MATH V2020 PROBLEM SET 5 DUE OCTOBER 14, 2008.

INSTRUCTOR: ROBERT LIPSHITZ

Updated: I've made the first problem easier by adding a hypothesis, dropped Cramer's rule from this problem set (deleting last problem and modifying second to last), added an instruction to compute one of the determinants in Problem 7 by row-reduction.
(1) Let $F, G: V \rightarrow V$ be linear maps, and assume that G is invertible. Using the definition in terms of volume functions, prove that $\operatorname{det}(F \circ G)=\operatorname{det}(F) \operatorname{det}(G)$. (Hint: your proof should start "Let Vol be a volume form on V and $\mathcal{B}=\left[v_{1}, \ldots, v_{n}\right]$ a basis for V." The proof should not be more than three or four mathematical "sentences.")
(2) Let $F: V \rightarrow V$ be a linear transformation and $\lambda \in \mathbb{F}$. Let $n=\operatorname{dim}(V)$. Prove that $\operatorname{det}(\lambda F)=\lambda^{n} \operatorname{det}(F)$. (Here, λF denotes the linear transformation $(\lambda F)(v)=\lambda(F(v))$.) (Hint: start the same way as the previous one. Your proof should again be short.)
(3) Suppose that A and B are $n \times n$ matrices, and $A B=I$. We proved in class that this implies A is invertible. Prove this again, using the determinant. (Hint: the proof should again be very short.)
(4) Prove that if A and B are similar $n \times n$ matrices then $\operatorname{det}(A)=\operatorname{det}(B)$. (Hint: short again. Remind yourself the definition of "similar matrices.")
(5) Compute the determinant of

$$
\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
0 & 2 & 2 & \pi & e \\
0 & 0 & 3 & 7 & 17 \\
0 & 0 & 0 & 4 & -8 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

by expansion by minors. Explain why your answer makes sense from the point of view of volume functions. (You might like to use an analogous 2×2 or 3×3 matrix to make your point.)
(6) An $n \times n$ matrix A is invertible if and only if A^{T} is invertible.
(a) Prove this using determinants (one sentence).
(b) Prove this directly, using the fact that $(A B)^{T}=B^{T} A^{T}$. (Roughly three sentences.)
(7) Compute the following determinants:
(a)

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
-1 & -2 & -1
\end{array}\right)
$$

Do this one both by expansion by minors and by row reduction.
(b)
$\left(\begin{array}{ccccc}0 & 5 & 0 & 0 & 0 \\ 12 & 11 & 2 & 0 & 10 \\ 3 & 13 & 0 & 0 & 14 \\ 9 & 8 & 6 & 1 & 7 \\ 0 & 15 & 0 & 0 & 4\end{array}\right)$
(c)

$$
\left(\begin{array}{cccccc}
a & b & 0 & 0 & 0 & 0 \\
c & d & 0 & 0 & 0 & 0 \\
0 & 0 & e & f & 0 & 0 \\
0 & 0 & g & h & 0 & 0 \\
0 & 0 & 0 & 0 & i & j \\
0 & 0 & 0 & 0 & k & l
\end{array}\right) .
$$

(8) Is it usually faster to compute a determinant of an $n \times n$ (for n large) matrix by expanding by minors immediately or by row reducing first? Roughly how many arithmetic operations does each take? (You don't have to "prove" your answers; just explain them. But try to be precise and complete; this might take a couple of drafts.)
E-mail address: rl2327@columbia.edu

