MATH V2020 PROBLEM SET 4 DUE SEPTEMBER 30, 2008.

INSTRUCTOR: ROBERT LIPSHITZ

(1) Find all solutions to the following systems of equations by row reduction. Identify the pivot variables and free variables.
(a)

$$
\begin{array}{r}
2 x+3 y+z=0 \\
x+y+z=0 \\
3 x+4 y+2 z=0 \\
y+z=0
\end{array}
$$

(b)

$$
\begin{aligned}
3 x+y-3 z & =14 \\
2 x+y-3 z & =9 \\
-2 x-y+4 z & =-8
\end{aligned}
$$

(c)

$$
\begin{aligned}
x+y+3 z & =5 \\
-2 x-2 y-6 z & =-20 .
\end{aligned}
$$

(2) Define $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by

$$
F\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{x+y+3 z}{-2 x-2 y-6 z}
$$

Find a basis for the kernel of F. Find a basis for the image of F.
(3) All of the entries in the row-reduced echelon forms of the matrices in problem (1) were integers (hopefully).
(a) Explain why this was not obvious a priori (i.e., beforehand). (One or two sentences should be enough.)
(b) Explain how to cook up complicated-looking examples whose row-reduced echelon
forms have all entries integers. Illustrate your algorithm with a couple of examples.
(4) Use the row-reduction technique from class to compute the inverse of the matrix

$$
\left(\begin{array}{ll}
5 & 3 \\
3 & 2
\end{array}\right)
$$

(5) Prove that a matrix A is invertible if and only if the row-reduced echelon form of A is the identity map. (There are two directions. The "only if" part is easier; for the other direction use elementary matrices in a similar way to what we did in class.)
(6) The matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is invertible if and only if $a d-b c \neq 0$. Use problem (5) to prove this. (There are several cases here, depending on whether, say, $a=0$, so the proof is a bit annoying.)
(7) Let P be the plane in \mathbb{R}^{3} given by the equation $y=x$. Let $F: \mathbb{R}^{3} \rightarrow P$ denote projection onto P.
(a) Find a basis \mathcal{B}_{P} for P.
(b) Find a basis \mathcal{B}^{\prime} for \mathbb{R}^{3} so that the matrix for F with respect to $\mathcal{B}^{\prime}, \mathcal{B}_{P}$ is

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) .
$$

(Hint: you found two useful basis vectors already.)
(c) Find the change of basis matrix from \mathcal{B}^{\prime} to the standard basis \mathcal{B} for \mathbb{R}^{3}. Find its inverse.
(d) Find the matrix for F with respect to \mathcal{B} and \mathcal{B}_{P}.
(8) Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be defined by

$$
F\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{x+2 y+3 z}{2 x+4 y+6 z} .
$$

(a) Find bases \mathcal{B}_{3} and \mathcal{B}_{2} for \mathbb{R}^{3} and \mathbb{R}^{2} so that the matrix for F with respect to \mathcal{B}_{3} and \mathcal{B}_{2} is

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

by examining the second (direct) proof of the rank theorem from class.
(b) Optional: Do the same thing, but by using row and column operations instead, and keeping track of the elementary matrices you use. (This is more work, but should solidify some concepts.)
E-mail address: rl2327@columbia.edu

