MATH V2020 PROBLEM SET 6 DUE OCTOBER 21, 2008.

INSTRUCTOR: ROBERT LIPSHITZ

Problem 6 corrected in this version. Malapropism in statement of 2(a) corrected (eigenvalue vs. eigenvector).
(1) Use Cramer's rule to compute the inverse of:
(a) $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
(b) $\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1\end{array}\right)$.
(2) Eigenspaces...
(a) Let $F: V \rightarrow V$ be linear. Prove that if v is an eigenvector of F of eigenvalue λ and $a \in \mathbb{F}, a \neq 0$ then (av) is also an eigenvector of F of eigenvalue λ. (The proof should be short and needs few words.)
(b) Let $F: V \rightarrow V$ be linear, and v, w eigenvectors of F of eigenvalue λ. Prove that $v+w$ is an eigenvector of F of eigenvalue λ. (Similarly short and terse.)
(c) It is not true that if v and w are eigenvectors with different eigenvalues then $v+w$ is an eigenvector. Give an example illustrating this. (Optional: prove that if v and w are eigenvectors with different eigenvalues then $v+w$ is not an eigenvector.)
(3) Find the eigenvalues of the following matrices. Find an eigenvector corresponding to each eigenvalue.
(a) $\left(\begin{array}{cc}5 & -2 \\ 3 & 0\end{array}\right)$
(b) $\left(\begin{array}{lll}1 & 4 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3\end{array}\right)$
(4) The numbers in problems (3) and (5) were chosen so that the eigenvalues you found were integers. How did (or could) I do this? (Note: this is more of a pain than finding matrices which row-reduce nicely.)
(5) Let $A=\left(\begin{array}{ll}-12 & 22 \\ -11 & 21\end{array}\right)$. Compute A^{100} by hand, to ten significant digits.
(6) Recall that the Fibonacci numbers are defined by: $F_{0}=0, F_{1}=1$ and for $n>1$, $F_{n}=F_{n-1}+F_{n-2}$. So, the first few Fibonacci numbers are $0,1,1,2,3,5,8,13,21,34,55$.
(a) Let

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)
$$

Prove that the entries of A^{n} are

$$
\left(\begin{array}{cc}
F_{n-1} & F_{n} \\
F_{n} & F_{n+1}
\end{array}\right)
$$

(Hint: you want to use induction. Prove the result is true for $n=1$ (trivial). Then, prove that if it holds for n then it holds for $n+1$.)
(b) Find the eigenvalues of A. Find an eigenvector corresponding to each eigenvalue. (This computation is a bit annoying.)
(c) Find a matrix P so that $P^{-1} A P$ is diagonal.
(d) Use part 6 c to compute A^{n}. This gives you another formula for F_{n}. What is it? (Again, a slightly annoying computation.)
(e) What is $\lim _{n \rightarrow \infty} F_{n+1} / F_{n}$?
(7) Prove that there is no invertible matrix P so that $P^{-1}\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right) P$ is diagonal.

E-mail address: rl2327@columbia.edu

