general not the minimal such
decomposition).

Let Γ0 be the decomposition graph for this, with a vertex for each piece and
edge for each gluing torus, so we can write this decomposition as

(2) X(ε) =
⋃

ν∈V (Γ0)

M (ε)
ν ,

where V (Γ0) is the vertex set of Γ0.

Theorem 1.9 (Classification Theorem). The bilipschitz geometry of (X, 0) deter-
mines and is uniquely determined by the following data:

(1) The decomposition of X(ε) into Seifert fibered manifolds as described above,
refining the thick-thin decomposition;

(2) for each thin zone Z
(ε)
j , the homotopy class of the foliation by fibers of the

fibration ζ
(ε)
j : Z

(ε)
j → S1 (see Theorem 1.7 (3));

(3) for each vertex ν ∈ V (Γ0), a rational weight qν ≥ 1 with qν = 1 if and

only if M
(ε)
ν is a Y

(ε)
i (i.e., a thick zone) and with qν 6= qν′ if ν and ν′ are

adjacent vertices.

In item (2) we ask for the foliation by fibers rather than the fibration itself since
we do not want to distinguish fibrations ζ : Z → S1 which become equivalent after
composing each with a covering maps S1 → S1. Note that item (2) describes
discrete data, since the foliation is determined up to homotopy by a primitive

element of H1(Z
(ε)
j ;Z) up to sign.

The data of the above theorem can also be conveniently encoded by adding the
qν ’s as weights on a suitable decorated resolution graph. We do this in Section 15,
where we compute various examples.

The proof of Theorem 1.9 is in terms of a canonical “bilipschitz model”

(3) X̂ =
⋃

ν∈V (Γ0)

M̂ν ∪
⋃

σ∈E(Γ0)

Âσ ,

with X̂ ∼= X∩Bε (bilipschitz) and where each Âσ is a collar (cone on a toral annulus

T 2 × I) while each M̂ν is homeomorphic to the cone on M
(ε)
ν . The pieces carry

Riemannian metrics determined by the qν ’s and the foliation data of the theorem;
these metrics are global versions of the local metrics used by Hsiang and Pati [15]

and Nagase [33]. On a piece M̂ν the metric is what Hsiang and Pati call a “Cheeger
type metric” (locally of the form dr2 +r2dθ2 +r2qν (dx2 +dy2); see Definitions 11.2,

11.3). On a piece Âσ it has a Nagase type metric as described in Nagase’s correction
to [15] (see Definition 11.1).
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Mostovski’s work mentioned earlier is based on a construction of Lipschitz trivial
stratifications. Our approach is different in that we decompose the germ (X, 0) using
the carrousel theory of D. T. Lê ([20], see also [23]) applied to the discriminant curve
of a generic plane projection of the surface. However, our work has some similarities
with Mostovski’s (loc. cit., see also [28]) in the sense that the geometry near the
polar curves also plays an important role, in particular the subgerms where the
family of polar curves accumulates while one varies the direction of projections
(Propositions 3.3 and 3.4).

A thick-thin decomposition exists also for higher-dimensional germs, and we con-
jecture with Alberto Verjovsky that it can be made canonical. It is the rigidity of
topology in dimension 3, linked to the nontriviality of fundamental groups in this di-
mension, which enables us to get strong results for surfaces. The less rigid topology
in higher dimensions makes it is harder to pin down the “trivial” parts mentioned
earlier which can be absorbed into the thick zones, and there are similar issues in
determining boundaries between the pieces in a full bilipschitz classification.

Acknowledgments. We are very grateful to the referee for insightful comments
which corrected an error in the paper and improved it in other ways, and to
Adam Parusiński, Jawad Snoussi, Don O’Shea, Bernard Teissier, Guillaume Valette,
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grant DMS-0905770. Birbrair was supported by CNPq grants 201056/2010-0 and
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(B), Columbia University (B,P), Institut de Mathématiques de Luminy, Université
d’Aix-Marseille, Instituto do Milénio (N), IAS Princeton, CIRM petit groupe de
travail (B,N,P), Universidade Federal de Ceara, CRM Montréal (N,P).

2. Construction of the thick-thin decomposition

Let (X, 0) ⊂ (Cn, 0) be a normal surface germ. In this section, we explicitly
describe the thick-thin decomposition for a normal complex surface germ (X, 0) in
terms of a suitably adapted resolution of (X, 0).

Let π : (X̃, E)→ (X, 0) be the minimal resolution with the following properties:

(1) It is a good resolution, i.e., the exceptional divisors are smooth and meet
transversely, at most two at a time,

(2) It has no basepoints for a general linear system of hyperplane sections, i.e.,
π factors through the normalized blow-up of the origin. An exceptional
curve intersecting the strict transforms of the generic members of a general
linear system will be called an L-curve.

(3) No two L-curves intersect.

This is achieved by starting with a minimal good resolution, then blowing up to re-
solve any basepoints of a general system of hyperplane sections, and finally blowing
up any intersection point between L-curves.

Let Γ be the resolution graph of the above resolution. A vertex of Γ is called
a node if it has valency ≥ 3 or represents a curve of genus > 0 or represents an
L-curve. If a node represents an L-curve it is called an L-node, otherwise a T -node.
By the previous paragraph, L-nodes cannot be adjacent to each other.

The subgraphs of Γ resulting by removing the L-nodes and adjacent edges from
Γ are called the Tjurina components of Γ (following [44, Definition III.3.1]), so
T -nodes are precisely the nodes of Γ that are in Tjurina components.
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A string is a connected subgraph of Γ containing no nodes. A bamboo is a string
ending in a vertex of valence 1.

For each exceptional curve Eν in E let N(Eν) be a small closed tubular neigh-
borhood. For any subgraph Γ′ of Γ define (see Fig. 2):

N(Γ′) :=
⋃
ν∈Γ′

N(Eν) and N (Γ′) := N(Γ) r
⋃
ν /∈Γ′

N(Eν) .

Γ′

Γ

N(Γ′) N (Γ′)

Figure 2. N(Γ′) and N (Γ′) for the A4 singularity

In the Introduction we used standard ε-balls to state our results, but in practice
it is often more convenient to work with a different family of Milnor balls. For
example, one can use, as in Milnor [32], the ball of radius ε at the origin, or the
balls with corners introduced by Kähler [18], Durfee [8] and others. In our proofs
it will be convenient to use balls with corners, but it is a technicality to deduce the
results for round Milnor balls. We will define the specific family of balls we use in
Section 4. We denote it again by Bε, 0 < ε ≤ ε0 and put Sε := ∂Bε.

Definition 2.1 (Thick-thin decomposition). Assume ε0 is sufficiently small that
π−1(X ∩ Bε0) is included in N(Γ). Denote by Γ1, . . . ,Γs the tyurina components
of Γ which are not bamboos, and by Γ′1, . . . ,Γ

′
r the maximal connected subgraphs

in Γ r
⋃s
j=1 Γj .

For each each i = 1, . . . , r, define

Yi := π(N(Γ′j)) ∩Bε0 ,

and for each j = 1, . . . , s, define

Zj := π(N (Γj)) ∩Bε0 .

Notice that each Γ′i consists of an L-node and any attached bamboos. So the Yi
are in one-one correspondence with the L-nodes.

The Yi are the thick pieces and the Zj are the thin pieces.

By construction, the decomposition (X, 0) =
⋃

(Zj , 0) ∪
⋃

(Yi, 0) satisfies items
(2) and (3) of Definition 1.4 and items (1) and (2) of Theorem 1.7. Item (3) of
Theorem 1.7 and the thinness of the Zj are proved in Section 5. The thickness of
Yi is proved in Section 6.

3. Polar curves

Let (X, 0) ⊂ (Cn, 0) be a normal surface germ. In this section, we prove two
independent results on polar curves of linear projections X → C2 which will be
used in the sequel. We first need to introduce some classical material.
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Let D be a (n − 2)-plane in Cn and let `D : Cn → C2 be the linear projection
Cn → C2 with kernel D. We restrict ourselves to those D in the Grassmanian
G(n − 2,Cn) such that the restriction `D| : (X, 0) → (C2, 0) is finite. The polar
curve ΠD of (X, 0) for the direction D is the closure in (X, 0) of the singular locus
of the restriction of `D to X r {0}. The discriminant curve ∆D ⊂ (C2, 0) is the
image `D(ΠD) of the polar curve ΠD.

There exists an open dense subset Ω ⊂ G(n − 2,Cn) such that the germs of
curves (ΠD, 0),D ∈ Ω are equisingular in terms of strong simultaneous resolution
and such that the discriminant curves ∆D = `D(ΠD) are reduced and no tangent
line to ΠD at 0 is contained in D ([24, (2.2.2)] and [46, V. (1.2.2)]).

The condition ∆D reduced means that any p ∈ ∆D r {0} has a neighborhood U
in C2 such that one component of (`D|X)−1(U) maps by a two-fold branched cover
to U and the other components map bijectively.

Definition 3.1. The projection `D : Cn → C2 is generic for (X, 0) if D ∈ Ω.

Let λ : X r {0} → G(2,Cn) be the map which maps x ∈ X r {0} to the tangent
plane TxX. The closure X̌ of the graph of λ in X ×G(2,Cn) is a reduced analytic
surface. By definition, the Nash modification of (X, 0) is the induced morphism
ν : X̌ → X.

Lemma 3.2 ([44, Part III, Theorem 1.2], [11, Section 2]). A resolution of (X, 0)
factors through Nash modification if and only if it has no base points for the family
of polar curves. �

Let us fix D ∈ Ω. We suppress the subscript D and note simply ` for `D and Π
and ∆ for the polar and discriminant curves of `|X . The local bilipschitz constant
of `|X is the map K : X r {0} → R ∪ {∞} defined as follows. It is infinite on the
polar curve and at a point p ∈ X r Π it is the reciprocal of the shortest length
among images of unit vectors in TpX under the projection d` : TpX → C2.

Proposition 3.3. Let π′ : X̃ ′ → X be a resolution of X which factors through
Nash modification. Denote by Π∗ the strict transform of the polar curve Π by π′.

Given any neighborhood U of Π∗∩ (π′)−1(Bε∩X) in X̃ ′∩ (π′)−1(Bε∩X), the local
bilipschitz constant K is bounded on (Bε ∩X) r π′(U).

Proof. Let σ : X̃ ′ → G(2,Cn) be the map induced by the projection p2 : X̌ ⊂
X × G(2,Cn) → G(2,Cn) and let α : G(2,Cn) → R ∪ {∞} be the map sending
H ∈ G(2,Cn) to the bilipschitz constant of the restriction `|H : H → C2. The map

α ◦σ coincides with K ◦π′ on X̃ ′rπ′
−1

(0) and takes finite values outside Π∗. The

map α◦σ is continuous and therefore bounded on the compact set π′
−1

(Bε)rU . �

In the rest of the section, we consider a branch ∆0 of the discriminant curve ∆
and the component Π0 of the polar of ` such that `(Π0) = ∆0. We will study the
behavior of ` on a suitable zone A in X containing Π0, outside of which ` is a local
bilipschitz homeomorphism.

We choose coordinates in C2 so that ∆0 is not tangent to the y-axis. Then ∆0

admits a Puiseux series expansion

y =
∑
j≥1

ajx
pj ∈ C{x 1

N }, with pj ∈ Q, 1 ≤ p1 < p2 < · · · .

Here N = lcmj≥1 denom(pj), where “denom” means denominator.
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For K0 ≥ 1, set BK0
:=
{
p ∈ X ∩ (Bε r {0}) : K(p) ≥ K0

}
, and let BK0

(Π0)
denote the closure of the connected component of BK0r{0} which contains Π0r{0}.
We set NK0

(∆0) = `(BK0
(Π0)).

Proposition 3.4 (Polar Wedge Lemma).

(1) There exists k ≥ 1 such that if s := pk then for any α > 0 there is K0 ≥ 1
such that NK0

(∆0) is contained in the set

B =
{

(x, y) :
∣∣∣y −∑

j≥1

ajx
pj
∣∣∣ ≤ α|x|s} .

We call the largest such s the contact exponent of ∆0.
(2) Let A0 be the closure of the component of `−1(B)r {0} which contains Π0.

Then up to bilipschitz equivalence A0 is a topological cone on a solid torus,
([0, ε]×S1×D2)/({0}×S1×D2), equipped with the metric dr2+r2dθ2+r2sg,
where g is the standard metric on the unit disk. We call such an A0 a polar
wedge.

Remark. Note that in part (1) B could be replaced by the set

B′ =
{

(x, y) :
∣∣∣y − ∑

j≥1,pj≤s

ajx
pj
∣∣∣ ≤ α|x|s} ,

since truncating higher order terms does not change the bilipschitz geometry. Up
to bilipschitz equivalence this does not change A0 in part (2) either.

Proof of Proposition 3.4. We are considering the germ (X, 0), so in this proof all

subsets of X or X̃ ′ are implicitly intersected with Bε or (π′)−1(Bε) for some suffi-
ciently small ε.

According to Proposition 3.3, for each neighborhood A∗ of Π∗0 in X̃ ′ there exists
K0 such that BK0

(Π0) ⊂ π′(A∗). We first construct such an A∗ as the union of a
family of disjoint strict transforms of components Π∗0,Dt of polars Π∗Dt parametrized

by t in a neighborhood of 0 in C, and with D0 = D. So Π0 = Π0,D0
. Let E ⊂ π′−1(0)

be the exceptional curve with E ∩Π∗0 6= ∅.
Denote σ : X̃ ′ → G(2,Cn) as in the proof of Proposition 3.3 and let U denote

a small neighborhood of T := σ(E ∩ Π∗0) in G(2,Cn). We first assume n = 3 so
G(2,Cn) = G(2,C3) ∼= P 2C. Choose any T ′ ∈ G(2,C3) r U so that T ′ ⊂ C3

contains D. The line L in G(2,C3) through T and T ′ is the set of 2-planes in C3

containing the line D, so its inverse image under σ is exactly Π∗. Now consider the
pencil of lines Lt through T ′, parametrized so L0 = L. Each Lt is the set of 2-planes
containing some line Dt. The family of inverse images of the Lt which intersect U is
a family {Π∗Dt} of disjoint strict transforms of polar components foliating an open
neighborhood of Π∗.

If n ≥ 3 we choose an (n − 3)-dimensional subspace W ⊂ Cn transverse to T .
Shrinking U if necessary, we can assume that W is transverse to every T ′′ ∈ U .
Denote by G(2,Cn;W ) the set of 2-planes in Cn transverse to W , so the projection
p : Cn → Cn/W induces a map p′ : G(2,Cn;W )→ G(2,Cn/W ) ∼= P 2C. We again
consider the pencil of lines Lt in G(2,Cn/W ) ∼= P 2C through some point outside
p′(U). The family of inverse images by p′ ◦ σ of those of these lines which intersect
p′(U) is again a family of disjoint strict transforms of polar components foliating
an open neighborhood of Π∗. The polar corresponding to Lt is the polar for the
projection with kernel Dt, where Dt/W ⊂ Cn/W is again the common line in the
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family of 2-planes Lt ⊂ G(2,Cn/W ). Indeed, for any 2-plane T ′ in Cn transverse
to W , the image p(T ′) contains Dt/W if and only if T ′ intersects Dt nontrivially.

Consider now the neighborhood
⋃
t∈V Π∗Dt of Π∗ where V is a small closed disk

in C centered at 0. We denote by A∗ the connected component of
⋃
t∈V Π∗Dt which

contains Π∗0. Then A∗ =
⋃
t∈V Π∗0,Dt , where Π0,Dt is a branch of ΠDt , and Π0,D0

=

Π0. We write A := π′(A∗) =
⋃
t∈V Π0,Dt .

According to the proof of Lemme 1.2.2 ii) in Teissier [46, p. 462], the family of
plane curves `D(ΠD′) parametrized by (D,D′) ∈ Ω×Ω is equisingular on a Zariski
open neighborhood of the diagonal (a more explicit proof for hypersurfaces is found
in Briançon-Henry [7, Theorem 3.7]). We can therefore choose our disk V so that
the curves `(Π0,Dt) for t ∈ V form an equisingular family of plane curves. These
curves have Puiseux expansion

y =
∑
j≥1

aj(t)x
pj ∈ C{x 1

N }

where aj(t) ∈ C{{t}}. The contact exponent s is the first pj for which the coefficient
aj(t) is non-constant. Part (1) of the proposition then follows.

To prove part (2) we first choose coordinates (z1, . . . , zn) in Cn and (x, y) in C2

so that ` is the projection (x, y) = (z1, z2). We may assume z1 and z2 are generic
linear forms for X. The multiplicity of z1 along the exceptional curve E is N .
Let (u, v) be local coordinates centered at Π∗0,D0

∩ E such that v = t is the local

equation for Π∗0,Dt and z1 = uN . Then z2 has the form

z2 = uNf0(u) + uNs
∑
i≥1

vifi(u),

where fk(u) ∈ C{{u}} for k ≥ 1 (and uNf0(u) =
∑
j aj(0)uNpj in our earlier

notation).
Now, ` ◦ π has Π∗0,D0

∪ {u = 0} as critical locus. The jacobian of ` ◦ π is

J(` ◦ π)(u, v) =

(
NuN−1 0

? uNs(f1(u) + 2vf2(u) + · · · )

)
,

so Π∗0,D0
∪ {u = 0} has equation NuN+Ns−1g(u, v) = 0 where g(u, v) = f1(u) +

2vf2(u) + · · · . Since v = 0 is the equation of Π∗0,D0
this implies f1(u) = 0 and

f2(0) 6= 0. So g(u, v) = vh2(u, v) with h2(u, v) = 2f2(u) + 3vf3(u) + · · · a unit in
C{{u, v}}. Summarizing,

z1 = uN

z2 = uNf2,0(u) + v2uNsh2(u, v)

zj = uNfj,0(u) + vuNshj(u, v) , j ≥ 3

with h2(u, v) a unit (by genericity hj(u, v) is a unit also for j ≥ 3).
The strict transform of A0 by the resolution π′ is the set expressed in local

coordinates by

A∗0 = {(u, v) : |z2(u, v)−
∑
j≥1

aj(0)upjN | ≤ α|z1(u, v)|s} .

Using the equations for z1 and z2 above we then obtain that

A∗0 = {(u, v) : |v2h2(u, v)| ≤ α} .
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Since h2 is a unit in C{{u, v}}, the germ (A0, 0) agrees up to order > s with the
germ (A′0, 0), where A′0 = π′({(u, v) : |v|2 ≤ β} where β = α/|h2(0, 0)|. Therefore
the germs (A0, 0) and (A′0, 0) are bilipschitz equivalent, so it suffices to prove part
(2) for the germ (A′0, 0). The cone structure of part (2) of the proposition is given
by the foliation by solid tori Tr := {|z1| = r} ∩ A′0. Fixing c such that |c| = r, the
intersection {z1 = c} ∩ A′0 consists of N meridional disks. Each is to high order
of the form {|c|s(0, v2h2(0, 0), vh3(0, 0), . . . , vhn(0, 0)) : |v| ≤

√
β}, and is therefore

bilipschitz equivalent to a flat disk of radius proportional to |c|s.
The tangent cone of (A′0, 0) is the line L spanned by (1, f2,0(0), f3,0(0), . . . , fn,0(0)),

which is transverse to the hyperplanes z1 = c, so the angle between this line L and
the meridional disk sections is bounded away from 0. Let Dε be the disk of radius
ε in L. Then up to bilipschitz equivalence the transverse disks can be considered to
be orthogonal to Dε, giving a metric on (A′0, 0) outside the origin as a disk bundle
over Dε r {0} with fibers orthogonal to this disk and of radius proportional to rs

at distance r from the origin. �

Remark (VTZ). Recall that a Puiseux exponent pj of a plane curve given by
y =

∑
i aix

pi is characteristic if the embedded topology of the plane curves y =∑j−1
i=1 aix

pi and y =
∑j
i=1 aix

pi differ; equivalently denom(pj) does not divide
lcmi<j denom(pi). We denote the characteristic exponents by pjk for k = 1, . . . , r,
and write pmax = pjr for the largest characteristic exponent.

We had believed that the contact exponent of a component of the discriminant
curve satisfies s ≥ pmax in general (we called this the “Very Thin Zone Lemma” or
“VTZ” for short), but the referee pointed out a gap in the proof. And indeed, VTZ
is false. For example, for the hypersurface given by (x2 +y2 +z2)2 +x5 +y5 +z5 = 0
the components of the polar curve are cusps with exponent 3

2 but the contact
exponent is 1. VTZ is true if the multiplicity of X is ≤ 3, and then s is often
significantly larger than pmax. In examples 3.5 and 3.6 below we have respectively
pmax = 5

3 and s = 10
3 , and pmax = 17/9 and s = 124/9.

Example 3.5. Let (X, 0) be the E8 singularity with equation x2 +y3 + z5 = 0. Its
resolution graph, with all Euler weights −2 and decorated with arrows correspond-
ing to the strict transforms of the coordinate functions x, y and z, is:

v1 v2 v3 v4 v5v6v7

v8y

x

z

We denote by Cj the exceptional curve corresponding to the vertex vj . Then
the total transform by π of the coordinate functions x, y and z are:

(x ◦ π) = 15C1 + 12C2 + 9C3 + 6C4 + 3C5 + 10C6 + 5C7 + 8C8 + x∗

(y ◦ π) = 10C1 + 8C2 + 6C3 + 4C4 + 2C5 + 7C6 + 4C7 + 5C8 + y∗

(z ◦ π) = 6C1 + 5C2 + 4C3 + 3C4 + 2C5 + 4C6 + 2C7 + 3C8 + z∗

Set f(x, y, z) = x2 + y3 + z5. The polar curve Π of a generic linear projection
` : (X, 0) → (C2, 0) has equation g = 0 where g is a generic linear combination of
the partial derivatives fx = 2x, fy = 3y2 and fz = 5z4. The multiplicities of g are
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given by the minimum of the compact part of the three divisors

(fx ◦ π) = 15C1 + 12C2 + 9C3 + 6C4 + 3C5 + 10C6 + 5C7 + 8C8 + f∗x

(fy ◦ π) = 20C1 + 16C2 + 12C3 + 8C4 + 4C5 + 14C6 + 8C7 + 10C8 + f∗y

(fz ◦ π) = 24C1 + 20C2 + 16C3 + 12C4 + 8C5 + 16C6 + 8C7 + 12C8 + f∗z

We then obtain that the total transform of g is equal to:

(g ◦ π) = 15C1 + 12C2 + 9C3 + 6C4 + 3C5 + 10C6 + 5C7 + 8C8 + Π∗ .

In particular, Π is resolved by π and its strict transform Π∗ has just one component,
which intersects C8. Since the multiplicities m8(fx) = 8, m8(fy) = 10 and m8(z) =
12 along C8 are distinct, the family of polar curves, i.e., the linear system generated
by fx, fy and fz, has a base point on C8. One must blow up twice to get an
exceptional curve C10 along which m10(fx) = m10(fy), which resolves the linear
system. Then NK0(∆0) is included in the image by π of a neighborhood of Π∗ = Π∗D
inN (C10) foliated by strict transforms Π∗D′ , D′ in a small disk around D in G(2,C3)
as in the proof of Proposition 3.4.

−3 −2 −1

v9 v10
Π∗

We now compute the contact exponent s in Proposition 3.4. For (a, b) ∈ C2

generic, x + ay2 + bz4 = 0 is the equation of the polar curve Πa,b of a generic
projection. The image `(Πa,b) ⊂ C2 under the projection ` = (y, z) has equation

y3 + a2y4 + 2aby2z4 + z5 + b2z8 = 0

The discriminant curve ∆ = `(Π0,0) has Puiseux expansion y = (−z)5/3, while for

(a, b) 6= (0, 0), we get for `(Πa,b) a Puiseux expansion y = (−z)5/3 − a2

3 z
10/3 + · · · .

So the discriminant curve ∆ has highest characteristic exponent 5/3 and its contact
exponent is 10/3.

Example 3.6. Consider (X, 0) with equation z2 + xy14 + (x3 + y5)3 = 0. The
dual graph of the minimal resolution π has two nodes, one of them with Euler class
−3. All other vertices have Euler class −2. Similar computations show that π also
resolves the polar Π and we get:

Π∗

−3

Denoting by C1 the exceptional curve such that C1 ∩ Π∗ 6= ∅, we get m1(fx) =
124, m1(fy) = 130 and m1(fz) = 71. Then the linear system of polar curves admits
a base point on C1 and one has to perform 124− 71 = 53 blow-ups to resolve it. In
this case one computes that the discriminant curve has two characteristic exponents,
5/3 and 17/9, and the Lipschitz exponent is s = 124/9.

Now we consider again the resolution π : X̃ → X defined in Section 2, which
is obtained from a minimal good resolution by first blowing up base points of the
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linear system of generic hyperplane sections and then blowing up intersection points
between L-curves. The following results help locate the polar components relative
to the Tjurina components of π.

Proposition 3.7. If there are intersecting L-curves before the final step then for
any generic plane projection the strict transform of the polar has exactly one com-
ponent through that common point and it intersects the two L-curves transversely.

Proof. Denote the two intersecting L-curves Eµ and Eν and choose coordinates
(u, v) centered at the intersection such that Eµ and Eν are locally given by u = 0
and v = 0 respectively. We assume our plane projection is given by ` = (x, y) : Cn →
C2, so x and y are generic linear forms. Then without loss of generality x = umvn

in our local coordinates, and y = umvn(a + bu + cv + g(u, v)) with a 6= 0 and
g of order ≥ 2. The fact that Eµ and Eν are L-curves means that c 6= 0 and
b 6= 0 respectively. The polar component is given by vanishing of the Jacobian

determinant det ∂(x,y)
∂(u,v) = u2m−1v2n−1(mcv − nbu + mvgv − nugu). Modulo terms

of order ≥ 2 this vanishing is the equation v = nb
mcu, proving the lemma. �

Lemma 3.8 (Snoussi [43, 6.9]). If Γj is a Tjurina component of Γ and E(j) the
union of the Eν with ν ∈ Γj, then the strict transform of the polar curve of any

general linear projection to C2 intersects E(j). �

4. Milnor balls

From now on we assume our coordinates (z1 . . . , zn) in Cn are chosen so that
z1 and z2 are generic linear forms and ` := (z1, z2) : X → C2 is a generic linear
projection. In this section we denote by B2n

ε the standard round ball in Cn of
radius ε and S2n−1

ε its boundary.
The family of Milnor balls we use in the sequel consists of standard “Milnor

tubes” associated with the Milnor-Lê fibration for the map ζ := z1|X : X → C.
Namely, for some sufficiently small ε0 and some R > 0 we define for ε ≤ ε0:

Bε := {(z1, . . . , zn) : |z1| ≤ ε, |(z1, . . . , zn)| ≤ Rε} and Sε = ∂Bε ,

where ε0 and R are chosen so that for ε ≤ ε0:

(1) ζ−1(t) intersects S2n−1
Rε transversely for |t| ≤ ε;

(2) the polar curves for the projection ` = (z1, z2) meet Sε in the part |z1| = ε.

Proposition 4.1. ε0 and R as above exist.

Proof. We can clearly achieve (2) by choosing R sufficiently large, since the tangent
lines to the polar curve are transverse to the hyperplane z1 = 0 by genericity of z1.

To see that we can achieve (1) note that for p ∈ X and t = ζ(p) the sphere
S2n−1
|p| is not transverse to ζ−1(t) at the point p if and only if the intersection

TpX ∩ {z1 = 0} is orthogonal to the direction ~p
|p| (considering TpX as a subspace

of Cn). We will say briefly that condition T (p) holds.
We must show there exists r > 0 and R > 0 so that T (p) fails for all p ∈ X

with R|ζ(p)| ≤ |p| ≤ r, since then R and ε0 := r
R do what is required. Suppose the

contrary. Then the set

S := {(p,R) ∈ X × R+ : R|ζ(p)| ≤ |p| and T (p) holds}
contains points with p arbitrarily close to 0 and R arbitrarily large. By the arc
selection lemma for semi-algebraic sets there is an analytic arc γ : [0, 1]→ X ×R+,
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γ(t) = (p(t), R(t)), with γ((0, 1]) ⊂ S and limt→0 p(t) = 0 and limt→0R(t) = ∞.
This arc is then tangent at 0 to a component C of the curve ζ−1(0). Let T denote
the limit of tangent planes Tp(t)X as t→ 0. Then, since the tangent cone to ζ−1(0)
includes no exceptional directions, L′ := T ∩ {z1 = 0} = limt→0(Tp(t)X ∩ {z1 = 0})
is the tangent line to the curve C. Let L be the real line tangent to the curve p(t)
at 0. Then L is in T , since its direction is a limit of directions p(t)/|p(t)|, and L
is in z1 = 0 by the definition of γ. Therefore L ⊂ L′, which contradicts that T (p)
holds along the curve p(t). �

5. The thin pieces

In this section we prove the thinness of the pieces Zj defined in section 2. We
start with a proof of Proposition 1.3, which states that a semi-algebraic germ (Z, 0)
is contained in a horn neighborhood of its tangent cone.

Proof. Without loss of generality Z is closed. Consider the function f : ε 7→
max{d(x, TZ ∩ Sε) : x ∈ Z ∩ Sε}. Since f is semi-algebraic, there exists c > 0
and a Lojasiewicz exponent q ≥ 1 such that f(ε) ≤ cεq for all ε sufficiently small.
The tangent cone TZ of Z is the cone over the Hausdorff limit limε→0( 1

εZ ∩ S1).
Thus for any C > 0 the function f satisfies f(ε) < Cε for ε sufficiently small (d
denotes the Hausdorff distance). This implies q > 1 and proves the proposition. �

Proposition 5.1.

(1) For each j, the tangent cone of (Zj , 0) at 0 is an exceptional tangent line
Lj of (X, 0).

Let qj > 1 such that Zj ∩ Bε is contained in a qj-horn neighborhood of
the line Lj.

(2) The restriction ζj : Zj r {0} → D2
ε r {0} of z1 is a locally trivial fibration

and there exists cj > 0 such that such that each fiber ζ−1
j (t) lies in a ball

with radius (cjt
qj ) centered at the point Lj ∩ {z1 = t} (we call these fibers

the Milnor fibers of Zj).
(3) There is a vector field vj on Zjr{0} which lifts by ζj the inward radial unit

vector field on C r {0} and has the property that any two integral curves
for vj starting at points of Zj with the same z1 coordinate approach each
other faster than linearly. In particular, the flow along this vector field takes
Milnor fibers to Milnor fibers while shrinking them faster than linearly.

Note that it follows from part (1) of this proposition that, with our choice of

Milnor balls as in section 4, the link Z
(ε)
j = Zj ∩ Sε is included in the |z1| = ε part

of Sε.
We need the following lemma. For any h in the maximal ideal mX,0 denote

h̃ := h◦π : X̃ → C and denote by mν(h) the multiplicity of h̃ along the exceptional
curve Eν .

Lemma 5.2. Let h1 = ζ = z1|X . For any Tjurina component there exist functions
h2, . . . , hm ∈ mX,0 such that h1, . . . , hm generate mX,0, and such that for any vertex
ν of the Tjurina component we have mν(hi) > mν(h1) for i > 1.

Proof. Take any functions g2, . . . , gm ∈ mX,0 such that h1 and g2, . . . , gm generate
mX,0. Choose a vertex ν of the Tjurina component. By choice of z1 we know
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mν(h1) ≤ mν(gi) for all i > 1. Choose a point p on Eν distinct from the intersec-

tions with other exceptional curves and the strict transform of g−1
i (0). Then h̃1 and

g̃i are given in local coordinates (u, v) centered at p by h̃1 = umν(h1)(a1 +α1(u, v))
and g̃i = umν(h1)(ai + αi(u, v)) where a1 6= 0 and α1(0, 0) = αi(0, 0) = 0. Let
hi := gi − ai

a1
h1 for i = 2, . . . ,m. Then h1, . . . , hm generate mX,0.

Assume that mν(hi) = mν(h1). Then the strict transform of h−1
i (0) passes

through p. Let Eν1
, . . . , Eνr be the exceptional curves representing the vertices of

our Tjurina component Γ′ ⊂ Γ, with ν1 = ν. Let I =
(
Eνk .Eνl

)
1≤k,l≤r be the

intersection matrix associated with Γ′ and consider the r-vectors

V = t(v1, . . . , vr), B = t(b1, . . . , br) defined by

vk = mνk(hi)−mνk(h1), bk = h∗i .Eνk − h∗1.Eνk +
∑
µ∈Lνk

(mµ(hi)−mµ(h1)) ,

where Lνk denotes the set of L-nodes of Γ adjacent to νk. Since h∗1.Eνk = 0 for
all k and h∗i .Eν1

6= 0, we have bk ≥ 0 for all k and b1 > 0. Now I.V + B = 0, so
V = −I−1B. All entries of I−1 are strictly negative, so all entries of V are strictly
positive, contradicting mν(hi) = mν(h1). So in fact mν(hi) > mν(h1).

We now claim that mµ(hi) > mµ(h1) for i > 1 for any vertex µ of the Tjurina
component adjacent to ν (it then follows inductively for every vertex of the Tjurina
component). So let µ be such a vertex and assume that mµ(hi) = mµ(h1). Consider

the meromorphic function h̃1/h̃i on Eµ. It takes finite values almost everywhere
and has a pole at Eµ ∩Eν so it must have a zero at some point of Eµ. This cannot
happen since mν′(h1) ≤ mν′(hi) for any ν′ and the strict transform of the zero set
of h1 only intersects the L-nodes (h1 is the generic linear form). �

Proof of Proposition 5.1. Let h1, . . . , hm be as in Lemma 5.2 and let

qj := min

{
2,
mν(hi)

mν(h1)
: ν ∈ Γj , i > 1

}
.

For each k = 2, . . . , n one has

zk|X = λkh1 + βk

with λk ∈ C and βk ∈ (h2
1, h2, . . . , hm).

We will prove that the complex line Lj ⊂ Cn parametrized by (t, λ2t, . . . , λnt),
t ∈ C is the tangent cone to Zj . Since Zj contains complex curves (for example
the projection π(γ) of any curvette γ of the exceptional divisor inside N (Γj)),
the tangent cone TZj contains a complex line. Therefore it suffices to prove that
Zj ∩Bε0 is contained in a horn neighbourhood of Lj .

Consider local coordinates (u, v) in a compact neighborhood of a point of Eν r⋃
µ6=ν Eµ in which β̃i = umν(βi)(ai + αi(u, v)) with ai 6= 0 and αi holomorphic. In

this neighborhood |z̃i − λiz̃1| = O(|z̃1|mν(βi)/mν(h1)) = O(|z̃1|qj ).
In a neighborhood of a point Eν ∩Eµ of intersection of two exceptional curves of

the Tjurina component we have local coordinates u, v such that h̃1 = umµ(h1)vmν(h1)

and β̃i = umµ(βi)vmν(βi)(ai + αi(u, v)) with ai 6= 0 and αi holomorphic. In this
neighborhood we again have |z̃i − λiz̃1| = O(|z̃1|qj ).

By compactness of N (Γj) the estimate |z̃i − λiz̃1| = O(|z̃1|qj ) holds on all of
N (Γj). Thus, if we define fj : Zj = π(N (Γj))→ Cn by fj(p) := z1(p)(1, λ2, . . . , λn),
we have shown that |p − fj(p)| = O(z1(p)qj ). In particular, for p ∈ N (Γj) the
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distance of π(p) from 0 is O(|z1(p)|), and therefore Zj ∩ Bε is contained in an
(cjε

qj )-neighborhood of the line Lj for some cj > 0.
In particular, we see that Zj is thin, and tangent to the line Lj . Thus each limit

of tangent hyperplanes at a sequence of points converging to 0 in Zj r {0} contains
Lj . We will show there exist infinitely many such limits, which, by definition,
means that Lj is an exceptional tangent line (this is one of the two implications of
Proposition 6.3 of Snoussi [43], see also Proposition 2.2.1 of [25], but we did not
find a clear statement in the literature). Indeed, for any generic (n−2)-plane H let
`H : Cn → C2 be the projection with kernel H. By Lemma 3.8 the strict transform
Π∗ of the polar Π of `H |X intersects

⋃
ν∈Γj

Eν . Let C be a branch of Π∗ which

intersects
⋃
ν∈Γj

Eν . Then at each p ∈ C the tangent plane to X at p intersects

H non-trivially, so the limit of these planes as p → 0 in C is a plane containing
Lj which intersects H non-trivially. By varying H we see that there are infinitely
many such limits along sequences of points approaching 0 along curves tangent to
Lj , as desired.

(2) of Proposition 5.1 is just the observation that ζj is the restriction to Zjr{0}
of the Milnor-Lê fibration for z1 : X → C.

For (3) we will use local coordinates as above to construct the desired vector
field locally in π−1(Zjr{0}); it can then be glued together by a standard partition
of unity argument. Specifically, in a neighborhood of a point p of Eν r

⋃
µ6=ν Eµ,

using coordinates (u = rue
iθu , v = rve

iθv ) with h̃1 = umν(h1), the vector field

(
1

mrm−1
u

∂

∂ru
, 0)

with m = mν(h1) works, while in a neighborhood of a point Eν ∩ Eµ, using coor-

dinates with h̃1 = umν(h1)vmµ(h1), the vector field

(
1

mrm−1
u rm

′

v

∂

∂ru
,

1

m′rmu r
m′−1
v

∂

∂rv
)

with m = mν(h1) and m′ = mµ(h1) works. �

6. The thick pieces

In this Section, we prove the thickness of the pieces Yi, i = 1 . . . , r defined in
Section 2. Recall that any such Yi has the form Y = π(N(Γν)), where Γ is the
dual graph of the the resolution defined at the beginning of Section 2 and Γν is a
subgraph consisting of an L-node ν of Γ and any attached bamboos.

Proposition 6.1. Y = π(N(Γν)) is thick.

Proof. We use the minimal resolution π′ : X̃ ′ → X which factors both through
π and through Nash modification. We denote by Γ′ its resolution graph and by
σ : X̃ ′ → X̃ the map such that π′ = σ ◦ π. We then have Y = π′(N(Γ′ν)) where
Γ′ν is the subgraph of Γ′ which projects on Γν when blowing-down through σ. In
particular, notice that if G is a maximal connected subgraph in Γ′ν r ν, the link of
π′(N (G)) is a solid torus.

The thickness of Y will follow from the following Lemma 6.2 of which part (2)
is the most difficult. The proof of (2) uses the techniques introduced in Section 12,
and will be completed in section 13 (see the beginning of the proof of Lemma 13.3).

Lemma 6.2. For any L-node ν of Γ′ we have that



BILIPSCHITZ CLASSIFICATION OF NORMAL SURFACE SINGULARITIES 17

(1) π′(N (ν)) is metrically conical;
(2) π(N(G)) is conical for any maximal connected subgraph G of Γ′ν r ν;
(3) π(N(Eν)) is thick.

Assume we have the lemma. The conicalness of the union of the conical piece
π′(N (ν)) with the conical pieces π′(N(G)) coming from the maximal subgraphs G
of Γ′ν r ν follows from [48, Corollary 0.2] and part (3) of the lemma then completes
the proof that Y is thick. �

We now prove parts (1) and (3) of Lemma 6.2. As mentioned above, part (2)
will be proved later.

Proof of part (1) of Lemma 6.2. As before, ` = (z1, z2) : Bε0 → (C2, 0) is a generic
linear projection to C2 and Π the polar curve for this projection. From now on we
work only inside of a Milnor ball Bε0 as defined in Section 4 and X now means
X ∩Bε0 .

Denote by ∆ = ∆1 ∪ · · · ∪∆k ⊂ C2 the decomposition of the discriminant curve
∆ for ` into its irreducible components. By genericity, we can assume the tangent
lines in C2 to the ∆i are of the form z2 = biz1. Denote

Vi := {(z1, z2) ∈ C2 : |z1| ≤ ε0, |z2 − biz1| ≤ η|z1|} ,
where we choose η small enough that Vi ∩ Vj = {0} if bi 6= bj and ε0 small enough
that ∆i ∩ {(z1, z2) : |z1| ≤ ε0} ⊆ Vi. Notice that if two ∆i’s are tangent then the
corresponding Vi’s are the same.

Let Wi1, . . . ,Wiji be the closure of the connected components of X ∩ `−1(Vi r
{0}) which contain components of the polar curve. Then the restriction of ` to

X r
⋃
Wij is a bilipschitz local homeomorphism by Proposition 3.4. In particular,

this set is metrically conical.
Assume that the strict transform by π′ of a component Π0 of Π intersects the

L-node Eν . By definition of π′, p = Π∗0 ∩ Eν is a smooth point of the exceptional
divisor E = π′−1(0) and p is not a base point of the family of polar curves of generic
plane projections. So varying the plane projection varies locally the intersection
point of Eν with the strict transform of the polar component, and hence also the
tangent line of the Π0. We call Π0 a moving polar component. The contact exponent
of this moving polar component is s = 1, so we can take the corresponding Wij

containing Π0 to be the set A0 of Proposition 3.4.(2) and it follows that Wij is
metrically conical. Hence, if W denotes the union of Wij such that Π ∩ Wij is

not a moving polar component, the semi-algebraic set X rW is metrically conical.
Since the coordinates at the double points of E on an L-curve Eν can be chosen
so that N (ν) is a connected component of π−1(X rW ), part (1) of the lemma is
proved. �

Proof of part (3). Let µ an adjacent vertex to our L-node ν. We must show that
the conical structure we have just proved can be extended to a thick structure over
N(Eν)∩N(Eµ). Take local coordinates u, v at the intersection of Eν and Eµ such
that u = 0 resp. v = 0 is a local equation for Eν resp. Eµ.

By Lemma 5.2 we can choose c ∈ C so that the linear form h2 = z1 − cz2

satisfies mµ(z1) < mµ(h2). We change coordinates to replace z2 by h2, which
does not change the linear projection `, so we still have that mν(z1) = mν(h2).
So we may assume that in our local coordinates z1 = umν(z1)vmµ(z1) and z2 =
umν(z1)vmµ(h2)(a + g(u, v)) where a ∈ C∗ and g(0, 0) = 0. To higher order, the
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lines v = c for c ∈ C project onto radial lines of the form z2 = c′z1 and the
sets |u| = d with d ∈ R+ project to horn-shaped real hypersurfaces of the form
|z2| = d′|z1|mµ(h2)/mµ(z1). In particular the image of a small domain of the form

u

v

N (Eµ)

N (Eν)

π

π(N (Eµ))

π(N (Eν))

Figure 3. Thickness near the boundary of a thick piece

{(u, v) : |u| ≤ d1, |v| ≤ d2} is thick. See Figure 3 for a schematic real picture. By
Proposition 3.3 the local bilipschitz constant remains bounded in this added region,
so the desired result again follows by pulling back the standard conical structure
from C2. �

7. Fast loops

We recall the definition of a “fast loop” in the sense of [3], which we will here
call sometimes “fast loop of the first kind,” since we also define a closely related
concept of “fast loop of the second kind.” We first need another definition.

Definition 7.1. If M is a compact Riemannian manifold and γ a closed rectifiable
null-homotopic curve in M , the isoperimetric ratio for γ is the infimum of areas of
singular disks in M which γ bounds, divided by the square of the length of γ.

Definition 7.2. Let γ be a closed curve in the link X(ε0) = X ∩ Sε0 . Suppose
there exists a continuous family of loops γε : S1 → X(ε), ε ≤ ε0, whose lengths
shrink faster than linearly in ε and with γε0 = γ. If γ is homotopically nontrivial
in X(ε0) we call the family {γε}0<ε≤ε0 a fast loop of the first kind or simply a fast
loop. If γ is homotopically trivial but the isoperimetric ratio of γε tends to ∞ as
ε→ 0 we call the family {γε}0<ε≤ε0 a fast loop of the second kind2.

Proposition 7.3. The existence of a fast loop of the first or second kind is an
obstruction to the metric conicalness of (X, 0).

Proof. It is shown [3] that a fast loop of the first kind cannot exist in a metric cone,
so its existence is an obstruction to metric conicalness.

For a fixed Riemannian manifold M the isoperimetric ratio for a given nullho-
motopic curve is invariant under scaling of the metric and is changed by a factor
of at most K4 by a K-bilipschitz homeomorphism of M . It follows that if X is
metrically conical then for any C > 0 there is a overall bound on the isoperimetric
ratio of nullhomotopic curves in X(ε) of length ≤ Cε as ε→ 0. �

2Fast loops of the second kind were needed in an early version of this paper but not in the
current version. We have retained them since their analogs are useful in higher dimension.
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Theorem 7.4. Any curve in a Milnor fiber of a thin zone Z
(ε0)
j of X(ε0) which is

homotopically nontrivial in Z
(ε0)
j gives a fast loop of the first or second kind.

Proof. Using the vector field of Proposition 5.1, any closed curve γ in the Milnor

fiber of the link Z
(ε0)
j of a thin piece Zj of X(ε0) gives rise to a continuous family

of closed curves γε : [0, 1] → Z
(ε)
j , ε ≤ ε0, whose lengths shrink faster than linearly

with respect to ε.
If γ is homotopically non-trivial in X(ε0) then {γε}0<ε≤ε0 is a fast loop of the

first kind. Otherwise, let f : Dε → X(ε) be a map of a disk with boundary γε.
Let Y =

⋃
i Yi denotes the thick part of X. Let Yε ⊂ Y for ε ≤ ε0 be a

collection of conical subsets as in Definition 1.2. The link of Yε is Y (ε). We can
approximate f by a smooth map transverse to ∂Y (ε) while only increasing area
by an arbitrarily small factor. Then f(D) ∩ ∂Y (ε) consists of smooth immersed
closed curves. A standard innermost disk argument shows that at least one of
them is homotopically nontrivial in ∂Y (ε) and bounds a disk D′ in Y (ε) obtained
by restricting f to a subdisk of D. Since there is a lower bound proportional to
ε on the length of essential closed curves in ∂Y (ε) and Y is thick, the area of D′

is bounded below proportional to ε2. It follows that the isoperimetric ratio for γε
tends to ∞ as ε→ 0. �

Theorem 7.5.

(1) Every thin piece Zj contains a fast loop (of the first kind). In fact every
boundary component of a Milnor fiber Fj of Zj is a fast loop.

(2) Every point p ∈ Zj lies on some fast loop {γε}0<ε≤ε0 and every real tangent
line to Zj is tangent to

⋃
ε γε ∪ {0} for some such fast loop.

Proof. Part 2 follows from Part 1 because the link Z
(ε0)
j is foliated by Milnor fibers

and a boundary component of a Milnor fiber ζ−1
j (t) can be isotoped into a loop γ

through any point of the same Milnor fiber. The family {γε}0<ε≤ε0 obtained from
γ using the vector field of Proposition 5.1 is a fast loop whose tangent line is the
real line Lj ∩ {arg z1 = arg t}.

We will actually prove a stronger result than part 1 of the theorem, since it is
needed in Section 14. First we need a remark.

Remark 7.6. The monodromy map φj : Fj → Fj for the fibration ζj |Z(ε0)
j

is a

quasi-periodic map, so after an isotopy it has a decomposition into subsurfaces Fν
on which φj has finite order acting with connected quotient, connected by families
of annuli which φj cyclically permutes by a generalized Dehn twist (i.e., some power
is a Dehn twist on each annulus of the family). The minimal such decomposition is
the Thurston-Nielsen decomposition, which is unique up to isotopy. By [40][Lemme
4.4] each Fν is associated with a node ν of Γj while each string joining two nodes
ν and ν′ of Γj corresponds to a φj-orbit of annuli connecting Fν to Fν′ . This

decomposition of the fiber Fj corresponds to the minimal decomposition of Z
(ε0)
j

into Seifert fibered manifolds Z
(εo)
ν , with thickened tori between them, i.e., the JSJ

decomposition.

The following proposition is more general than part 1 of Theorem 7.5 and there-
fore completes its proof. �
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Proposition 7.7. Each boundary component of a Fν gives a fast loop (of the first
kind).

Proof. We assume the contrary, that some boundary component γ of Fν is homo-
topically trivial in X(ε0). We will derive a contradiction.

Let T be the component of ∂Z
(ε0)
ν which contains γ. Then it is compressible, so

it contains an essential closed curve which bounds a disk to one side of T or the
other. Cutting X(ε0) along T gives a manifold with a compressible boundary torus.
But a plumbed manifold-with-boundary given by negative definite plumbing has a
compressible boundary component if and only if it is a solid torus, see [34, 31]. So
T separates X(ε0) into two pieces, one of which is a solid torus. Call it A.

Lemma 7.8. γ represents a nontrivial element of π1(A).

Proof. Let Γ0 be the subgraph of Γ representing A, i.e., a component of the sub-
graph of Γ obtained by removing the edge corresponding to T . We will attach an
arrow to Γ0 where that edge was. Then the marked graph Γ0 is the plumbing graph
for the solid torus A. We note that Γ0 must contain at least one L-node, since oth-

erwise A would have to be Z
(ε0)
j or a union of pieces of its JSJ decomposition, but

this cannot be a solid torus.
We now blow down Γ0 to eliminate all (−1)-curves. We then obtain a bamboo

Γ′ with negative definite matrix with an arrow at one extremity. It is the resolution
graph of some cyclic quotient singularity Q = C2/(Z/p) and from this point of
view the arrow represents the strict transform of the zero set of the function xp

on Q, where x, y are the coordinates of C2. The Milnor fibers of this function
give the meridian discs of the solid torus A. Let D be such a meridian disc. In
the resolution, the intersection of D with any curvette (transverse complex disk to
an exceptional curve) is positive (namely an entry of the first row of pS−1

Γ′ , where
SΓ′ is the intersection matrix associated with Γ′). Since Γ0 contains an L-node,
then in particular D intersects transversely the strict transform z∗1 of z1 and we set
D.z∗1 = s > 0.

Let us return back to our initial X(ε0). Recall that in this paper, we use Milnor
ball Bε which are standard Milnor tubes for the Milnor-Lê fibration ζ = z1|X (see
Section 4). Denote again ζ : T → S1

ε0 the restriction of z1 to T = z−1
1 (S1

ε0) ∩X(ε0),
and let ζ∗ : H1(T ;Z)→ Z be the induced map.

The meridian curve c = ∂D of A is homologically equivalent to the sum of the
boundary curves c1, . . . cs of small disk neighborhoods of the intersection points
of D with z∗1 . The Milnor-Lê fibration ζ is equivalent to the Milnor fibration
z1
|z1| : X

(ε0) r L→ S1 outside a neighborhood of the link L = {z1 = 0} ∩X(ε0), and

the latter is an open-book fibration with binding L. Therefore ζ∗(ci) = 1 for each
i = 1, . . . , s and ζ∗(c) = s > 0. Since ζ∗(γ) = 0, this implies the lemma. �

We now know that γ is represented by a non-zero multiple of the core of the
solid torus A. This core curve is the curvette boundary for the curvette transverse
to the end curve of the bamboo obtained by blowing down Γ0 in the above proof.

Lemma 7.9. Given any good resolution graph (not necessarily minimal) for a
normal complex surface singularity whose link Σ has infinite fundamental group,
the boundary of a curvette always represents an element of infinite order in π1(Σ).

Proof. After blowing down to obtain a minimal good resolution graph the only case
to check is when the blown down curvette c intersects a bamboo, since otherwise
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its boundary represents a nontrivial element of the fundamental group of some
piece of the JSJ decomposition of Σ and each such piece embeds π1-injectively in
Σ. If c intersects a single exceptional curve E1 of the bamboo, then its boundary
is homotopic to a positive multiple of the curvette boundary for E1, so by the
argument in the proof of the previous lemma, the boundary of c is homotopic to
a positive multiple of the core curve of the corresponding solid torus. As a fiber
of the Seifert fibered structure on a JSJ component of Σ, this element has infinite
order in π1 of the component and therefore of Σ. Finally suppose c intersects the
intersection point of two exceptional divisors E1 and E2 of the bamboo. Then in
local coordinates (u, v) with E1 = {u = 0} and E2 = {v = 0} the curvette can

be given by a Puiseux expansion u =
∑
i v

qi
pi , where, without loss of generality,

qi > pi. Then the boundary of c is an iterated torus knot in this coordinate system
which homologically is a positive multiple of p1µ1 + q1µ2, where µi is a curvette
boundary of Ei for i = 1, 2. We conclude by applying the previous argument to µ1

and µ2 that c is a positive multiple of the core curve of the solid torus, completing
the proof. �

Returning to the proof of Proposition 7.7, we see that if π1(X(ε0)) is infinite
then the curve γ of Lemma 7.8 is nontrivial in π1(X(ε0)) by Lemma 7.9, proving
the proposition in this case.

It remains to prove the proposition when π1(X(ε0)) is finite. Then (X, 0) is
a rational singularity ([6, 16]), and the link of X(ε0) is either a lens space or a
Seifert manifold with three exceptional fibers with multiplicities (α1, α2, α3) equal
to (2, 3, 3), (2, 3, 4), (2, 3, 5) or (2, 2, k) with k ≥ 2.

We will use the following lemma

Lemma 7.10. Let A and γ as in Lemma 7.8. Suppose the subgraph Γ0 of Γ
representing the solid torus A is a bamboo

ν1

−b1◦
ν2

−b2◦
νr

−br◦

attached at vertex ν1 to the vertex ν of Γ. Denote by mν and mν1 the multiplicities
of the function z̃1 = z1 ◦π along Eν and Eν1 , and let (α, β) be the Seifert invariant
of the core of A viewed as a singular fiber of the S1-fibration over Eν , i.e., α

β =

[bν1 , . . . , bνn ]. Let C be the core of A oriented as the boundary of a curvette of Eνr .
Then, with d = gcd(mν ,mν1

), we have

γ =
(mν1

d
α− mν

d
β
)
C in H1(A;Z).

Proof. Orient the torus T as a boundary component of A. Let Cν and Cν1 in T
be boundaries of curvettes of Eν and Eν1

. Then γ = mν
d Cν1

− mν1
d Cν , and the

meridian of A on T is given by M = αCν1
+ βCν . Then γ = λC where λ = M.γ.

As Cν1 .Cν = +1 on T , we then obtain the stated formula. �

Let us return to the proof of Proposition 7.7. When X(ε0) is a lens space, then
the minimal resolution graph is a bamboo:

−b1◦
−b2◦

−bn◦

The function z̃1 has multiplicity 1 along each Ei, and the strict transform of z1 has
b1−1 components intersecting E1, bn−1 components on En, and bi−2 components
on any other curve Ei. In particular the L-nodes are the two extremal vertices of
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the bamboo and any vertex with bi ≥ 3. To get the adapted resolution graph of
section 2 we should blow up once between any two adjacent L-nodes. Then the
subgraph Γj associated with our thin piece Zj is either a (−1)-weighted vertex or a
maximal string νi, νi+1, . . . , νk of vertices excluding ν1, νn carrying self intersections
bj = −2.

We first consider the second case. Let γ be the intersection of the Milnor fiber
of Zj with the plumbing torus at the intersection of Ek and Ek+1. According to
Lemma 7.10, we have γ = (α − β)C where C is the boundary of a curvette of En
and α

β = [bk+1, . . . , bn] with E2
i = −bi. But C is a generator of the cyclic group

π1(X(ε0)), which has order p = [b1, . . . , bn]. Since 0 < α − β ≤ α < p, we obtain
that γ is nontrivial in π1(X(ε0)).

For the case of a (−1)-vertex we can work in the minimal resolution with Ek and
Ek+1 the two adjacent L-curves and T the plumbing torus at their intersection,
since blowing down the (−1)-curve does not change γ. So it is the same calculation
as before. This completes the lens space case.

We now assume that X(ε0) has three exceptional fibers whose multiplicities
(α1, α2, α3) are (2, 3, 3), (2, 3, 4), (2, 3, 5) or (2, 2, k) with k ≥ 2. Then the graph Γ
is star-shaped with three branches and with a central node whose Euler number is
e ≤ −2. If e ≤ −3, then z̃1 has multiplicity 1 on each exceptional curve and we
conclude using Lemma 7.10 as in the lens space case.

When e = −2, then the multiplicities of z̃1 are not all equal to 1, and we have to
examine all the cases one by one. For (α1, α2, α3) = (2, 3, 5), there are eight possible
values for the Seifert pairs, which are (2, 1), (3, β2), (5, β3) where β2 ∈ {1, 2} and
β3 ∈ {1, 2, 3, 4}. For example, in the case β2 = 1 and β3 = 3 the resolution graph
Γ is represented by

(1)

−2
◦

(2)

−2
◦

(1)

−3
◦

''

(2)−3 ◦
((

(3)−1 ◦

(1)−4 ◦
((

The arrows represent the strict transform of the generic linear function z1. There
are two thin zones obtained by deleting the vertices with arrows and their adjacent
edges, leading to four curves γ to be checked. Lemma 7.10 computes them as C3,
2C5, C5 and C5 respectively, where Cp is the exceptional fiber of degree p. The
other cases are easily checked in the same way. The case (2, 2, k) gives an infinite
family similar to the lens space case. �

Proposition 7.3 and either one of Theorem 7.4 or Theorem 7.5 show:

Corollary 7.11. (X, 0) is metrically conical if and only if there are no thin pieces.
Equivalently, Γ has only one node, and it is the unique L-node. �

Example 7.12. Let (X, 0) ⊂ (C3, 0), defined by xa + yb + zb = 0 with 1 ≤ a < b.
Then the graph Γ is star-shaped with b bamboos and the single L-node is the
central vertex. Therefore, (X, 0) is metrically conical. This metric conicalness was
first proved in [4]. The rational singularities which are metrically conical have been
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determined by Pedersen [38]; they form an interesting three discrete parameter
family.

8. Existence and uniqueness of the minimal thick-thin decomposition

We first prove the existence:

Lemma 8.1. The thick-thin decomposition constructed in Section 2 is minimal, as
defined in Definition 1.5.

Proof. Any real tangent line to Zj is a tangent line to some fast loop {γε}0<ε≤ε0
by Theorem 7.5. For any other thick-thin decomposition this fast loop is outside
any conical part of the thick part for all sufficiently small ε so its tangent line is a
tangent line to a thin part. It follows that this thick-thin decomposition contains
a thin piece which is tangent to the tangent cone of Zj . Thus the first condition of
minimality is satisfied. For the second condition, note that, according to the proof
of Proposition 6.1,

⋃s
j=1N(Γj) has conical complement and that the N(Γj)’s are

pairwise disjoint except at the origin and each contains its respective Zj . Consider
some thick-thin decomposition of (X, 0) with thin pieces Z ′i, i = 1, . . . , s′. Each
N(Γj) must have a Z ′i in it since each N(Γj) contains fast loops, and this Z ′i is
completely inside N(Γj) (as a germ at 0) since its tangent space is contained in the
tangent line to Zj . Thus s ≤ s′. �

We restate the Uniqueness Theorem of the Introduction:

Theorem (1.6). For any two minimal thick-thin decompositions of (X, 0) there
exists q > 1 and a homeomorphism of the germ (X, 0) to itself which takes one
decomposition to the other and moves each x ∈ X distance at most |x|q.

Proof. It follows from the proof of Lemma 8.1 that any two minimal thick-thin
decompositions have the same numbers of thick and thin pieces. Let us consider
the thick-thin decomposition

(X, 0) =

r⋃
i=1

(Yi, 0) ∪
s⋃
j=1

(Zj , 0)

constructed in Section 2 and another minimal thick-thin decomposition

(X, 0) =

r⋃
i=1

(Y ′i , 0) ∪
s⋃
j=1

(Z ′j , 0) .

They can be indexed so that for each j the intersection Zj ∩ Z ′j ∩ (Bε r {0}) is
non-empty for all small ε (this is not hard to see, but in fact we only need that Zj
and Z ′j are very close to each other in the sense that the distance between Zj ∩ Sε
and Z ′j ∩Sε is bounded by cεq

′
for some c > 0 and q′ > 1, which is immediate from

the proof of Lemma 8.1).
Definition 1.2 says Y =

⋃
i Yi is the union of metrically conical subsets Yε ⊂ Bε,

0 < ε ≤ ε0. We will denote by ∂0Yε := ∂Yε r (Yε ∩ Sε), the “sides” of these cones,
which form a disjoint union of cones on tori. We do the same for Y ′ =

⋃
i Y
′
i .

The limit as ε→ 0 of the tangent cones of any component of ∂0Yε is the tangent
line to a Zj . It follows that for all ε1 sufficiently small ∂0Y

′
ε1 will be “outside”

∂0Yε0 in the sense that is disjoint from Yε0 except at 0. So choose ε1 ≤ ε0 so this is
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so. Similarly, choose 0 < ε3 ≤ ε2 ≤ ε1 so that ∂0Yε2 is outside ∂0Y
′
ε1 and ∂0Y

′
ε3 is

outside ∂0Yε2 .
Now consider the 3-manifold M ⊂ Sε3 consisting of what is between ∂0Yε0 and

∂0Y
′
ε3 in X ∩ Sε3 . We can write M as M1 ∪M2 ∪M3 where M1 is between ∂0Yε0

and ∂0Y
′
ε1 , M2 between ∂0Y

′
ε1 and ∂0Yε2 and M3 between ∂0Yε2 and ∂0Y

′
ε3 . Each

component of M1 ∪ M2 is homeomorphic to ∂1M2 × I and each component of
M2 ∪M3 is homeomorphic to ∂0M2 × I, so it follows by a standard argument that
each component of M2 is homeomorphic to ∂0M2 × I (M2 is an invertible bordism
between its boundaries and apply Stalling’s h-cobordism theorem [45]; alternatively,
use Waldhausen’s classification of incompressible surfaces in surface×I in [49]).

Denote Z =
⋃s
j=1 Zj and Z ′ =

⋃s
j=1 Z

′
j . The complement of the ε3-link of

Yε2 in X(ε3) is the union of Z(ε3) and a collar neighborhood of its boundary and
is hence isotopic to Z(ε3). It is also isotopic to its union with M2 which is the
complement of the ε3-link of Y ′ε1 . This latter is (Z ′)(ε3) union a collar, and is hence

isotopic to (Z ′)(ε3). Thus the links of Z and Z ′ are homeomorphic, so Z and Z ′

are homeomorphic, and we can choose this homeomorphism to move any point x
distance at most |x|q for any q < q′, where q′ is defined above. �

We can also characterize, as in the following theorem, the unique minimal thick-
thin decomposition in terms of the analogy with the Margulis thick-thin decom-
position mentioned in the Introduction. The proof is immediate from the proof of
Lemma 8.1.

Theorem 8.2. The canonical thick-thin decomposition can be characterized among
thick-thin decompositions by the following condition: For any sufficiently small q >
1 there exists ε0 > 0 such that for all ε ≤ ε0 any point x of the thin part with |x| < ε
is on an essential loop in X r {0} of length ≤ |x|q. �

In fact one can prove more (but we will not do so here): the set of points which
are on essential loops as in the above theorem gives the thin part of a minimal
thick-thin decomposition when intersected with a sufficiently small Bε.

We have already pointed out that the thick-thin decomposition is an invariant of
semi-algebraic bilipschitz homeomorphism. But in fact, if one makes an arbitrary
K-bilipschitz change to the metric on X, the thin pieces can still be recovered up
to homeomorphism using the construction of the previous paragraph plus some
3-manifold topology to tidy up the result. Again, we omit details.

9. Metric tangent cone

The thick-thin decomposition gives a description of the metric tangent cone of
Bernig and Lytchak [1] for a normal complex surface germ. The metric tangent cone
T0A is defined for any real semi-algebraic germ (A, 0) ⊂ (RN , 0) as the Gromov-
Hausdorff limit

T0A := limGH
ε→0 (

1

ε
A, 0) ,

where 1
εA means A with its inner metric scaled by a factor of 1

ε .

As a metric germ, T0A is the strict cone on its link T0A
(1) := T0A ∩ S1, and

T0A
(1) = limGH

ε→0

1

ε
A(ε) ,

where 1
εA

(ε) is the link of radius ε of (A, 0) scaled to lie in the unit sphere S1 ⊂ RN .
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Applying this to (X, 0) ⊂ Cn, we see that the thin zones collapse to circles as

ε → 0. In particular, the boundary tori of each Seifert manifold link 1
εY

(ε)
i of a

thick zone collapse to the same circles, so that in the limit we have a “branched
Seifert manifold” (where branching of k > 1 sheets of the manifold meeting along
a circle occurs if the collapsing map of a boundary torus to S1 has fibers consisting
of k > 1 circles). Therefore, the link T0X

(1) of the metric tangent cone is the union
of the branched Seifert manifolds glued along the circles to which the thin zones
have collapsed.

The ordinary tangent cone T0X and its link T0X
(1) can be similarly constructed

as the Hausdorff limit of 1
εX resp. 1

εX
(ε) (as embedded metric spaces in Cn resp.

the unit sphere S1). In particular, there is a canonical finite-to-one projection
T0X → T0X (described in the more general semi-algebraic setting in [1]), whose
degree over a general point p ∈ T0X is the multiplicity of T0X at that point. This
is a branched cover, branched over the exceptional tangent lines in T0X.

The circles to which thin zones collapse map to the links of some of these excep-
tional tangent lines, but there can also be branching in the part of T0X correspond-
ing to the thick part of X; such branching corresponds to bamboos on L-nodes of
the resolution of X of Section 2 or to basepoints of the family of polars which are
smooth points of π−1(0) on L-curves. Summarizing:

Theorem 9.1. The metric tangent cone T0X is a cover of the tangent cone T0X
branched over some of the exceptional lines in T0X. It has a natural complex
structure (lifted from T0X) as a non-normal complex surface. Removing a finite
set of complex lines (corresponding to thin zones) results in a complex surface which
is homeomorphic to the interior of the thick part of X by a homeomorphism which is
bilipschitz outside an arbitrarily small cone neighborhood of the removed lines. �

Part II: The bilipschitz classification

The remainder of the paper builds on the thick-thin decomposition to complete
the bilipschitz classification, as described in Theorem 1.9.

10. The refined decomposition of (X, 0)

The decomposition of (X, 0) for the Classification Theorem 1.9 was described
there in terms of the link X(ε) as follows: first refine the thick-thin decomposition

X(ε) =
⋃r
i=1 Y

(ε)
i ∪

⋃s
j=1 Z

(ε)
j by decomposing each thin zone Z

(ε)
j into its JSJ

decomposition (minimal decomposition into Seifert fibered manifolds glued along

their boundaries) while leaving the thick zones Y
(ε)
i as they are; then thicken some

of the gluing tori of this refined decomposition to collars T 2 × I. We will call the
latter special annular pieces.

In this section we describe where these special annular pieces are added, to
complete the description of the data (1) of Theorem 1.9.

We consider a generic linear projection ` : (X, 0)→ (C2, 0) and we denote again
by Π its polar curve and by Π∗ the strict transform with respect to the resolution
defined in Section 2. Before adding the special annular pieces, each piece of the
above refined decomposition is either a thick zone, corresponding to an L-node of
our resolution graph Γ, or a Seifert fibered component of the minimal decomposition
of a thin zone, which corresponds to a T -node of Γ. The incidence graph for this
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decomposition is the graph whose vertices are the nodes of Γ and whose edges are
the maximal strings σ between nodes. We add a special annular piece corresponding
to a string σ if and only if Π∗ meets an exceptional curve belonging to this string.

This refines the incidence graph of the decomposition by adding a vertex on each
edge which gives a special annular piece. As in the Introduction, we call this graph
Γ0. We then have a decomposition

(4) X(ε) =
⋃

ν∈V (Γ0)

M (ε)
ν ,

into Seifert fibered components, some of which are special annular.
In the next section we will use this decomposition, together with the additional

data described in Theorem 1.9, to construct a bilipschitz model for (X, 0). To do
so we will need to modify the decomposition (4) by replacing each separating torus
of the decomposition by a toral annulus T 2 × I:

(5) X(ε0) =
⋃

ν∈V (Γ0)

M (ε0)
ν ∪

⋃
σ∈E(Γ0)

A(ε0)
σ .

At this point the only data of Theorem 1.9 which have not been described are
the weights qν of part (3). These are certain Puiseux exponents of the discriminant
curve ∆ of the generic plane projection of X, and will be revealed in sections 12
and 13, where we show that X is bilipschitz homeomorphic to its bilipschitz model.
Finally, we prove that the data are bilipschitz invariants of (X, 0) in Section 14.

11. The bilipschitz model of (X, 0)

We describe how to build a bilipschitz model for a normal surface germ (X, 0)
by gluing individual pieces using the data of Theorem 1.9. Each piece will be
topologically the cone on some manifold N and we call the subset which is the cone
on ∂N the cone-boundary of the piece. The pieces will be glued to each other along
their cone-boundaries using isometries. We first define the pieces.

Definition 11.1 (A(q, q′)). Here 1 ≤ q < q′ are rational numbers.
Let A be the euclidean annulus {(ρ, ψ) : 1 ≤ ρ ≤ 2, 0 ≤ ψ ≤ 2π} in polar

coordinates and for 0 < r ≤ 1 let g
(r)
q,q′ be the metric on A:

g
(r)
q,q′ := (rq − rq

′
)2dρ2 + ((ρ− 1)rq + (2− ρ)rq

′
)2dψ2 .

So A with this metric is isometric to the euclidean annulus with inner and outer
radii rq

′
and rq. The metric completion of (0, 1]× S1 ×A with the metric

dr2 + r2dθ2 + g
(r)
q,q′

compactifies it by adding a single point at r = 0. We call the result A(q, q′).
(To make the comparison with the local metric of Nagase [33] clearer we note

that this metric is bilipschitz equivalent to dr2 +r2dθ2 +r2q
(
ds2 +(rq

′−q+s)2)dψ2
)

with s = ρ− 1.)

Definition 11.2 (B(F, φ, q)). Let F be a compact oriented 2-manifold, φ : F → F
an orientation preserving diffeomorphism, and Fφ the mapping torus of φ, defined
as:

Fφ := ([0, 2π]× F )/((2π, x) ∼ (0, φ(x))) .
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Given a rational number q > 1 we will define a metric space B(F, φ, q), which is
topologically the cone on the mapping torus Fφ.

For each 0 ≤ θ ≤ 2π choose a Riemannian metric gθ on F , varying smoothly
with θ, such that for some small δ > 0:

gθ =

{
g0 for θ ∈ [0, δ] ,

φ∗g0 for θ ∈ [2π − δ, 2π] .

Then for any r ∈ (0, 1] the metric r2dθ2 + r2qgθ on [0, 2π] × F induces a smooth
metric on Fφ. Thus

dr2 + r2dθ2 + r2qgθ

defines a smooth metric on (0, 1]×Fφ. The metric completion of (0, 1]×Fφ adds a
single point at r = 0. Denote this completion by B(F, φ, q). (It can be thought of
as a “globalization” of the local metric of Hsiang and Pati [15]).

Note that changing φ by an isotopy or changing the initial choice of the family of
metrics on F does not change the bilipschitz class of B(F, φ, q). It will be convenient
to make some additional choices. For a boundary component ∂iF of F let mi(F )
be the smallest m > 0 for which φm(∂iF ) = ∂iF . By changing φ by an isotopy if
necessary and choosing the gθ suitably we may assume:

• φmi(F ) is the identity on ∂iF for each i;
• in a neighborhood of ∂F we have gθ = g0 for all θ;
• the lengths of the boundary components of F are 2π.

Then the metric r2dθ2 + r2qgθ on the boundary component of Fφ corresponding to
∂iF is the product of a circle of circumference 2πmi(F )r and one of circumference
2πrq.

Definition 11.3 (CM). Given a compact smooth 3-manifold M , choose a Rie-
mannian metric g on M and consider the metric dr2 + r2g on (0, 1] × M . The
completion of this adds a point at r = 0, giving a metric cone on M . The bilips-
chitz class of this metric is independent of choice of g, and we will choose it later
to give the boundary components of M specific desired shapes.

A piece bilipschitz equivalent to A(q, q′) will also be said to be “of type A(q, q′)”,
of briefly “of type A”, and similarly for types B(F, φ, q) and CM . We now describe
how to glue together pieces of these three types to obtain our bilipschitz model
for (X, 0). Note that, although we are only interested in metrics up to bilipschitz
equivalence, we must glue pieces by strict isometries of their cone-boundaries. In
order that the cone-boundaries are strictly isometric, we may need to change the
metric in Definition 11.2 or 11.3 by replacing the term r2dθ2 by m2r2dθ2 for some
positive integer m. This gives the same metric up to bilipschitz equivalence.

For example, given F , φ, q and q′, each component C of the cone-boundary of
B(F, φ, q) is isometric to the left boundary component of A(q, q′) after altering the
metrics on B(F, φ, q) and A(q, q′) as just described, using m equal to the number
of components of F and the number of components of F ∩ C respectively. So we
can glue B(F, φ, q) to A(q, q′) along C, giving a manifold with piecewise smooth
metric. Similarly, a piece B(F, φ, q′) can be glued to the right boundary of A(q, q′).
Finally, since the left boundary of a piece A(1, q′) is strictly conical, it can be glued
to a boundary component of a conical piece CM (again, after suitably adjusting
the metric to be correct on the appropriate boundary component of M).
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Consider now the decomposition (5) of the previous section, which is the decom-
position of part (1) of Theorem 1.9 but with the gluing tori thickened to annular
pieces. We consider also the weights qν of part (3) of Theorem 1.9.

Recall that, except for adding annular pieces, this decomposition is obtained
from the thick-thin decomposition by JSJ-decomposing the thin zones.

Remark 11.4. Any JSJ decomposition can be positioned uniquely up to isotopy to
be transverse to the foliation by fibers of a fibration over S1 (as long as the leaves
are not tori). Indeed, by the Transversality Lemma of Roussarie and Thurston
([41, 47]), we can modify the JSJ decomposition by an isotopy in such a way that
each separating torus and boundary torus of is transversal to all leaves of the
folitation. Then, using Waldhausen ([49, Satz 2.8]), we can assume that, up to
bilipschitz equivalence, the leaves are transversal to the Seifert fibers in each Seifert
fibered component.

In particular, this applies to the foliation of part (2) of Theorem 1.9, so we have
a foliation with compact leaves on each non-thick piece of this decomposition. For

a piece A
(ε0)
σ the leaves are annuli and we define

Âσ := A(qν , qν′) ,

where ν and ν′ are nodes at the ends of the string σ, ordered so that qν < qν′ . For

a non-thick piece M
(ε)
ν the leaves are fibers of a fibration M

(ε)
ν → S1. In this case

let φν : Fν → Fν be the monodromy map of this fibration and define

M̂ν := B(Fν , φν , qν) .

Finally, for each node ν of Γ such that qν = 1 (i.e., M
(ε)
ν is thick) we define

M̂ν := CM (ε)
ν .

We can glue together the pieces M̂ν and Âσ according to the topology of the

decomposition X(ε) =
⋃
νM

(ε)
ν ∪

⋃
σ A

(ε)
σ , arranging, as described above, that the

gluing is by isometries of the cone-boundaries. We can also make sure that the
foliations match to give the foliations of the thin zones (item (2) of Theorem 1.9).
We obtain a semi-algebraic set

(X̂, 0) =
⋃
ν

(M̂ν , 0) ∪
⋃
σ

(Âσ, 0) .

The next two sections prove that (X̂, 0) is bilipschitz equivalent to (X, 0) while
determining the qν ’s of item (3) of Theorem 1.9 in the process. The proof of the
theorem will then be completed in the following Section 14 by showing that the
data of Theorem 1.9 are bilipschitz invariants of (X, 0).

12. Carrousel decomposition and lifting

In this section, we will define a decomposition of (X, 0) into A-, B- and CM -
pieces such that the polar wedges A0 (see Proposition 3.4) are B(D2, id, s) pieces.
In order to do this, we define such a decomposition of C2 with respect to the
discriminant curve ∆ of a generic projection ` : (X, 0) → (C2, 0) and we then lift
this decomposition by `.

We assume as usual that ` = (z1, z2) is a generic linear projection. We will work
again inside the Milnor balls with corners Bε defined in Section 4. We denote by
(x, y) the coordinates in C2 (so (x, y) = (z1, z2)).



BILIPSCHITZ CLASSIFICATION OF NORMAL SURFACE SINGULARITIES 29

We first define the decomposition inside a conical neighbourhood of each tangent
line to ∆. Let L1, . . . , Lm be the tangent lines to the discriminant curve ∆ of `.
For each j = 1, . . . ,m, let ∆j the union of branches of ∆ which are tangent to Lj
and assume that Lj is the line y = λjx. We consider a cone Vj = {(x, y) : |x| ≤
ε, |y − λjx| ≤ η|x|} ⊂ C2 centered at Lj such that ∆j ∩Bε lies inside Vj .

Following the ideas of Lê [20] (see also [23]), we first construct a “carrousel
decomposition” of each Vj , j = 1, . . . ,m with respect to the branches of ∆j . It
will consist of closures of regions between successively smaller neighborhoods of the
successive Puiseux approximations of the branches of ∆j . As such, it is finer than
the one of [20], which only needed the first Puiseux pairs of the branches of ∆j .

x

Vj(x0)

Vj

y

∆j

∆j

∆j

Figure 4. The cone Vj and the curve ∆j

For simplicity we assume first that ∆j has just one branch. The curve ∆j admits
a Puiseux series expansion of the form

y =
∑
i≥1

aix
pi ∈ C{x 1

N } .

Let pn = s be the contact exponent (see Proposition 3.4).
For each k ≤ n choose αk, βk, γk > 0 with αk < |ak| − γk < |ak| + γk < βk and

consider the region

Bk :=
{

(x, y) : αk|xpk | ≤ |y −
k−1∑
i=1

aix
pi | ≤ βk|xpk |, |y −

k∑
i=1

aix
pi | ≥ γk|xpk |

}
.

If the ε of our Milnor ball Bε is small enough the Bj ’s will be pairwise disjoint.
Denote by A1 the closure of the region between ∂Vj and B1 and Ai the closure of
the region between Bi−1 and Bi for i = 1, . . . n. Finally let D be

D := Vj r (

n⋃
i=1

Ai ∪
n⋃
i=1

Bi) ,

which is the union of connected pieces D1, . . . , Dn, Dn+1, disjoint except at 0, and
indexed so that Dk is adjacent to Bk and Dn+1 r {0} intersects ∆.

Then, for k = 1, . . . , n, Ak is bilipschitz equivalent to A(pk−1, pk) (Definition
11.1; we put p0 = 1), and Bk is bilipschitz equivalent to B(Fk, φk, pk) (Definition
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11.2), where Fk is a planar surface with

2 +
lcmi≤k{denom(pi)}
lcmi<k{denom(pi)}

boundary components and φk is a finite order diffeomorphism. Finally, each Dk is
bilipschitz to B(D2, id, pk).

More generally, if ∆j has several components, we first truncate the Puiseux series
for each component of ∆j at its contact exponent. Then for each pair κ = (f, pk)

consisting of a Puiseux polynomial f =
∑k−1
i=1 aix

pi and an exponent pk for which

f =
∑k
i=1 aix

pi is a partial sum of the truncated Puiseux series of some component
of ∆j , we consider all components of ∆j which fit this data. If ak1, . . . , akt are the
coefficients of xpk which occur in these Puiseux polynomials we define

Bκ :=
{

(x, y) : ακ|xpk | ≤ |y −
k−1∑
i=1

aix
pi | ≤ βκ|xpk |

|y − (

k−1∑
i=1

aix
pi + akjx

pk)| ≥ γκ|xpk | for j = 1, . . . , t
}
.

Here ακ, βκ, γκ are chosen so that ακ < |akj | − γκ < |akj | + γκ < βκ for each
j = 1, . . . , t. Again, if the ε of our Milnor ball is small enough the sets Bκ will be
disjoint for different κ, and each is again bilipschitz equivalent to some B(F, φ, pk)
with φ of finite order. The closure of the complement in Vj of the union of the Bκ’s
is again a union of pieces bilipschitz equivalent to some A(q, q′) or some B(D2, id, q).

The carrousel picture is the picture of the intersection of this decomposition of
the cone Vj with the plane x = ε. Figure 5 shows this picture for a discriminant ∆j

having two branches with Puiseux series expansions up to their contact exponents
respectively y = ax4/3 + bx13/6 and y = cx7/4. Note that the intersection of a piece
of the decomposition of Vj with the disk Vj ∩ {x = ε} will usually have several
components.

A1

B(1,1)

B(1,2)
B(2,1)

Figure 5. Carrousel section for ∆ = {y = ax4/3 + bx13/6 + . . .} ∪
{y = cx7/4 + . . .}. The region D is gray.
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We now take the above decompositions in each of the cones Vj and add the

additional piece Y := (C2 r
⋃
Vj , 0) to get a decomposition of all of (C2, 0). This

piece Y is conical, i.e., of type CM .
We next describe a lifting by ` of the this decomposition of (C2, 0) to (X, 0).
For each j denote by ∆j1, . . . ,∆jkj the components of the discriminant which

are in Vj and B′j1, . . . , B
′
jkj

the corresponding sets described in the remark following

Proposition 3.4. Let Aj1, . . . , Ajkj be the corresponding polar wedges, described
as components of the inverse images of the B′ji (as in Proposition 3.4.(2) and the
remark), with contact exponents sj1, . . . sjkj .

Notice that each B′ji is a union of carrousel pieces. In particular, if kj = 1, so the

part of the discriminant in Vj is irreducible, then it is a piece of type B(D2, id, sj0).
Denote

(XL, 0) :=

(
X r

t⋃
j

kj⋃
i=1

Aji, 0

)
,

and let `L : (XL, 0)→ (C2, 0) be the restriction of ` : (X, 0)→ (C2, 0).

Lemma 12.1. (1) Each polar wedge Aji is a piece of type B(D2, id, sji);
(2) The inverse image by `L of the CM piece Y of the carrousel is a union of

CM pieces. The inverse image by `L of any A(q, q′) piece of the carrousel is
a disjoint union of A(q, q′) pieces. The inverse image by `L of any B(F, φ, q)
piece is a disjoint union of pieces of type B(F, φ, q) (with the same q but
usually different F ’s and φ’s), and the φ’s for these pieces have finite order,
so their links are Seifert fibered.

Proof. Part (1) is proved in Proposition 3.4. In part (2) each inverse image piece is
an unbranched cover of a piece of the carrousel, with metric bilipschitz equivalent
to the lifted metric, so this part of the Lemma follows. �

We have now constructed a decomposition of (X, 0) into “model pieces” but the
decomposition is not minimal. We will next describe how to simplify it step by
step, leading to a decomposition equivalent to the the one described in Section 11.

13. Bilipschitz equivalence with the model

We will start with the above non-minimal decomposition of (X, 0) into model
pieces and then simplify it until it is minimal. This will use the following trivial
lemma, which gives rules for simplifying a decomposition into model pieces. The
reader can easily add more rules; we intentionally list only the ones we use.

Lemma 13.1. In this lemma ∼= means bilipschitz equivalence and ∪ represents
gluing along appropriate boundary components by an isometry.

(1) B(D2, φ, q) ∼= B(D2, id, q); B(S1 × I, φ, q) ∼= B(S1 × I, id, q).
(2) A(q, q′) ∪A(q′, q′′) ∼= A(q, q′′).
(3) If F is the result of gluing a surface F ′ to a disk D2 along boundary com-

ponents then B(F ′, φ|F ′ , q) ∪B(D2, φ|D2 , q) ∼= B(F, φ, q).
(4) A(q, q′) ∪B(D2, id, q′) ∼= B(D2, id, q).
(5) Each B(D2, id, 1), B(S1× I, id, 1) or B(F, φ, 1) piece is a CM piece and a

union of CM pieces glued along boundary components is a CM piece. �
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We will apply these rules repeatedly to amalgamate pieces in (X, 0). But first we
will introduce a restriction on the use of rule 2 which will avoid the amalgamation
of some specific annular pieces.

Notice that in rule 2 (as well as in rule 4), there is no restriction on q, q′ and
q′′. In particular, q = q′ or q′ = q′′ i.e., amalgamation of pieces A(q′, q′) pieces,
is a priori allowed. In the carrousel decomposition of (C2, 0) annular pieces of
type A(q, q′) only occur with q < q′, but in (X, 0) a B(S1 × I, id, q′) piece (which
can be thought of as a piece of type A(q′, q′)) can arise when amalgamating lifted
pieces. The following lemma clarifies how such A(q′, q′) pieces can arise in the
decomposition of (X, 0).

Lemma 13.2. If an annular piece of type A(q′, q′) arises in (X, 0) it is either:

(1) an unbranched cover of an annular region of the carrousel (arising as a
union of a B-piece along with the pieces which “fill the holes” of this B-
piece), or

(2) a branched cover of a region of type B(D2, id, q) in the carrousel.

In case (1) the two adjacent pieces to the A(q′, q′) piece are or type A(q, q′) and
A(q′, q′′) with q < q′ < q′′, while in case (2) the two adjacent pieces are of of type
A(q, q′) with q < q′.

Proof. For the piece to be annular its intersection with a Milnor fiber (i.e., inter-
section with {z1 = x0}) must be a union of annuli S1 × I. Euler characteristic
shows that an annulus can branched cover only an annulus (with no branching)
or a disk. The two possibilities give the two cases in the lemma. The statement
about adjacent pieces is seen by considering the adjacent pieces to the image of the
A(q′, q′) piece in (C2, 0). �

A piece as in item (2) of Lemma 13.2 is called a special annular piece. We will
now apply the rules of Lemma 13.1 to amalgamate pieces of the decomposition,
with the following additional rule:

(6) A special annular piece is never amalgamated with another piece;

The amalgamation process stops when there is no B(D2, id, q) piece left, no
piece of type A(q, q) which is not special annular, no pairs of adjacent annular
pieces which are not special annular, and no pairs of adjacent CM pieces. At each
step of the process there is at least one piece of type A(q, q′) between any two
pieces of type CM , B(F, φ, q) with F 6= D2, or special annular. So at the end of
the process we just have pieces of these three types with A(q, q′) pieces separating
them.

We call this decomposition the classifying decomposition of (X, 0) and we create
an incident graph Γ0 for it with a vertex for each connected piece which is of type
CM , B or special annular, and with an edge for each annular piece connecting two
such pieces.

Lemma 13.3. Γ0 is the graph Γ0 of Theorem 1.9 and Section 10.

Proof. Note first that rule (5) of Lemma 13.1 absorbs into the initial CM pieces

(components `−1(Y ), where Y := (C2 r
⋃
Vj , 0)) any adjacent D-type piece. These

are any component of an `−1(Vi) which maps by a covering map to Vi, any piece
coming from a moving polar (see proof of part (1) of Lemma 6.2) and any piece
coming from a bamboo on an L-node. In particular, part (3) of Lemma 6.2 is
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proved, and we also see that the CM pieces of the classifying decomposition are
exactly the “conical cores” of the thick pieces of the thick-thin decomposition (i.e.,
when amalgamated with the adjacent annular pieces of type A(1, q), they are the
thick pieces).

After removing the thick pieces we are left with the thin pieces, and for each

thin piece Zj and its link Z
(ε)
j we need to show the following:

(i) If one ignores the annular and special annular pieces the decomposition of

Z
(ε)
j is its minimal decomposition into Seifert fibered components;

(ii) there is a special annular piece between two Seifert fibered components if
and only if the strict transform of the polar meets the corresponding string
of rational curves in the resolution graph.

For (i), note that the JSJ decomposition of a thin zone is characterized by the fact
that the pieces are not annular and the Seifert fibrations of adjacent pieces do not
match up to isotopy on the common torus.

For pieces which do not have a special annular piece between them this is clear:
The Seifert fibrations run parallel to the curves of Puiseux approximations to the
branches of the ∆j and are determined therefore by the weights q; two adjacent
pieces with no special annular piece between them are separated by an A(q, q′) and,
since q 6= q′, the fibrations do not match.

For pieces with a special annular piece between them it is also not hard to see.
In this case there is an annular region between them which is composed of pieces
A(q1, q

′) and A(q2, q
′) glued to a B(S1 × I, id, q′) between them. We claim the

mismatch of Seifert fibrations given by A(q1, q
′) and A(q2, q

′) accumulate rather
than cancel. A geometric approach is to consider an arc in the Milnor fiber Wj ∩
{z1 = εeiθ} from an intersection of a Seifert fiber of the one piece to an intersection
of the Seifert fiber of the other, and watch what happens to this arc as one swings
the Milnor fiber through increasing θ, keeping the arc on the Milnor fiber and its
ends on their respective Seifert fibers. If the Seifert fibrations were parallel the
arc would have constant length. It passes through the special annulus, and we can
assume it does this efficiently, so that its image in the image disk Vj ∩ {z1 = x0}
enters near a branch point, circles the branch point, and exits. The branch points
in this disk are rotating faster than the endpoints of the arc since q′ > q1 and
q′ > q2, so the curve must stretch (see Figure 6).

We have proved the correspondence between the non-annular pieces of our de-
composition and JSJ-components, and hence with T -nodes in Γ. The correspon-
dence (ii) can now be seen as follows. A string between nodes in Γ for which the
polar meets an exceptional curve corresponds to an annulus of the Nielsen decom-
position of the Milnor fiber (see Remark 7.6) which meets the polar. This means
that the annulus covers its image in Vj ∩ {z = ε} with non-trivial branching. By
Lemma 13.2 this means the image is a disk, so the annulus is the Milnor fiber of a
special annulus.

This completes the proof that the decomposition graph for the classifying de-
composition is indeed the graph Γ0 of Theorem 1.9 and Section 10. �

The vertex-weights qν are the q’s of the model pieces of this constructed decom-
position. They are the last data we needed to assemble to complete the data of
Theorem 1.9.
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C

C ′

γ

`−1(C)

`−1(C ′)`−1(γ)

`−1(C)

`−1(C ′)
C

C ′

γ

Figure 6. Non-matching of Seifert fibers across a special annular piece.

This decomposition of X ∩ Bε0 into model pieces matches the construction of

the model X̂ in Section 11, so we have shown:

Corollary 13.4. The bilipschitz model X̂ constructed in Section 11 using the data
we have assembled for Theorem 1.9 is bilipschitz homeomorphic to X ∩Bε0 . �

This corollary completes the proof of half of Theorem 1.9. It remains to show
that the data of that theorem are bilipschitz invariants.

Remark 13.5. Each vertex ν of Γ0 corresponds either to a node of Γ or, in the
case of a special annular piece, to a maximal string σ of Γ which contains a vertex
corresponding to an exceptional curve which intersect Π∗ (we call the minimal
substring of σ containing all such vertices an A-string, also an A-node if it is a
single vertex). In discussing examples it is often more convenient to associate the
weight qν with corresponding node or A-string of Γ.

Any rate qν is either 1 or is a characteristic exponent of a branch of the discrim-
inant curve ∆. But in general, not all characteristic exponents appear as rates.

For example, the singularity (X, 0) ⊂ (C3, 0) with equation x3 + y4 + z4 is
metrically conical (see 7.12), so the only rate qν is 1 at the single L-node. But the
discriminant curve of a generic linear projection consists of four transversal cusps
each with Puiseux exponent 3/2. This also happens when the contact exponent of
a branch of ∆ is strictly less than its last characteristic exponent.

There are also examples where all characteristic exponents of ∆ appear as rates
qν of T -nodes or A-strings. This is the case for any (X, 0) with equation z2 −
f(x, y) = 0 where f is irreducible. Indeed, let {(rk, qk)}nk=1 be the set of Puiseux
pairs of f (see [9, p. 49]), i.e., the characteristic Puiseux exponents of the curve
f = 0 are the rational numbers pk = qk

r1...rk
. The projection ` = (x, y) is generic

and its discriminant curve is {f = 0}. By Propositions 4.1 and 4.2 of [29], for any
k = 1 . . . , n − 1, each connected component of `−1(Bk) gives rise to a T -node of
Γ with rate pk. Moreover, either rn 6= 2, and then `−1(Bn) gives rise to a T -node
with rate pn, or rn = 2, and then `−1(Bn) gives rise to a A-node with rate pn.
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14. Bilipschitz invariance of the data

In this section, we prove that the data (1), (2) and (3) of Theorem 1.9 are
determined by the bilipschitz geometry of (X, 0).

We first consider the refined decomposition of (X, 0) presented in Section 10,
which is part (1) of the data of the Classification Theorem 1.9:

X(ε0) =
⋃
ν∈NΓ

M (ε0)
ν ∪

⋃
σ∈SΓ

A(ε0)
σ

Lemma 14.1. The bilipschitz geometry of (X, 0) determines, up to homeomor-
phism, the above decomposition.

Proof. The thick-thin decomposition (X, 0) =
⋃r
i=1(Yi, 0) ∪

⋃s
j=1(Zj , 0) is deter-

mined up to homeomorphism by the bilipschitz geometry of (X, 0) (Section 8). For
each L-node ν, the associated thick piece Yν is defined by Yν = π(N(Γν)) (Section

2). Therefore the link M
(ε0)
ν , which coincides with Y

(ε0)
ν up to a collar neigh-

borhood, is determined by the bilipschitz geometry. For each Tjurina component

Γj of Γ, the pieces M
(ε0)
ν corresponding to T -nodes in Γj are exactly the Seifert

components of the minimal JSJ decomposition of Z
(ε0)
j . Since the minimal JSJ de-

composition of a 3-manifold is unique up to isotopy, the pieces Mν are determined
up to homeomorphism by the bilipschitz geometry.

It remains to prove that the special annular pieces A
(ε0)
σ are also determined by

the bilipschitz geometry. This will be done in Lemma 14.4 �

We next prove the bilipschitz invariance of data (2) of Theorem 1.9.

Lemma 14.2. The bilipschitz geometry of (X, 0) determines for each thin zone

Z
(ε)
j the foliation of Z

(ε)
j by fibers of ζ

(ε)
j .

Proof. We begin with a remark: If M → S1 is a fibration of a compact connected
oriented 3-manifold, we consider M as a foliated manifold, with compact leaves
which are the connected components of the fibers. If the fibration has disconnected
fibers, then it is the composition with a covering map S1 → S1 of a fibration with
connected fiber F . This fibration gives the same foliation (and it is determined
up to isotopy by F ⊂ M). We recall also that the isotopy class of a fibration
ζ : M → S1 of a 3-manifold is determined up to isotopy by the homotopy class
[φ] ∈ [M,S1] = H1(M ;Z) and has connected fibers if and only if this class is
primitive. (See e.g., [45].)

According to Proposition 5.1, the fibration ζ
(ε)
j : Z

(ε)
j → S1

ε varies continuously
with ε, and the diameter of the fibers shrinks faster than linearly with ε. As

just described, we can modify ζ
(ε)
j if necessary to have connected fiber Fj without

changing the foliation by fibers. Any fibration ξ : Z
(ε)
j → S1 generating a different

foliation up to isotopy has fibers which map essentially (i.e., not null-homotopically)

to S1 by ζ
(ε)
j , so their diameter cannot shrink super-linearly with ε. Hence our

foliation is determined up to isotopy by the bilipschitz geometry. �

Recall that a closed curve (or “loop”) in X r {0} is essential if it is not null-
homotopic in Xr{0}. A continuous family of essential loops {γε : S1 → X(ε)}0<ε≤ε0
is a fast loop (of the first kind) if the lengths shrink faster than linearly in ε. If
length(γε) = O(εq) we call q the rate of the fast loop.
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Lemma 14.3. For a Tjurina component Γj of Γ and a T -node ν in Γj, denote by

F
(ε)
ν a fiber of the fibration ζ

(ε)
ν : M

(ε)
ν → S1 obtained by restricting ζ

(ε)
j to M

(ε)
ν .

Then F
(ε0)
ν contains an essential loop which is not homotopic into ∂F

(ε0)
ν . Any such

loop gives a fast loop of maximal rate qν , so qν is a bilipschitz invariant.

Proof. Note that a fast loop can only exist in a thin zone, and then an argument
similar to the proof of the lemma above shows that there is no loss of generality in
considering only fast loops which are homotopic into Milnor fibers of the thin zone.
Indeed, a loop which is not homotopic into a Milnor fiber must map essentially to
the circle under the fibration ζj and hence cannot shrink faster than linearly.

Let γ be a loop in F
(ε0)
ν which is neither null-homotopic in F

(ε0)
ν nor homotopic

into a boundary component of F
(ε0)
ν (since π1(F

(ε0)
ν ) is a nonabelian free group,

most loops have this property). Let δ be a boundary component of F
(ε0)
ν . We can

choose γ so that, after connecting these loops to a base-point, neither of the loops
γ or γδ is boundary-parallel. If both were inessential then δ ∼ γ−1γδ would be

inessential, but Proposition 7.7 says each boundary component of F
(ε0)
ν is essential.

Thus at least one of them is the desired essential loop in F
(ε0)
ν .

Since Mν is of type B(Fν , φ, qν), it is clear that every essential loop in F
(ε0)
ν

yields a fast loop of rate at least qν . Now let γ be an essential loop in M
(ε0)
ν which

is homotopic into F
(ε0)
ν but not homotopic into a boundary component of F

(ε0)
ν .

Every representative of γ intersects M
(ε0)
ν , and there is a lower bound on the length

of the portion of such a representative which lies in M
(ε0)
ν , which is realized within

a fiber F
(ε0)
ν . Since F

(ε0)
ν shrinks uniformly at rate qν , it follows that qν is an upper

bound on the rate of fast loops with γε0 = γ. �

Lemma 14.4. The bilipschitz geometry of (X, 0) determines the special annular
pieces Mν and the maximal rate qν of each such piece Mν .

Proof. Let γ be a boundary component of the fiber Fν for a T -node ν and ν′ the
adjacent node for that boundary component. Then γ is a fast loop with rate at
least max{qν , qν′}. If there is no special annular piece between Mν and Mν′ the
argument of the previous lemma shows the maximal rate is exactly max{qν , q′ν},
while if there is a special annular piece Mν′′ , then it is qν′′ . �

Lemmas 14.3 and 14.4 prove bilipschitz invariance of all the qν ’s and complete
the proof of Lemma 14.1. So the proof of Theorem 1.9 is complete.

15. Examples

In this section, we describe the bilipschitz geometry for several examples of
normal surface singularities (X, 0). Namely, for each of them, we give the dual

resolution graph Γ of the minimal resolution π : (X̃, E) → (X, 0) considered in
Section 10 with the additional data:

(1′) the nodes (L-, T - and A-) represented by black vertices,
(2′) the arrows representing the strict transform of a generic linear form
(3′) the rate qν weighting each node ν

The data (1′) and (3′) are equivalent respectively to (1) and (3) of Theorem 1.9.
The data (2′) determines the multiplicities mν of the generic linear form z1 along

each exceptional curve Eν , ν ∈ Γ. In all the examples treated here, we are in one
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of the following two situations: either the link X(ε) is a rational homology sphere
or for each node ν ∈ Γ,

gcd
(

gcd(mν ,mµ), µ ∈ Vν)
)

= 1,

where Vν denotes the set of neighbor vertices of ν in Γ including arrows (which
have multiplicities 1). In these two situations, the multiplicities mν determine the
embedded topology in X(ε) of the Milnor fiber of z1, and then data (2) of Theorem
1.9 (see e.g. [40]).

Recall that the L-nodes of Γ are the vertices carrying at least one arrow or,
equivalently, having rate 1. The Tjurina components of Γ are the components
obtained by removing the L-nodes and adjacent edges. Then, according to Section
2 and Theorem 1.7, the thick-thin decomposition (X, 0) =

(⋃
(Yi, 0)

)
∪
(⋃

(Zj , 0)
)

of (X, 0) is read from the graph Γ as follows:

• The thin pieces (Zj , 0) of (X, 0) correspond to the Tjurina components
which are not bamboos.
• The thick pieces (Yi, 0) of (X, 0) are in bijection with the L-nodes of Γ.

They correspond to the connected components of the graph obtained by
removing from Γ the Tjurina components which are not bamboos and their
adjacent edges.

Each example has been computed as follows: we start by computing the graph
Γ with L-nodes and arrows. Then for each Tjurina component, we determine
the A-nodes and the rates at A- and T -nodes either by studying the Puiseux
expansions of the branches of the discriminant curve ∆ and the cover `, or by
determining the strict transform of the polar curve Π∗ using the equation of X and
the multiplicities of the coordinates functions in the graph, or by using Hironaka
numbers (see Remark 15.3).

In 15.2 we will treat an example of a superisolated singularity in all detail. We
start by presenting the thick-thin decomposition for this family of singularities.

Example 15.1 (Superisolated singularities). A hypersurface singularity (X, 0)
with equation fd(x, y, z) + fd+1(x, y, z) + . . . = 0, where each fk is an homoge-
neous polynomial of degree k, is superisolated if the projective plane curve C :=
{fd = 0} ⊂ P2 is reduced with isolated singularities {pi}i and these points pi are
not situated on the projective curve {fd+1 = 0} (see [19], [26]). Such a singularity
is resolved by the blow-up π1 of the origin of C3. Therefore, the thick zones are in
bijection with the components of the projectivized tangent cone C. Moreover, the

resolution π : (X̃, E)→ (X, 0) introduced in Section 2 is obtained by composing π1

with the minimal resolutions of the plane curve germs (C, pi), and as the curve C
is reduced, no Tjurina component of π is a bamboo. Therefore, the thin zones are
in bijection with the points pi.

The embedded topological type of (X, 0) does not depend on the fk, k > d
providing fd+1 = 0 does not contain any of the singular points pi of C. The
previous arguments show the thick-thin decomposition of (X, 0) also only depends
on C and does not change when replacing the equation by fd + ld+1 = 0, where l
is a generic linear form.

For example, taking C with smooth irreducible components intersecting trans-
versely, we obtain a thick-thin decomposition whose thin zones are all thickened
tori, and whose topology comes from the thick pieces (in fact the genus of the
irreducible components of C) and cycles in the resolution graph.
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Example 15.2 ((X, 0) with equation (zx2 + y3)(x3 + zy2) + z7 = 0). This is a
superisolated singularity and we compute the resolution graph with L-nodes and
strict transform of the generic linear form by blowing-up the origin and then resolv-
ing the singularities of the exceptional divisor. We get two L-curves intersecting
at five points and one visible Tjurina component in the graph. Blowing-up the
five intersection points, we then obtain five additional Tjurina components each
consisting of one node between the two L-nodes. We obtain the resolution graph of
Fig. 7. The numbers in parentheses are the multiplicities of the generic linear form
while the others are the self-intersection numbers (Euler classes) of the exceptional
curves.

-2
(5)

-5

(4)

-2
(5)

-1
(10)

-1
(10)

-1 (2)

-1 (2)

-23

(1)

-23

(1)

Figure 7.

Computing the multiplicities of a generic linear combination of fx, fy and fz
as in Example 3.5, we obtain that the polar curve has 14 branches and that the
resolution graph of the minimal resolution which resolves the basepoints of the
family of polar curves is as in Fig. 8 (the number at each vertex is the multiplicity
of a generic combination afx + bfy + cfz):

29

57

23

57

29

11

11

5 5

Figure 8.

Therefore, the discriminant curve ∆ of a generic linear projection ` : (X, 0) →
(C2, 0) has 14 branches and 12 distinct tangent lines L1, . . . , L12.
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Let ∆0 be a branch of ∆ and let Π0 be the branch of the polar curve such that
`(Π0) = ∆0. The intersection of ∆0 with the Milnor fibre of a generic form on
C2 is the multiplicity of Π0, so it is the denominator d of the last characteristic
Puiseux exponent of ∆0. Considering the restriction `|Π0

: Π0 → ∆0, we obtain
that d divides the multiplicity of the generic linear form at the exceptional curve
intersecting Π∗0, which can be read in Fig. 7. This gives a bound on d, which enables
one to compute the Puiseux expansion of all the branches ∆ using, for example,
Maple. We obtain that ∆ decomposes as follows:

• three branches ∆1,∆2,∆3 tangent to the same line L1, each with a single
characteristic Puiseux exponent, respectively 6/5, 6/5 and 5/4, and Puiseux
expansions

∆1: u = av + bv6/5 + cv7/5 + . . .
∆2: u = av + b′v6/5 + c′v7/5 + . . .
∆3: u = av + b′′v5/4 + c′′v3/2 + . . .

• For each i = 2, . . . , 6, one branch tangent to Li = {u = aiv} with 3/2 as
single characteristic Puiseux exponent: u = aiv + biv

3/2 + . . ..
• 6 branches, each lifting to a component of the polar whose strict transform

meets one of the two L-curves at a smooth point (these are “moving polar
components” in the terminology introduced in the proof of Lemma 6.2(1)).
So these do not contribute to the bilipschitz geometry.

The lines L2, . . . , L6 correspond to the 5 thin zones coming from the 5 one-
vertex Tjurina components (compare with Lemma 3.7). These five vertex are thus
A-nodes with rate equal to the characteristic Puiseux exponent 3/2.

The line L1 is the projection of the exceptional line tangent to the thin piece Z1

associated with the big Tjurina component Γ1. In order to compute the rate qν at
each node ν of Γ1, we would have to study explicitly the restriction of the cover ` to
Z1 over a carrousel decomposition of its image and the reduction to the bilipschitz
model, as in Section 13. The following remark will enable one to circumvent this
technical computation.

Remark 15.3. Let ` = (z1, z2) : (X, 0) → (C, 0) be a generic linear projection.
Denote by (u, v) = (z1, z2) the coordinates in the target C2. Let Γj be a Tjurina
component of Γ and let Πj be a branch of the polar curve of ` contained in the thin
piece Zj . Suppose the branch ∆j = `(Πj) of the discriminant curve has a single
characteristic Puiseux exponent p, so the Puiseux expansion of ∆j is of the form:

v = a1u+ a2u
2 + . . .+ aku

k + bup + . . . ,

where k is the integral part of p and b 6= 0. We perform the change of variable

v′ = v −
∑k
i=1 aiu

i. In other word, we consider the projection (z1, z
′
2) instead

of (z1, z2), where z′2 = z2 −
∑k
i=1 aiz

i
1. This projection has the same polar and

discriminant curve as `, and in the new coordinates, the Puiseux expansion of ∆j

is v′ = bup. Let ν be a node in Γj such that Πj ⊂Mν , i.e. qν = p. Then, according
to [21, 30], we have:

p =
mν(z′2)

mν(z1)

The quotient
mν(z′2)
mν(z1) is called the Hironaka number of ν (with respect to the pro-

jection (z1, z
′
2)).
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We return to the example. Since each branch ∆1, ∆2 and ∆3 has a single
characteristic exponent and no inessential exponent before in the expansion, we
can apply the remark above. We use z′2 = x+ y. Let E1, . . . , E5 be the exceptional
curves associated with the vertices of the big Tjurina component indexed from left
to right. We first compute the multiplicities of z1, x and y along the exceptional
curves Ei. Then z′2 = x+y is a generic linear combination of x and y and we obtain
its multiplicities as the minimum of that of x and y on each vertex:

E1 E2 E3 E4 E5

z1 : 5 10 4 10 5
x : 7 13 5 12 6
y : 6 12 5 13 7

x+ y : 6 12 5 12 6

Therefore the Hironaka numbers at the vertices of the Tjurina component Γ1 are:

E1 E2 E3 E4 E5

6/5 6/5 5/4 6/5 6/5

We thus obtain that the rates at the two T -nodes equal 6/5, and that the vertex
in the middle is an A-node with rate 5/4. The bilipschitz geometry of (X, 0) is then
given by the following graph. The rate at each node is written in italics.

-2 -5 -2

-1 -1

-1 3/2

-1 3/2

1

-23

1

-23

6/5 6/5

5/4

We now describe the same example via its carrousel. The carrousel sections for the
six thin zones are illustrated somewhat schematically in Fig. 9. They consist of five
carrousel sections D1, . . . D5 for the five small thin zones containing components of
the discriminant with Puiseux expansions of the form y = aix + bix

3/2 + . . . and
one carrousel section D6 for the “large” thin zone containing two components of
the discriminant of the form y = cx + dix

6/5 + . . . , i = 1, 2 and one of the form
y = cx + ex5/4. There are also six points representing the intersection points of
components of the discriminant coming from the six moving polars in the thick
zone.

For each i = 1, . . . , 5, `−1(Di) consists of an annulus which double branched
covers Di and four disks which each simply covers Di (the total degree must be
the multiplicity of X, which is 6). So for each i = 1, . . . 5 we see a special annular
piece between the two thick zones plus four D-pieces, two contributing to each of
the two thick zones. The carrousel section D6 for the “large” thin zone represents
two overlapping B–pieces with rate 6/5 connecting to a piece with rate 5/4 inside.
`−1(D6) consists of two disks and a surface F of genus 5 which four-fold covers D6.
The two disks correspond again to two D-pieces which contribute to the thick zones,
while the surface F is made up of two annuli over the inner disk of D6 connecting
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to two surfaces of genus 2 over the outer annulus of D6. The two annuli are in
fact two sections by the Milnor fiber of a single special annular piece of rate 5/4
connecting the two pieces of rate 6/5 to form the “large” thin zone.

3/2 3/2 3/2 3/2 3/2

6/5
5/4

1

Figure 9.

Example 15.4 (Simple singularities). The bilipschitz geometry of the A-D-E sin-
gularities is given in Table 1. The right column gives the numbers of thin pieces and
thick pieces. According to Corollary 7.11, when (X, 0) doesn’t have a thin piece,
then it has a single thick piece and (X, 0) is metrically conical. Otherwise (X, 0) is
not metrically conical.

Example 15.5 (Hirzebruch-Jung singularities). The Hirzebruch-Jung singularities
(surface cyclic quotient singularities) were described by Hirzebruch as the normal-
izations of the singularities (Y, 0) with equation zp − xp−qy = 0 in C3, where
1 ≤ q < p are coprime positive integers. The link of the normalization (X, p) of
(Y, 0) is the lens space L(p, q) (see [12, 14]) and the minimal resolution graph is a
bamboo

−b1 −b2 −bn

where p/q = [b1, b2, . . . , bn]. The thick-thin decomposition of (X, 0) has been al-
ready described in the proof of Theorem 7.5: the generic linear form has multiplicity
1 along each Ei, and the L-nodes are the two extremal vertices of the bamboo and
any vertex with bi ≥ 3. To get the adapted resolution graph of section 2 we blow up
once between any two adjacent L-nodes. Then the subgraph Γj associated with a
thin piece Zj is either a (−1)-weighted vertex or a maximal string νi, νi+1, . . . , νk of
(−2)-weighted vertices excluding ν1 and νn. There are no T -nodes, so each Tjurina
component is an A-string giving a special annulus.. The rate of the special annulus
is 3/2 if the Tjurina component is a (−1)-vertex and (m + 3)/2 for a string of m
(−2)-vertices.

Example 15.6 (Cusp singularities). Let (X, 0) be a cusp singularity ([13]). The
dual graph of the minimal resolution of (X, 0) consists of a cycle of rational curves
with Euler weights ≤ −2 and at least one weight ≤ −3. Since such a singularity
is taut, its maximal cycle coincides with its fundamental cycle, and the generic
linear form has multiplicity 1 along each irreducible component Ei. Therefore,
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Singularity bilipschitz geometry thick-thin pieces

A1
1 metrically conical

A2n+1, n ≥ 1
1 n+1 1

2 thick, 1 thin

A2n, n ≥ 1

1 n+1/2 1

-3 -1 -3 2 thick, 1 thin

D4
1 metrically conical

Dk, k ≥ 5
k/2-1 1

1 thick, 1 thin

E6

4/31
1 thick, 1 thin

E7

3/21
1 thick, 1 thin

E8

5/31
1 thick, 1 thin

Table 1. Bilipschitz geometry of simple singularities

the L-nodes are the vertices which carry Euler class ≤ −3, and the argument is
now similar to the lens space case treated above: we blow up once between any
two adjacent L-nodes. Then the subgraph Γj associated with a thin piece Zj is
either a (−1)-weighted vertex or a maximal string νi, νi+1, . . . , νk of (−2)-weighted
vertices. As the distance ε to the origin goes to zero, we then see the link X(ε) as
a “necklace” of thick zones separated by thin zones, each of the latter vanishing
to a circle. Again, the thin zones are special annuli with rates as in the previous
example.

Example 15.7 (Briançon-Speder examples). The Briançon-Speder example we
will consider is the µ-constant family of singularities

x5 + z15 + y7z + txy6 = 0
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depending on the parameter t. We will see that the bilipschitz geometry changes
very radically when t becomes 0 (the same is true for the other Briançon-Speder
families).

The minimal resolution graph of (X, 0) is

−3

[8]

−2

For any t the curves x = 0 and y = 0 are

−3

[8](3) (2)

−2 −3

(2)[8]

−2

(1)

The curve z = 0 is

(5)−3

[8](1) (3)

−2
t = 0

−3

(1)[8]

−2

(1)

t 6= 0

A generic linear form for t 6= 0 is z = 0, given by the right hand graph above.
To resolve the linear system of hyperplane sections one must blow up twice at the
left node, giving three L-nodes:

−5

[8](1) (1)

−2

−1

−1

(2)

(2)

The generic linear for t = 0 , with the linear system of hyperplane sections resolved,
is

−5

(1)[8]

−1

(5)

−2

(3)

−3

(1)

So there is just one L-node, and it is equal to neither of the original vertices of
the resolution. We compute the rate at the T -node from the Puiseux expansion of
the branches of ∆ and we obtain the following bilipschitz description:

−5 [8]

2 1

−2

−1

−1

1

1

t 6= 0 t = 0

−5 [8]

2

−1

1

−2 −3
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[18] Erich Kähler, Über die Verzweigung einer algebraischen Funktion zweier Veränderlichen in
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