MATH V2020 PROBLEM SET 2 DUE SEPTEMBER 16, 2008.

INSTRUCTOR: ROBERT LIPSHITZ

(1) Fill in the blanks in the proofs on page 3.
(2) Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by

$$
F\binom{x}{y}=\binom{3 x+2 y}{-6 x-4 y}
$$

(a) Find a basis for the kernel of F. (This boils down to solving a very simple system of linear equations.)
(b) Find a basis for the image of F.
(c) Draw the image of F.
(d) Draw the set of solutions of $F(x, y)^{T}=(0,0)^{T} .{ }^{1}$ On the same graph, draw the set of solutions of $F(x, y)^{T}=(3,-6)^{T}$. Notice anything?
(e) How many solutions are there to $F(x, y)^{T}=(1,1)^{T}$? What does this have to do with the image of F ?
(f) Find the matrix for F with respect to the standard basis for \mathbb{R}^{2}.
(3) Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be given by

$$
F\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
2 x+y+8 z \\
y+2 z \\
x+y+5 z
\end{array}\right)
$$

(a) Find a basis for the kernel of F. (This boils down to solving a system of linear equations.) Draw the kernel of F in \mathbb{R}^{3}.
(b) Find a basis for the image of F. Draw the image of F in \mathbb{R}^{3}. (You will not be graded for neatness.)
(c) Plot the set of solutions to $F(x, y, z)=(2,0,1)^{T}$ in \mathbb{R}^{3}.
(d) Find the matrix for F with respect to the standard basis for \mathbb{R}^{3}.
(4) Prove that the kernel of a linear transformation is a vector subspace. (Your proof should start "Let V and W be vector spaces, and $F: V \rightarrow W$ a linear transformation." The whole proof should be quite short.)
(5) Let V be a real vector space and U_{1}, U_{2} linear subspaces of V. Then $U_{1} \cup U_{2}$ is a linear subspace of V is and only if either $U_{1} \subset U_{2}$ or $U_{2} \subset U_{1}$. Either

- Prove this statement or
- Draw several pictures in \mathbb{R}^{2} and/or \mathbb{R}^{3} indicating why it's true, and give a short explanation in words of why it's true.
(6) Matrices for reflections in \mathbb{R}^{2}.
(a) Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote reflection across the line $y=x$. Find the matrix for F with respect to the standard basis for \mathbb{R}^{2}.
${ }^{1}$ The notation $(x, y)^{T}$ is shorthand for $\binom{x}{y}$.
(b) Find a basis for \mathbb{R}^{2} with respect to which the matrix for F is diagonal. (Hint: there is a vector v so that $F(v)=v$. There's another vector w so that $F(w)=-w$.)
(c) Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote reflection across the line through the origin making an angle θ with the x axis. Find the matrix for F with respect to the standard basis for \mathbb{R}^{2}. (This takes some drawing.)
(d) Find a basis for \mathbb{R}^{2} with respect to which the matrix for F is diagonal.
(7) Matrices for some maps between other vector spaces:
(a) Define a map $F: \mathcal{P}_{\leq 3} \rightarrow \mathcal{P}_{\leq 2}$ by $F(p(x))=p^{\prime}(x)+p(2)+3 x p^{\prime \prime}(x)$. Find the matrix for F with respect to the bases $\left[1, x, x^{2}, x^{3}\right]$ for $\mathcal{P}_{\leq 3}$ and $\left[1, x, x^{2}\right]$ for $\mathcal{P}_{\leq 2}$.
(b) Recall that $\mathcal{C}^{0}(\mathbb{R})$ denotes the vector space of continuous functions $\mathbb{R} \rightarrow \mathbb{R}$. Let $V=\operatorname{Span}\{\sin (x), \cos (x)\} \subset \mathcal{C}^{0}(\mathbb{R})$. Let $F: V \rightarrow V$ be defined by $F(f(x))=f^{\prime}(x)$. Find the matrix for F with respect to the basis $\mathcal{B}=[\sin (x), \cos (x)]$.
(c) With notation as in part 7b, let $G: V \rightarrow V$ be the linear transformation $G(f(x))=$ $f^{\prime \prime}(x)$. Find the matrix for G with respect to the basis \mathcal{B}.
(8) Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ denote rotation about the line $x=y=z$ by 90 degrees. Find a basis \mathcal{B} for \mathbb{R}^{3} for which it is easy to express F in terms of a matrix, and find the matrix for F with respect to your basis \mathcal{B}.
(9) This problem is optional (because it's confusing).

The set of linear transformations from V to W is itself a vector space: given linear transformations F and G from V to W, define $F+G$ by $(F+G)(v)=F(v)+G(v)$, and for $\lambda \in \mathbb{F}$ define (λF) by $(\lambda F)(v)=\lambda F(v)$. Let $\operatorname{Hom}(V, W)$ denote the vector space of linear transformations from V to $W{ }^{2}{ }^{2}$
(a) Let $v \in V$. Then there is a map $E_{v}: \operatorname{Hom}(V, W) \rightarrow W$ defined by $E_{v}(F)=F(v)$. Prove that, for each v, the map E_{v} is a linear transformation.
(b) What is the dimension of $\operatorname{Hom}(V, W)$, in terms of the dimensions of V and W ? (Hint: think about matrices.)

[^0]We will use the following lemma, which is proved using the Steinitz exchange trick (in exactly the way we did in class):

Lemma 1. Let V be an n-dimensional vector space. Then any set of linearly independent vectors in V can have at most n elements.

The following is sometimes called the basis extension theorem.

Theorem 1. Let V be a finite-dimensional vector space, and S a linearly independent subset of V. Then S is contained in a basis for V.

Proof. Write $S=\left\{v_{1}, \ldots, v_{k}\right\}$. If $\operatorname{Span}(S)=V$ then S is a \qquad for V and we're done. Otherwise, there is some vector $v \in V$ such that $v \notin \operatorname{Span}(S)$. Let $S_{2}=S \cup$ $\{v\}$. We claim that S_{2} is linearly \qquad . Suppose not. Then there are numbers $a_{1}, \ldots, a_{k}, a \in \mathbb{F}$ such that \qquad If $a \neq 0$ then we have $v=$ So, v lies in the \qquad of v_{1}, \ldots, v_{k}, which is a contradiction.

So, $a=0$. But then

$$
a_{1} v_{1}+\cdots+a_{k} v_{k}=0
$$

Since S is \qquad , all of the a_{i} must be zero.

Now, repeat this process with \qquad in place of S. Either $\operatorname{Span}\left(S_{2}\right)=V$, in which case S_{2} is a \qquad for V and we're done; or, we can find a still larger set S_{3} which is still \qquad . Repeat. By Lemma 1, any set of linearly \qquad vectors in V can have at $\operatorname{most} \operatorname{dim}(V)$ elements, the process must eventually terminate. But the only way it terminates is if one of the S_{n} is a basis for V.

Corollary 2. Let $F: V \rightarrow W$ be a linear transformation, with V finite-dimensional. Then

$$
\operatorname{dim}(\operatorname{ker}(F))+\operatorname{dim}(\operatorname{Im}(F))=\operatorname{dim}(V)
$$

Proof. Let $\left\{e_{1}, \ldots, e_{k}\right\}$ be a basis for $\operatorname{ker}(F)$. By the basis extension theorem, we can find vectors f_{1}, \ldots, f_{l} so that $\left\{e_{1}, \ldots, e_{k}, f_{1}, \ldots, f_{l}\right\}$ is a basis for V. We claim that $\left\{F\left(f_{1}\right), \ldots, F\left(f_{l}\right)\right\}$ is a
basis for $\operatorname{Im}(F)$. To see this, we must show that $\left\{F\left(f_{1}\right), \ldots, F\left(f_{l}\right)\right\}$ \qquad the image of F and are linearly \qquad .
First, we prove that $\left\{F\left(f_{1}\right), \ldots, F\left(f_{l}\right)\right\}$ span $\operatorname{Im}(F)$. Indeed, if $w \in \operatorname{Im}(F)$ then $w=f(v)$ for some v in V. Since $\left\{e_{1}, \ldots, e_{k}, f_{1}, \ldots, f_{l}\right\}$ \qquad V, there are numbers $a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{l} \in$ \mathbb{F} such that

$$
v=a_{1} e_{1}+\cdots+a_{k} e_{k}+b_{1} f_{1}+\cdots+b_{l} f_{l}
$$

But then

$$
\begin{aligned}
w=F(v) & = \\
& = \\
& =b_{1} F\left(f_{1}\right)+\cdots+b_{l} F\left(f_{l}\right)
\end{aligned}
$$

since $F\left(e_{i}\right)=0$. So, w is in the span of $\left\{F\left(f_{1}\right), \ldots, F\left(f_{l}\right)\right\}$.
Next, we prove that $F\left(f_{1}\right), \ldots, F\left(f_{l}\right)$ are linearly \qquad . Suppose that

$$
a_{1} F\left(f_{1}\right)+\cdots+a_{l} F\left(f_{l}\right)=0
$$

Then,

So, $a_{1} f_{1}+\cdots+a_{l} f_{l}$ is in the \qquad of F. So, $a_{1} f_{1}+\cdots+a_{l} f_{l}=b_{1} e_{1}+\cdots+b_{k} e_{k}$ for some $b_{1}, \ldots, b_{k} \in \mathbb{F}$, since e_{1}, \ldots, e_{k} \qquad $\operatorname{ker}(F)$. But then $\left(-b_{1}\right) e_{1}+\cdots+$ $\left(-b_{k}\right) e_{k}+a_{1} f_{1}+\cdots+a_{l} f_{l}=0$. So, since $\left\{e_{1}, \ldots, f_{l}\right\}$ is \qquad , all a_{i} and b_{j} are zero. So, $F\left(f_{1}\right), \ldots, F\left(F_{l}\right)$ are linearly \qquad .

Since \qquad is a basis for $\operatorname{Im}(F)$, it follows that the dimension of $\operatorname{Im}(F)$ is l. Since \qquad is a basis for $\operatorname{ker}(F)$, the dimension of the kernel of F is k. And, since $\left\{e_{1}, \ldots, e_{k}, f_{1}, \ldots, f_{l}\right\}$ is a basis for \qquad , the dimension of \qquad is $k+l$. This proves the corollary.

[^0]: ${ }^{2}$ Hom stands for homomorphism, which is another word for linear transformation.

