Weak Approximation of G-Expectations

Yan Dolinsky* Marcel Nutz † H. Mete Soner ‡ March 2, 2011

Abstract

We introduce a notion of volatility uncertainty in discrete time and define the corresponding analogue of Peng's G-expectation. In the continuous-time limit, the resulting sublinear expectation converges weakly to the G-expectation. This can be seen as a Donsker-type result for the G-Brownian motion.

Keywords G-expectation, volatility uncertainty, weak limit theorem $AMS\ 2000\ Subject\ Classifications\ 60F05,\ 60G44,\ 91B25,\ 91B30$ $JEL\ Classifications\ G13,\ G32$

Acknowledgements Research supported by European Research Council Grant 228053-FiRM, Swiss National Science Foundation Grant PDFM2-120424/1, Swiss Finance Institute and ETH Foundation.

1 Introduction

The so-called G-expectation [12, 13, 14] is a nonlinear expectation advancing the notions of backward stochastic differential equations (BSDEs) [10] and g-expectations [11]; see also [2, 16] for a related theory of second order BSDEs. A G-expectation $\xi \mapsto \mathcal{E}^G(\xi)$ is a sublinear function which maps random variables ξ on the canonical space $\Omega = C([0,T];\mathbb{R})$ to the real numbers. The symbol G refers to a given function $G: \mathbb{R} \to \mathbb{R}$ of the form

$$G(\gamma) = \frac{1}{2}(R\gamma^+ - r\gamma^-) = \frac{1}{2} \sup_{a \in [r,R]} a\gamma,$$

where $0 \le r \le R < \infty$ are fixed numbers. More generally, the interval [r, R] is replaced by a set **D** of nonnegative matrices in the multivariate case. The extension to a random set **D** is studied in [9].

The construction of $\mathcal{E}^G(\xi)$ runs as follows. When $\xi = f(B_T)$, where B_T is the canonical process at time T and f is a sufficiently regular function, then $\mathcal{E}^G(\xi)$ is defined to be the initial value u(0,0) of the solution of the nonlinear backward heat equation $-\partial_t u - G(u_{xx}) = 0$ with terminal condition

^{*}ETH Zurich, Dept. of Mathematics, CH-8092 Zurich, yan.dolinsky@math.ethz.ch

[†]ETH Zurich, Dept. of Mathematics, CH-8092 Zurich, marcel.nutz@math.ethz.ch

 $^{^{\}ddagger} ETH$ Zurich, Dept. of Mathematics, CH-8092 Zurich, and Swiss Finance Institute, mete.soner@math.ethz.ch

 $u(\cdot,T)=f$. The mapping \mathcal{E}^G can be extended to random variables of the form $\xi=f(B_{t_1},\ldots,B_{t_n})$ by a stepwise evaluation of the PDE and then to the completion \mathbb{L}^1_G of the space of all such random variables. The space \mathbb{L}^1_G consists of so-called quasi-continuous functions and contains in particular all bounded continuous functions on Ω ; however, not all bounded measurable functions are included (cf. [3]). While this setting is not based on a single probability measure, the so-called G-Brownian motion is given by the canonical process B "seen" under \mathcal{E}^G (cf. [14]). It reduces to the standard Brownian motion if r=R=1 since \mathcal{E}^G is then the (linear) expectation under the Wiener measure.

In this note we introduce a discrete-time analogue of the G-expectation and we prove a convergence result which resembles Donsker's theorem for the standard Brownian motion; the main purpose is to provide additional intuition for G-Brownian motion and volatility uncertainty. Our starting point is the dual view on G-expectation via volatility uncertainty [3, 4]: We consider the representation

$$\mathcal{E}^{G}(\xi) = \sup_{P \in \mathcal{P}} E^{P}[\xi], \tag{1.1}$$

where \mathcal{P} is a set of probabilities on Ω such that under any $P \in \mathcal{P}$, the canonical process B is a martingale with volatility $d\langle B \rangle/dt$ taking values in $\mathbf{D} = [r, R], P \times dt$ -a.e. Therefore, \mathbf{D} can be understood as the domain of (Knightian) volatility uncertainty and \mathcal{E}^G as the corresponding worst-case expectation. In discrete-time, we translate this to uncertainty about the conditional variance of the increments. Thus we define a sublinear expectation \mathcal{E}^n on the n-step canonical space in the spirit of (1.1), replacing \mathcal{P} by a suitable set of martingale laws. A natural push-forward then yields a sublinear expectation on Ω , which we show to converge weakly to \mathcal{E}^G as $n \to \infty$, if the domain **D** of uncertainty is scaled by 1/n (cf. Theorem 2.2). The proof relies on (linear) probability theory; in particular, it does not use the central limit theorem for sublinear expectations [14, 15]. The relation to the latter is nontrivial since our discrete-time models do not have independent increments. We remark that quite different approximations of the G-expectation (for the scalar case) can be found in discrete models for financial markets with transaction costs [8] or illiquidity [5].

The detailed setup and the main result are stated in Section 2, whereas the proofs and some ramifications are given in Section 3.

2 Main Result

We fix the dimension $d \in \mathbb{N}$ and denote by $|\cdot|$ the Euclidean norm on \mathbb{R}^d . Moreover, we denote by \mathbb{S}^d the space of $d \times d$ symmetric matrices and by \mathbb{S}^d_+ its subset of nonnegative definite matrices. We fix a nonempty, convex and compact set $\mathbf{D} \subseteq \mathbb{S}_+^d$; the elements of \mathbf{D} will be the possible values of our volatility processes.

Continuous-Time Formulation. Let $\Omega = C([0,T];\mathbb{R}^d)$ be the space of d-dimensional continuous paths $\omega = (\omega_t)_{0 \leq t \leq T}$ with time horizon $T \in (0,\infty)$, endowed with the uniform norm $\|\omega\|_{\infty} = \sup_{0 \leq t \leq T} |\omega_t|$. We denote by $B = (B_t)_{0 \leq t \leq T}$ the canonical process $B_t(\omega) = \omega_t$ and by $\mathcal{F}_t := \sigma(B_s, 0 \leq s \leq t)$ the canonical filtration. A probability measure P on Ω is called a martingale law if B is a P-martingale and $B_0 = 0$ P-a.s. (All our martingales will start at the origin.) We set

$$\mathcal{P}_{\mathbf{D}} = \{ P \text{ martingale law on } \Omega : d\langle B \rangle_t / dt \in \mathbf{D}, \ P \times dt \text{-a.e.} \},$$

where $\langle B \rangle$ denotes the matrix-valued process of quadratic covariations. We can then define the sublinear expectation

$$\mathcal{E}_{\mathbf{D}}(\xi) := \sup_{P \in \mathcal{P}_{\mathbf{D}}} E^{P}[\xi]$$
 for any random variable $\xi : \Omega \to \mathbb{R}$

such that ξ is \mathcal{F}_T -measurable and $E^P|\xi| < \infty$ for all $P \in \mathcal{P}_{\mathbf{D}}$. The mapping $\mathcal{E}_{\mathbf{D}}$ coincides with the G-expectation (on its domain \mathbb{L}^1_G) if $G : \mathbb{S}^d \to \mathbb{R}$ is (half) the support function of \mathbf{D} ; i.e., $G(\Gamma) = \sup_{A \in \mathbf{D}} \operatorname{trace}(\Gamma A)/2$. Indeed, this follows from [3] with an additional density argument as detailed in Remark 3.6 below.

Discrete-Time Formulation. Given $n \in \mathbb{N}$, we consider $(\mathbb{R}^d)^{n+1}$ as the canonical space of d-dimensional paths in discrete time $k = 0, 1, \ldots, n$. We denote by $X^n = (X_k^n)_{k=0}^n$ the canonical process defined by $X_k^n(x) = x_k$ for $x = (x_0, \ldots, x_n) \in (\mathbb{R}^d)^{n+1}$. Moreover, $\mathcal{F}_k^n = \sigma(X_i^n, i = 0, \ldots, k)$ defines the canonical filtration $(\mathcal{F}_k^n)_{k=0}^n$. We also introduce $0 \le r_{\mathbf{D}} \le R_{\mathbf{D}} < \infty$ such that $[r_{\mathbf{D}}, R_{\mathbf{D}}]$ is the spectrum of \mathbf{D} ; i.e.,

$$r_{\mathbf{D}} = \inf_{\Gamma \in \mathbf{D}} \|\Gamma^{-1}\|^{-1}$$
 and $R_{\mathbf{D}} = \sup_{\Gamma \in \mathbf{D}} \|\Gamma\|$,

where $\|\cdot\|$ denotes the operator norm and we set $r_{\mathbf{D}} := 0$ if \mathbf{D} has an element which is not invertible. We note that $[r_{\mathbf{D}}, R_{\mathbf{D}}] = \mathbf{D}$ if d = 1. Finally, a probability measure P on $(\mathbb{R}^d)^{n+1}$ is called a martingale law if X^n is a P-martingale and $X_0^n = 0$ P-a.s. Denoting by $\Delta X_k^n = X_k^n - X_{k-1}^n$ the increments of X^n , we can now set

$$\mathcal{P}_{\mathbf{D}}^{n} = \left\{ \begin{aligned} &P \text{ martingale law on } (\mathbb{R}^{d})^{n+1}: \text{ for } k = 1, \dots, n, \\ &E^{P}[\Delta X_{k}^{n}(\Delta X_{k}^{n})' | \mathcal{F}_{k-1}^{n}] \in \mathbf{D} \text{ and } d^{2}r_{\mathbf{D}} \leq |\Delta X_{k}^{n}|^{2} \leq d^{2}R_{\mathbf{D}}, \text{ P-a.s.} \end{aligned} \right\},$$

where prime (') denotes transposition. Note that ΔX_k^n is a column vector, so that $\Delta X^n(\Delta X^n)'$ takes values in \mathbb{S}^d_+ . We introduce the sublinear expectation

$$\mathcal{E}^n_{\mathbf{D}}(\psi) := \sup_{P \in \mathcal{P}^n_{\mathbf{D}}} E^P[\psi]$$
 for any random variable $\psi : (\mathbb{R}^d)^{n+1} \to \mathbb{R}$

such that ψ is \mathcal{F}_n^n -measurable and $E^P|\psi| < \infty$ for all $P \in \mathcal{P}_{\mathbf{D}}^n$, and we think of $\mathcal{E}_{\mathbf{D}}^n$ as a discrete-time analogue of the G-expectation.

Remark 2.1. The second condition in the definition of $\mathcal{P}_{\mathbf{D}}^{n}$ is motivated by the desire to generate the volatility uncertainty by a *small* set of scenarios; we remark that the main results remain true if, e.g., the lower bound $r_{\mathbf{D}}$ is omitted and the upper bound $R_{\mathbf{D}}$ replaced by any other condition yielding tightness. Our bounds are chosen so that

$$\mathcal{P}^n_{\mathbf{D}} = \left\{ P \text{ martingale law on } (\mathbb{R}^d)^{n+1} : \Delta X^n (\Delta X^n)' \in \mathbf{D}, \ P\text{-a.s.} \right\} \quad \text{if } d = 1.$$

Continuous-Time Limit. To compare our objects from the two formulations, we shall extend any discrete path $x \in (\mathbb{R}^d)^{n+1}$ to a continuous path $\hat{x} \in \Omega$ by linear interpolation. More precisely, we define the interpolation operator

$$^{\sim}$$
: $(\mathbb{R}^d)^{n+1} \to \Omega$, $x = (x_0, \dots, x_n) \mapsto \widehat{x} = (\widehat{x}_t)_{0 \le t \le T}$, where $\widehat{x}_t := ([nt/T] + 1 - nt/T)x_{[nt/T]} + (nt/T - [nt/T])x_{[nt/T]+1}$

and $[y] := \max\{m \in \mathbb{Z} : m \leq y\}$ for $y \in \mathbb{R}$. In particular, if X^n is the canonical process on $(\mathbb{R}^d)^{n+1}$ and ξ is a random variable on Ω , then $\xi(\widehat{X^n})$ defines a random variable on $(\mathbb{R}^d)^{n+1}$. This allows us to define the following push-forward of $\mathcal{E}^n_{\mathbf{D}}$ to a continuous-time object,

$$\widehat{\mathcal{E}}^n_{\mathbf{D}}(\xi) := \mathcal{E}^n_{\mathbf{D}}(\xi(\widehat{X^n})) \quad \text{for} \quad \xi : \Omega \to \mathbb{R}$$

being suitably integrable.

Our main result states that this sublinear expectation with discrete-time volatility uncertainty converges to the G-expectation as the number n of periods tends to infinity, if the domain of volatility uncertainty is scaled as $\mathbf{D}/n := \{n^{-1}\Gamma : \Gamma \in \mathbf{D}\}.$

Theorem 2.2. Let $\xi: \Omega \to \mathbb{R}$ be a continuous function satisfying $|\xi(\omega)| \le c(1+\|\omega\|_{\infty})^p$ for some constants c, p > 0. Then $\widehat{\mathcal{E}}_{\mathbf{D}/n}^n(\xi) \to \mathcal{E}_{\mathbf{D}}(\xi)$ as $n \to \infty$; that is,

$$\sup_{P \in \mathcal{P}_{\mathbf{D}/n}^n} E^P[\xi(\widehat{X}^n)] \to \sup_{P \in \mathcal{P}_{\mathbf{D}}} E^P[\xi]. \tag{2.1}$$

We shall see that all expressions in (2.1) are well defined and finite. Moreover, we will show in Theorem 3.8 that the result also holds true for a "strong" formulation of volatility uncertainty.

Remark 2.3. Theorem 2.2 cannot be extended to the case where ξ is merely in \mathbb{L}^1_G , which is defined as the completion of $C_b(\Omega; \mathbb{R})$ under the norm $\|\xi\|_{L^1_G} := \sup\{E^P|\xi|, P \in \mathcal{P}_{\mathbf{D}}\}$. This is because $\|\cdot\|_{L^1_G}$ "does not see" the discrete-time objects, as illustrated by the following example. Assume

for simplicity that $0 \notin \mathbf{D}$ and let $A \subset \Omega$ be the set of paths with finite variation. Since P(A) = 0 for any $P \in \mathcal{P}_{\mathbf{D}}$, we have $\xi := 1 - \mathbf{1}_A = 1$ in \mathbb{L}^1_G and the right hand side of (2.1) equals one. However, the trajectories of \widehat{X}^n lie in A, so that $\xi(\widehat{X}^n) \equiv 0$ and the left hand side of (2.1) equals zero.

In view of the previous remark, we introduce a smaller space \mathbb{L}^1_* , defined as the completion of $C_b(\Omega;\mathbb{R})$ under the norm

$$\|\xi\|_* := \sup_{Q \in \mathcal{Q}} E^Q |\xi|, \quad \mathcal{Q} := \mathcal{P}_{\mathbf{D}} \cup \left\{ P \circ (\widehat{X}^n)^{-1} : P \in \mathcal{P}_{\mathbf{D}/n}^n, \ n \in \mathbb{N} \right\}. \tag{2.2}$$

If ξ is as in Theorem 2.2, then $\xi \in \mathbb{L}^1_*$ by Lemma 3.4 below and so the following is a generalization of Theorem 2.2.

Corollary 2.4. Let
$$\xi \in \mathbb{L}^1_*$$
. Then $\widehat{\mathcal{E}}^n_{\mathbf{D}/n}(\xi) \to \mathcal{E}_{\mathbf{D}}(\xi)$ as $n \to \infty$.

Proof. This follows from Theorem 2.2 by approximation, using that $\|\xi\|_*$ and $\sup\{E^P|\xi|: P \in \mathcal{P}_{\mathbf{D}}\} + \sup\{E^P|\xi(\widehat{X}^n)|: P \in \mathcal{P}_{\mathbf{D}/n}^n, n \in \mathbb{N}\}$ are equivalent norms.

3 Proofs and Ramifications

In the next two subsections, we prove separately two inequalities that jointly imply Theorem 2.2 and a slightly stronger result, reported in Theorem 3.8.

3.1 First Inequality

In this subsection we prove the first inequality of (2.1), namely that

$$\limsup_{n \to \infty} \sup_{P \in \mathcal{P}_{\mathbf{D}/n}^n} E^P[\xi(\widehat{X}^n)] \le \sup_{P \in \mathcal{P}_{\mathbf{D}}} E^P[\xi]. \tag{3.1}$$

The essential step in this proof is a stability result for the volatility (see Lemma 3.3(ii) below); the necessary tightness follows from the compactness of \mathbf{D} ; i.e., from $R_{\mathbf{D}} < \infty$. We shall denote $\lambda \mathbf{D} = \{\lambda \Gamma : \Gamma \in \mathbf{D}\}$ for $\lambda \in \mathbb{R}$.

Lemma 3.1. Given $p \in [1, \infty)$, there exists a universal constant K > 0 such that for all $0 \le k \le l \le n$ and $P \in \mathcal{P}^n_{\mathbf{D}}$,

- (i) $E^P[\sup_{k=0,...,n} |X_k^n|^{2p}] \le K(nR_{\mathbf{D}})^p$,
- (ii) $E^P|X_l^n X_k^n|^4 \le KR_{\mathbf{D}}^2(l-k)^2$,
- (iii) $E^{P}[(X_{l}^{n} X_{k}^{n})(X_{l}^{n} X_{k}^{n})'|\mathcal{F}_{k}^{n}] \in (l k)\mathbf{D} \ P$ -a.s.

Proof. We set $X := X^n$ to ease the notation.

(i) Let $p \in [1, \infty)$. By the Burkholder-Davis-Gundy (BDG) inequalities there exists a universal constant C = C(p, d) such that

$$E^{P} \left[\sup_{k=0,\dots,n} |X_{k}^{n}|^{2p} \right] \le CE^{P} ||[X]_{n}||^{p}.$$

In view of $P \in \mathcal{P}_{\mathbf{D}}^n$, we have $||[X]_n|| = ||\sum_{i=1}^n \Delta X_i (\Delta X_i)'|| \le nd^2 R_{\mathbf{D}} P$ -a.s. (ii) The BDG inequalities yield a universal constant C such that

$$E^P |X_l - X_k|^4 \le CE^P ||[X]_l - [X]_k||^2.$$

Similarly as in (i), $P \in \mathcal{P}_{\mathbf{D}}^n$ implies that $||[X]_l - [X]_k|| \le (l-k)d^2R_{\mathbf{D}}$ P-a.s. (iii) The orthogonality of the martingale increments yields that

$$E^{P}[(X_{l} - X_{k})(X_{l} - X_{k})' | \mathcal{F}_{k}^{n}] = \sum_{i=k+1}^{l} E^{P}[\Delta X_{i}(\Delta X_{i})' | \mathcal{F}_{k}^{n}].$$

Since $E^P[\Delta X_i(\Delta X_i)'|\mathcal{F}_{i-1}^n] \in \mathbf{D}$ P-a.s. and since **D** is convex,

$$E^{P}[\Delta X_{i}(\Delta X_{i})'|\mathcal{F}_{k}^{n}] = E^{P}[E^{P}[\Delta X_{i}(\Delta X_{i})'|\mathcal{F}_{i-1}^{n}]|\mathcal{F}_{k}^{n}]$$

again takes values in **D**. It remains to observe that if $\Gamma_1, \ldots, \Gamma_m \in \mathbf{D}$, then $\Gamma_1 + \cdots + \Gamma_m \in m\mathbf{D}$ by convexity.

The following lemma shows in particular that all expressions in Theorem 2.2 are well defined and finite.

Lemma 3.2. Let $\xi: \Omega \to \mathbb{R}$ be as in Theorem 2.2. Then $\|\xi\|_* < \infty$; that is,

$$\sup_{n \in \mathbb{N}} \sup_{P \in \mathcal{P}_{\mathbf{D}/n}^n} E^P |\xi(\widehat{X}^n)| < \infty \quad and \quad \sup_{P \in \mathcal{P}_{\mathbf{D}}} E^P |\xi| < \infty.$$
 (3.2)

Proof. Let $n \in \mathbb{N}$ and $P \in \mathcal{P}^n_{\mathbf{D}/n}$. By the assumption on ξ , there exist constants c, p > 0 such that

$$E^P|\xi(\widehat{X^n})| \le c + cE^P \left[\sup_{0 \le t \le T} |\widehat{X^n_t}|^p \right] \le c + cE^P \left[\sup_{k=0,\dots,n} |X^n_k|^p \right].$$

Hence Lemma 3.1(i) and the observation that $R_{\mathbf{D}/n} = R_{\mathbf{D}}/n$ yield that $E^P|\xi(\widehat{X^n})| \leq KR_{\mathbf{D}}^{p/2}$ and the first claim follows. The second claim similarly follows from the estimate that $E^P[\sup_{0 \leq t \leq T} |B_t|^p] \leq C_p$ for all $P \in \mathcal{P}_{\mathbf{D}}$, which is obtained from the BDG inequalities by using that \mathbf{D} is bounded. \square

We can now prove the key result of this subsection.

Lemma 3.3. For each $n \in \mathbb{N}$, let $\{M^n = (M_k^n)_{k=0}^n, \tilde{P}^n\}$ be a martingale with law $P^n \in \mathcal{P}^n_{\mathbf{D}/n}$ on $(\mathbb{R}^d)^{n+1}$ and let Q^n be the law of $\widehat{M^n}$ on Ω . Then

- (i) the sequence (Q^n) is tight on Ω ,
- (ii) any cluster point of (Q^n) is an element of $\mathcal{P}_{\mathbf{D}}$.

Proof. (i) Let $0 \le s \le t \le T$. As $R_{\mathbf{D}/n} = R_{\mathbf{D}}/n$, Lemma 3.1(ii) implies that

$$E^{Q^n}|B_t - B_s|^4 = E^{\tilde{P}^n}|\widehat{M_t^n} - \widehat{M_s^n}|^4 \le C|t - s|^2$$

for a constant C > 0. Hence (Q^n) is tight by the moment criterion.

(ii) Let Q be a cluster point, then B is a Q-martingale as a consequence of the uniform integrability implied by Lemma 3.1(i) and it remains to show that $d\langle B\rangle_t/dt \in \mathbf{D}$ holds $Q \times dt$ -a.e. It will be useful to characterize \mathbf{D} by scalar inequalities: given $\Gamma \in \mathbb{S}^d$, the separating hyperplane theorem implies that

$$\Gamma \in \mathbf{D}$$
 if and only if $\ell(\Gamma) \leq C_{\mathbf{D}}^{\ell} := \sup_{A \in \mathbf{D}} \ell(A)$ for all $\ell \in (\mathbb{S}^d)^*$, (3.3)

where $(\mathbb{S}^d)^*$ is the set of all linear functionals $\ell: \mathbb{S}^d \to \mathbb{R}$.

Let $H:[0,T]\times\Omega\to[0,1]$ be a continuous and adapted function and let $\ell\in(\mathbb{S}^d)^*$. We fix $0\leq s< t\leq T$ and denote $\Delta_{s,t}Y:=Y_t-Y_s$ for a process $Y=(Y_u)_{0\leq u\leq T}$. Let $\varepsilon>0$ and let $\tilde{\mathbf{D}}$ be any neighborhood of \mathbf{D} , then for n sufficiently large,

$$E^{\tilde{P}^n} \left[(\Delta_{s,t} \widehat{M^n}) (\Delta_{s,t} \widehat{M^n})' \middle| \sigma \big(\widehat{M^n_u}, 0 \leq u \leq s - \varepsilon \big) \right] \in (t-s) \widetilde{\mathbf{D}} \quad \tilde{P}^n \text{-a.s.}$$

as a consequence of Lemma 3.1(iii). Since $\tilde{\mathbf{D}}$ was arbitrary, it follows by (3.3) that

$$\limsup_{n \to \infty} E^{Q^n} \left[H(s - \varepsilon, B) \left\{ \ell \left((\Delta_{s,t} B) (\Delta_{s,t} B)' \right) - C_{\mathbf{D}}^{\ell}(t - s) \right\} \right]$$

$$= \limsup_{n \to \infty} E^{\tilde{P}^n} \left[H(s - \varepsilon, \widehat{M}^n) \left\{ \ell \left((\Delta_{s,t} \widehat{M}^n) (\Delta_{s,t} \widehat{M}^n)' \right) - C_{\mathbf{D}}^{\ell}(t - s) \right\} \right] \le 0.$$

Using (3.2) with $\xi(\omega) = \|\omega\|_{\infty}^2$, we may pass to the limit and conclude that

$$E^{Q}[H(s-\varepsilon,B)\ell((\Delta_{s,t}B)(\Delta_{s,t}B)')] \leq E^{Q}[H(s-\varepsilon,B)C_{\mathbf{D}}^{\ell}(t-s)].$$
 (3.4)

Since $H(s-\varepsilon,B)$ is \mathcal{F}_s -measurable and

$$E^{Q}[(\Delta_{s,t}B)(\Delta_{s,t}B)'|\mathcal{F}_{s}] = E^{Q}[B_{t}B'_{t} - B_{s}B'_{s}|\mathcal{F}_{s}] = E^{Q}[\langle B \rangle_{t} - \langle B \rangle_{s}|\mathcal{F}_{s}]$$

as B is a square-integrable Q-martingale, (3.4) is equivalent to

$$E^{Q}[H(s-\varepsilon,B)\ell(\langle B\rangle_{t}-\langle B\rangle_{s})] \leq E^{Q}[H(s-\varepsilon,B)C^{\ell}_{\mathbf{D}}(t-s)].$$

Using the continuity of H and dominated convergence as $\varepsilon \to 0$, we obtain

$$E^{Q}[H(s,B) \ell(\langle B \rangle_{t} - \langle B \rangle_{s})] \leq E^{Q}[H(s,B) C_{\mathbf{D}}^{\ell}(t-s)]$$

and then it follows that

$$E^{Q}\left[\int_{0}^{T} H(t,B) \,\ell(d\langle B\rangle_{t})\right] \leq E^{Q}\left[\int_{0}^{T} H(t,B) C_{\mathbf{D}}^{\ell} \,dt\right].$$

By an approximation argument, this inequality extends to functions H which are measurable instead of continuous. It follows that $\ell(d\langle B\rangle_t/dt) \leq C_{\mathbf{D}}^{\ell}$ holds $Q \times dt$ -a.e., and since $\ell \in (\mathbb{S}^d)^*$ was arbitrary, (3.3) shows that $d\langle B\rangle_t/dt \in \mathbf{D}$ holds $Q \times dt$ -a.e.

We can now deduce the first inequality of Theorem 2.2 as follows.

Proof of (3.1). Let ξ be as in Theorem 2.2 and let $\varepsilon > 0$. For each $n \in \mathbb{N}$ there exists an ε -optimizer $P^n \in \mathcal{P}^n_{\mathbf{D}/n}$; i.e., if Q^n denotes the law of \widehat{X}^n on Ω under P_n , then

$$E^{Q^n}[\xi] = E^{P^n}[\xi(\widehat{X^n})] \ge \sup_{P \in \mathcal{P}^n_{\mathbf{D}/n}} E^P[\xi(\widehat{X^n})] - \varepsilon.$$

By Lemma 3.3, the sequence (Q^n) is tight and any cluster point belongs to $\mathcal{P}_{\mathbf{D}}$. Since ξ is continuous and (3.2) implies $\sup_n E^{Q_n} |\xi| < \infty$, tightness yields that $\limsup_n E^{Q^n} [\xi] \leq \sup_{P \in \mathcal{P}_{\mathbf{D}}} E^P [\xi]$. Therefore,

$$\limsup_{n\to\infty} \sup_{P\in\mathcal{P}^n_{\mathbf{D}/n}} E^P[\xi(\widehat{X}^n)] \le \sup_{P\in\mathcal{P}_{\mathbf{D}}} E^P[\xi] + \varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, it follows that (3.1) holds.

Finally, we also prove the statement preceding Corollary 2.4.

Lemma 3.4. Let $\xi: \Omega \to \mathbb{R}$ be as in Theorem 2.2. Then $\xi \in \mathbb{L}^1_*$.

Proof. We show that $\xi^m := (\xi \wedge m) \vee m$ converges to ξ in the norm $\|\cdot\|_*$ as $m \to \infty$, or equivalently, that the upper expectation $\sup\{E^Q[\cdot]: Q \in \mathcal{Q}\}$ is continuous along the decreasing sequence $|\xi - \xi^m|$, where \mathcal{Q} is as in (2.2). Indeed, \mathcal{Q} is tight by (the proof of) Lemma 3.3. Using that $\|\xi\|_* < \infty$ by Lemma 3.2, we can then argue as in the proof of [3, Theorem 12] to obtain the claim.

3.2 Second Inequality

The main purpose of this subsection is to show the second inequality " \geq " of (2.1). Our proof will yield a more precise version of Theorem 2.2. Namely, we will include "strong" formulations of volatility uncertainty both in discrete and in continuous time; i.e., consider laws generated by integrals with respect to a fixed random walk (resp. Brownian motion). In the financial interpretation, this means that the uncertainty can be generated by *complete* market models.

Strong Formulation in Continuous Time. Here we shall consider *Brownian* martingales: with P_0 denoting the Wiener measure, we define

$$Q_{\mathbf{D}} = \left\{ P_0 \circ \left(\int f(t, B) dB_t \right)^{-1} : f \in C([0, T] \times \Omega; \sqrt{\mathbf{D}}) \text{ adapted} \right\},$$

where $\sqrt{\mathbf{D}} = \{\sqrt{\Gamma} : \Gamma \in \mathbf{D}\}$. (For $\Gamma \in \mathbb{S}^d_+$, $\sqrt{\Gamma}$ denotes the unique square-root in \mathbb{S}^d_+ .) We note that $\mathcal{Q}_{\mathbf{D}}$ is a (typically strict) subset of $\mathcal{P}_{\mathbf{D}}$. The elements of $\mathcal{Q}_{\mathbf{D}}$ with nondegenerate f have the predictable representation property; i.e., they correspond to a complete market in the terminology of mathematical finance. We have the following density result; the proof is deferred to the end of the section.

Proposition 3.5. The convex hull of Q_D is a weakly dense subset of $\mathcal{P}_{\mathbf{D}}$.

We can now deduce the connection between $\mathcal{E}_{\mathbf{D}}$ and the G-expectation associated with \mathbf{D} .

Remark 3.6. (i) Proposition 3.5 implies that

$$\sup_{P \in \mathcal{Q}_{\mathbf{D}}} E^{P}[\xi] = \sup_{P \in \mathcal{P}_{\mathbf{D}}} E^{P}[\xi], \quad \xi \in C_{b}(\Omega; \mathbb{R}). \tag{3.5}$$

In [3, Section 3] it is shown that the G-expectation as introduced in [12, 13] coincides with the mapping $\xi \mapsto \sup_{P \in \mathcal{Q}_{\mathbf{D}}^*} E^P[\xi]$ for a certain set $\mathcal{Q}_{\mathbf{D}}^*$ satisfying $\mathcal{Q}_{\mathbf{D}} \subseteq \mathcal{Q}_{\mathbf{D}}^* \subseteq \mathcal{P}_{\mathbf{D}}$. In particular, we deduce that the right hand side of (3.5) is indeed equal to the G-expectation, as claimed in Section 2.

(ii) A result similar to Proposition 3.5 can also be deduced from [17, Proposition 3.4.], which relies on a PDE-based verification argument of stochastic control. We include a (possibly more enlightening) probabilistic proof at the end of the section.

Strong Formulation in Discrete Time. For fixed $n \in \mathbb{N}$, we consider

$$\Omega_n := \{ \omega = (\omega_1, \dots, \omega_n) : \omega_i \in \{1, \dots, d+1\}, i = 1, \dots, n \}$$

equipped with its power set and let $P_n := \{(d+1)^{-1}, \ldots, (d+1)^{-1}\}^n$ be the product probability associated with the uniform distribution. Moreover, let ξ_1, \ldots, ξ_n be an i.i.d. sequence of \mathbb{R}^d -valued random variables on Ω_n such that $|\xi_k| = d$ and such that the components of ξ_k are orthonormal in $L^2(P_n)$, for each $k = 1, \ldots, n$. Let $Z_k = \sum_{l=1}^k \xi_l$ be the associated random walk. Then, we consider martingales M^f which are discrete-time integrals of Z of the form

$$M_k^f = \sum_{l=1}^k f(l-1, Z) \Delta Z_l,$$

where f is measurable and adapted with respect to the filtration generated by Z; i.e., f(l, Z) depends only on $Z|_{\{0,\dots,l\}}$. We define

$$\mathcal{Q}_{\mathbf{D}}^n = \left\{ P_n \circ (M^f)^{-1}; \ f : \{0, \dots, n-1\} \times (\mathbb{R}^d)^{n+1} \to \sqrt{\mathbf{D}} \text{ measurable, adapted} \right\}.$$

To see that $\mathcal{Q}_{\mathbf{D}}^n \subseteq \mathcal{P}_{\mathbf{D}}^n$, we note that $\Delta_k M^f = f(k-1,Z)\xi_k$ and the orthonormality property of ξ_k yield

$$E^{P_n} [\Delta_k M^f (\Delta_k M^f)' | \sigma(Z_1, \dots, Z_{k-1})] = f(k-1, Z)^2 \in \mathbf{D}$$
 P_n -a.s.,

while $|\xi_k| = d$ and $f^2 \in \mathbf{D}$ imply that

$$\|\Delta_k M^f (\Delta_k M^f)'\| = |f(k-1, Z)\xi_k|^2 \in [d^2r_{\mathbf{D}}, d^2R_{\mathbf{D}}] \quad P_n$$
-a.s.

Remark 3.7. We recall from [7] that such ξ_1, \ldots, ξ_n can be constructed as follows. Let A be an orthogonal $(d+1) \times (d+1)$ matrix whose last row is $((d+1)^{-1/2}, \ldots, (d+1)^{-1/2})$ and let $v_l \in \mathbb{R}^d$ be column vectors such that $[v_1, \ldots, v_{d+1}]$ is the matrix obtained from A by deleting the last row. Setting $\xi_k(\omega) := (d+1)^{1/2} v_{\omega_k}$ for $\omega = (\omega_1, \ldots, \omega_n)$ and $k = 1, \ldots, n$, the above requirements are satisfied.

We can now formulate a result which includes Theorem 2.2.

Theorem 3.8. Let $\xi: \Omega \to \mathbb{R}$ be as in Theorem 2.2. Then

$$\lim_{n \to \infty} \sup_{P \in \mathcal{Q}_{\mathbf{D}/n}^n} E^P[\xi(\widehat{X}^n)] = \lim_{n \to \infty} \sup_{P \in \mathcal{P}_{\mathbf{D}/n}^n} E^P[\xi(\widehat{X}^n)]$$

$$= \sup_{P \in \mathcal{Q}_{\mathbf{D}}} E^P[\xi]$$

$$= \sup_{P \in \mathcal{P}_{\mathbf{D}}} E^P[\xi]. \tag{3.6}$$

Proof. Since $\mathcal{Q}_{\mathbf{D}/n}^n \subseteq \mathcal{P}_{\mathbf{D}/n}^n$ for each $n \geq 1$, the inequality (3.1) yields that

$$\limsup_{n\to\infty} \sup_{P\in\mathcal{Q}^n_{\mathbf{D}/n}} E^P[\xi(\widehat{X^n})] \le \sup_{P\in\mathcal{P}_{\mathbf{D}}} E^P[\xi].$$

As the equality in (3.6) follows from Proposition 3.5, it remains to show that

$$\liminf_{n\to\infty}\sup_{P\in\mathcal{Q}^n_{\mathbf{D}/n}}E^P[\xi(\widehat{X^n})]\geq\sup_{P\in\mathcal{Q}_{\mathbf{D}}}E^P[\xi].$$

To this end, let $P \in \mathcal{Q}_{\mathbf{D}}$; i.e., P is the law of a martingale of the form

$$M = \int f(t, W) \, dW_t,$$

where W is a Brownian motion and $f \in C([0,T] \times \Omega; \sqrt{\mathbf{D}})$ is an adapted function. We shall construct martingales $M^{(n)}$ whose laws are in $\mathcal{Q}_{\mathbf{D}/n}^n$ and tend to P.

For $n \geq 1$, let $Z_k^{(n)} = \sum_{l=1}^k \xi_l$ be the random walk on (Ω_n, P_n) as introduced before Remark 3.7. Let

$$W_t^{(n)} := n^{-1/2} \sum_{k=1}^{[nt/T]} \xi_k, \quad 0 \le t \le T$$

be the piecewise constant càdlàg version of the scaled random walk and let $\hat{W}^{(n)} := n^{-1/2}\widehat{Z^{(n)}}$ be its continuous counterpart obtained by linear interpolation. It follows from the central limit theorem that

$$(W^{(n)}, \hat{W}^{(n)}) \Rightarrow (W, W)$$
 on $D([0, T]; \mathbb{R}^{2d})$,

the space of càdlàg paths equipped with the Skorohod topology. Moreover, since f is continuous, we also have that

$$(W^{(n)}, f([nt/T]T/n, \hat{W}^{(n)})) \Rightarrow (W, f(t, W)) \text{ on } D([0, T]; \mathbb{R}^{d+d^2}).$$

Thus, if we introduce the discrete-time integral

$$M_k^{(n)} := \sum_{l=1}^k f((l-1)T/n, \hat{W}^{(n)}) \Big(\hat{W}_{lT/n}^{(n)} - \hat{W}_{(l-1)T/n}^{(n)} \Big),$$

it follows from the stability of stochastic integrals (see [6, Theorem 4.3 and Definition 4.1]) that

$$\left(M_{[nt/T]}^{(n)}\right)_{0 < t < T} \Rightarrow M \quad \text{on} \quad D([0,T];\mathbb{R}^d).$$

Moreover, since the increments of $M^{(n)}$ uniformly tend to 0 as $n \to \infty$, it also follows that

$$\widehat{M}^{(n)} \Rightarrow M$$
 on Ω .

As f^2/n takes values in \mathbf{D}/n , the law of $M^{(n)}$ is contained in $\mathcal{Q}^n_{\mathbf{D}/n}$ and the proof is complete.

It remains to give the proof of Proposition 3.5, which we will obtain by a randomization technique. Since similar arguments, at least for the scalar case, can be found elsewhere (e.g., [8, Section 5]), we shall be brief.

Proof of Proposition 3.5. We may assume without loss of generality that

there exists an invertible element
$$\Gamma_* \in \mathbf{D}$$
. (3.7)

Indeed, using that **D** is a convex subset of \mathbb{S}^d_+ , we observe that (3.7) is equivalent to $K = \{0\}$ for $K := \bigcap_{\Gamma \in \mathbf{D}} \ker \Gamma$. If $k = \dim K > 0$, a change

of coordinates bring us to the situation where K corresponds to the last k coordinates of \mathbb{R}^d . We can then reduce all considerations to \mathbb{R}^{d-k} and thereby recover the situation of (3.7).

1. Regularization. We first observe that the set

$$\{P \in \mathcal{P}_{\mathbf{D}} : d\langle B \rangle_t / dt \ge \varepsilon \mathbb{1}_d \ P \times dt \text{-a.e. for some } \varepsilon > 0\}$$
 (3.8)

is weakly dense in $\mathcal{P}_{\mathbf{D}}$. (Here $\mathbb{1}_d$ denotes the unit matrix.) Indeed, let M be a martingale whose law is in $\mathcal{P}_{\mathbf{D}}$. Recall (3.7) and let N be an independent continuous Gaussian martingale with $d\langle N\rangle_t/dt = \Gamma_*$. For $\lambda \uparrow 1$, the law of $\lambda M + (1-\lambda)N$ tends to the law of M and is contained in the set (3.8), since \mathbf{D} is convex.

2. Discretization. Next, we reduce to martingales with piecewise constant volatility. Let M be a martingale whose law belongs to (3.8). We have

$$M = \int \sigma_t dW_t$$
 for $\sigma_t := \sqrt{d\langle M \rangle/dt}$ and $W := \int \sigma_t^{-1} dM_t$,

where W is a Brownian motion by Lévy's theorem. For $n \geq 1$, we introduce $M^{(n)} = \int \sigma_t^{(n)} dW_t$, where $\sigma^{(n)}$ is an \mathbb{S}_+^d -valued piecewise constant process satisfying

$$\left(\sigma_t^{(n)}\right)^2 = \Pi_{\mathbf{D}} \left[\left(\frac{n}{T} \int_{(k-1)T/n}^{kT/n} \sigma_s \, ds \right)^2 \right], \quad t \in \left(kT/n, (k+1)T/n \right]$$

for $k=1,\ldots,n-1$, where $\Pi_{\mathbf{D}}:\mathbb{S}^d\to\mathbf{D}$ is the Euclidean projection. On [0,T/n] one can take, e.g., $\sigma^{(n)}:=\sqrt{\Gamma_*}$. We then have

$$E\|\langle M - M^{(n)} \rangle_T\| = E \int_0^T \|\sigma_t - \sigma_t^{(n)}\|^2 dt \to 0$$

and in particular $M^{(n)}$ converges weakly to M.

3. Randomization. Consider a martingale of the form $M = \int \sigma_t dW_t$, where W is a Brownian motion on some given filtered probability space and σ is an adapted $\sqrt{\mathbf{D}}$ -valued process which is piecewise constant; i.e.,

$$\sigma = \sum_{k=0}^{n-1} \mathbf{1}_{[t_k, t_{k+1})} \sigma(k)$$
 for some $0 = t_0 < t_1 < \dots < t_n = T$

and some $n \geq 1$. Consider also a second probability space carrying a Brownian motion \tilde{W} and a sequence U^1, \ldots, U^n of $\mathbb{R}^{d \times d}$ -valued random variables such that the components $\{U_{ij}^k : 1 \leq i, j \leq d; 1 \leq k \leq n\}$ are i.i.d. uniformly distributed on (0,1) and independent of \tilde{W} .

Using the existence of regular conditional probability distributions, we can construct functions $\Theta_k : C([0,t_k];\mathbb{R}^d) \times (0,1)^{d^2} \times \cdots \times (0,1)^{d^2} \to \sqrt{\mathbf{D}}$ such that the random variables $\tilde{\sigma}(k) := \Theta_k(\tilde{W}|_{[0,t_k]},U^1,\ldots,U^k)$ satisfy

$$\{\tilde{W}, \tilde{\sigma}(0), \dots, \tilde{\sigma}(n-1)\} = \{W, \sigma(0), \dots, \sigma(n-1)\}$$
 in law. (3.9)

We can then consider the volatility corresponding to a fixed realization of U^1, \ldots, U^n . Indeed, for $u = (u^1, \ldots, u^n) \in (0, 1)^{nd^2}$, let

$$\tilde{\sigma}(k;u) := \Theta_k(\tilde{W}|_{[0,t_k]}, u^1, \dots, u^k)$$

and consider $\tilde{M}^u = \int \tilde{\sigma}_t^u d\tilde{W}_t$, where $\tilde{\sigma}^u := \sum_{k=0}^{n-1} \mathbf{1}_{[t_k, t_{k+1})} \tilde{\sigma}(k; u)$. For any $F \in C_b(\Omega; \mathbb{R})$, the equality (3.9) and Fubini's theorem yield that

$$\begin{split} E[F(M)] &= E\big[F\big(\tilde{M}^{(U^1,\dots,U^n)}\big)\big] = \int_{(0,1)^{nd^2}} E[F(\tilde{M}^u)] \, du \\ &\leq \sup_{u \in (0,1)^{nd^2}} E[F(\tilde{M}^u)]. \end{split}$$

Hence, by the Hahn-Banach theorem, the law of M is contained in the weak closure of the convex hull of the laws of $\{\tilde{M}^u: u \in (0,1)^{nd^2}\}$. We note that \tilde{M}^u is of the form $\tilde{M}^u = \int g(t,\tilde{W}) d\tilde{W}_t$ with a measurable, adapted, $\sqrt{\mathbf{D}}$ -valued function g, for each fixed u.

4. Smoothing. As Q_D is defined through continuous functions, it remains to approximate g by a continuous function f. Let $g:[0,T]\times\Omega\to\sqrt{\mathbf{D}}$ be a measurable adapted function and $\delta>0$. By standard density arguments there exists $\tilde{f}\in C([0,T]\times\Omega;\mathbb{S}^d)$ such that

$$E \int_0^T \|\tilde{f}(t, \tilde{W}) - g(t, \tilde{W})\|^2 dt \le \delta.$$

Let
$$f(t,x) := \sqrt{\Pi_{\mathbf{D}}(\tilde{f}(t,x)^2)}$$
. Then $f \in C([0,T] \times \Omega; \sqrt{\mathbf{D}})$ and

$$||f - g||^2 \le ||f^2 - g^2|| \le ||\tilde{f}^2 - g^2|| \le (||\tilde{f}|| + ||g||)||\tilde{f} - g|| \le 2\sqrt{R_{\mathbf{D}}} ||\tilde{f} - g||$$

(see [1, Theorem X.1.1] for the first inequality). By Jensen's inequality we conclude that $E \int_0^T \|f(t, \tilde{W}) - g(t, \tilde{W})\|^2 dt \le 2\sqrt{TR_{\mathbf{D}}\delta}$, which, in view of the above steps, completes the proof.

References

- [1] R. Bhatia. Matrix Analysis. Springer, New York, 1997.
- [2] P. Cheridito, H. M. Soner, N. Touzi, and N. Victoir. Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs. *Comm. Pure Appl. Math.*, 60(7):1081–1110, 2007.
- [3] L. Denis, M. Hu, and S. Peng. Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion paths. Potential Anal., 34(2):139-161, 2011.
- [4] L. Denis and C. Martini. A theoretical framework for the pricing of contingent claims in the presence of model uncertainty. *Ann. Appl. Probab.*, 16(2):827–852, 2006.
- [5] Y. Dolinsky and H. M. Soner. Limit theorems for binomial markets with friction. *Preprint*, 2011.

- [6] D. Duffie and P. Protter. From discrete- to continuous-time finance: weak convergence of the financial gain process. *Math. Finance*, 2(1):1–15, 1992.
- [7] H. He. Convergence from discrete- to continuous-time contingent claims prices. Rev. Financ. Stud., 3(4):523–546, 1990.
- [8] S. Kusuoka. Limit theorem on option replication cost with transaction costs. *Ann. Appl. Probab.*, 5(1):198–221, 1995.
- [9] M. Nutz. Random G-expectations. Preprint arXiv:1009.2168v1, 2010.
- [10] E. Pardoux and S. Peng. Adapted solution of a backward stochastic differential equation. Systems Control Lett., 14(1):55–61, 1990.
- [11] S. Peng. Backward SDE and related g-expectation. In Backward stochastic differential equations, volume 364 of Pitman Res. Notes Math. Ser., pages 141–159. Longman, 1997.
- [12] S. Peng. G-expectation, G-Brownian motion and related stochastic calculus of Itô type. In Stochastic Analysis and Applications, volume 2 of Abel Symp., pages 541–567, Springer, Berlin, 2007.
- [13] S. Peng. Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation. Stochastic Process. Appl., 118(12):2223–2253, 2008.
- [14] S. Peng. Nonlinear expectations and stochastic calculus under uncertainty. Preprint arXiv:1002.4546v1, 2010.
- [15] S. Peng. Tightness, weak compactness of nonlinear expectations and application to CLT. *Preprint arXiv:1006.2541v1*, 2010.
- [16] H. M. Soner, N. Touzi, and J. Zhang. Wellposedness of second order backward SDEs. To appear in Probab. Theory Related Fields.
- [17] H. M. Soner, N. Touzi, and J. Zhang. Martingale representation theorem for the G-expectation. Stochastic Process. Appl., 121(2):265–287, 2011.