MATH V2020 PROBLEM SET 8 DUE NOVEMBER 18, 2008.

INSTRUCTOR: ROBERT LIPSHITZ

Note: problem 1 corrected to work out more nicely.
(1) Consider the system of differential equations

$$
\begin{aligned}
y_{1}^{\prime} & =-3 y_{1}+2 y_{2} \\
y_{2}^{\prime} & =-2 y_{1}+2 y_{2}
\end{aligned}
$$

subject to the initial conditions $y_{1}(0)=1, y_{2}(0)=3$.
(a) Solve the system by decoupling it (the first method we used in class).
(b) Check that your solution is, indeed, a solution.
(c) Solve the system using the matrix exponential.
(d) Check that your two solutions agree.
(2) Write the differential equation $y^{\prime \prime \prime}=5 y^{\prime \prime}-y^{\prime}+5 y$ as a system of first-order differential equations.
(3) Exponentiating JNF matrices, I. Let $A=\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right)$.
(a) Compute A^{2}, A^{3}, A^{4}.
(b) Give a formula for A^{n}. Prove your answer by induction.
(c) What is e^{A} ?
(d) What is $e^{t A}$? (Be careful.)
(e) Consider the system of differential equations $y^{\prime}=A y$. Use matrix exponentiation to find the solution subject to the initial conditions $y(0)=(1,3)^{T}$. Verify that what you found is, in fact, a solution.
(4) Exponentiating JNF matrices, II. Let $A=\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right)$.
(a) Compute A^{2}, A^{3}, A^{4}.
(b) Give a formula for A^{n}. You don't have to prove your answer this time.
(c) What is e^{A} ?
(d) What is $e^{t A}$? (Be careful.)
(5) Exponentiating JNF matrices, III. Let

$$
A=\left(\begin{array}{cccccc}
\lambda & 1 & 0 & 0 & \cdots & 0 \\
0 & \lambda & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & \lambda
\end{array}\right)
$$

be a Jordan block. What is $e^{A} ? e^{t A} ?$ Justify your answers.
(6) Consider the system of differential equations

$$
\begin{aligned}
y_{1}^{\prime}(t) & =y_{1}(t)+y_{2}(t) \\
y_{2}^{\prime}(t) & =-y_{1}(t)+3 y_{2}(t)
\end{aligned}
$$

Use matrix exponentiation to find the solution satisfying $y_{1}(0)=1, y_{2}(0)=2$. (Hint: put the corresponding matrix in JNF.)
(7) Lengths and angles.
(a) On \mathbb{R}^{3} with its usual dot product, compute the lengths of $(1,1,1)^{T}$ and $(1,2,3)^{T}$, and the angle between them. (Not cooked to come out nicely.)
(b) On $\mathcal{C}^{\infty}[0,1]$ with inner product $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x$, compute the lengths of $f(x)=x$ and $g(x)=\sin (2 \pi x)$, and the angle between them. (Also not cooked.)
(8) Let

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right)
$$

Use the Gram-Schmidt process to find an orthonormal basis for the image (column space) of A, with respect to the standard dot product on \mathbb{R}^{3}.
(9) Define an inner product $\langle\cdot, \cdot\rangle$ on $\mathcal{P}_{\leq 2}$ by $\langle p(x), q(x)\rangle=\int_{0}^{1} p(x) q(x) d x$.
(a) Prove that $\langle\cdot, \cdot\rangle$ does, in fact, give an inner product.
(b) Apply the Gram-Schmidt process to the basis $\left[2, x, x^{2}\right]$ to obtain an orthonormal basis for $\mathcal{P}_{\leq 2}$ (with respect to this inner product).
(10) Let $S=\left\{v_{1}, \ldots, v_{k}\right\} \subset V$ be a set of vectors in an inner product space V. Prove: if the vectors in S are orthonormal then S is linearly independent.
E-mail address: rl2327@columbia.edu

