MATH V2020 PROBLEM SET 2 DUE SEPTEMBER 16, 2008.

INSTRUCTOR: ROBERT LIPSHITZ

- (1) Fill in the blanks in the proofs on page 3.
- (2) Let $F: \mathbb{R}^2 \to \mathbb{R}^2$ be given by

$$F\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}3x+2y\\-6x-4y\end{pmatrix}$$

- (a) Find a basis for the kernel of F. (This boils down to solving a very simple system of linear equations.)
- (b) Find a basis for the image of F.
- (c) Draw the image of F.
- (d) Draw the set of solutions of $F(x, y)^T = (0, 0)^T$.¹ On the same graph, draw the set of solutions of $F(x, y)^T = (3, -6)^T$. Notice anything?
- (e) How many solutions are there to $F(x, y)^T = (1, 1)^T$? What does this have to do with the image of F?
- (f) Find the matrix for F with respect to the standard basis for \mathbb{R}^2 .
- (3) Let $F: \mathbb{R}^3 \to \mathbb{R}^3$ be given by

$$F\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}2x+y+8z\\y+2z\\x+y+5z\end{pmatrix}$$

- (a) Find a basis for the kernel of F. (This boils down to solving a system of linear equations.) Draw the kernel of F in \mathbb{R}^3 .
- (b) Find a basis for the image of F. Draw the image of F in \mathbb{R}^3 . (You will not be graded for neatness.)
- (c) Plot the set of solutions to $F(x, y, z) = (2, 0, 1)^T$ in \mathbb{R}^3 .
- (d) Find the matrix for F with respect to the standard basis for \mathbb{R}^3 .
- (4) Prove that the kernel of a linear transformation is a vector subspace. (Your proof should start "Let V and W be vector spaces, and $F: V \to W$ a linear transformation." The whole proof should be quite short.)
- (5) Let V be a real vector space and U_1, U_2 linear subspaces of V. Then $U_1 \cup U_2$ is a linear subspace of V is and only if either $U_1 \subset U_2$ or $U_2 \subset U_1$. Either
 - Prove this statement or
 - Draw several pictures in \mathbb{R}^2 and/or \mathbb{R}^3 indicating why it's true, and give a short explanation in words of why it's true.
- (6) Matrices for reflections in \mathbb{R}^2 .
 - (a) Let $F: \mathbb{R}^2 \to \mathbb{R}^2$ denote reflection across the line y = x. Find the matrix for F with respect to the standard basis for \mathbb{R}^2 .

¹The notation $(x, y)^T$ is shorthand for $\begin{pmatrix} x \\ y \end{pmatrix}$.

INSTRUCTOR: ROBERT LIPSHITZ

- (b) Find a basis for \mathbb{R}^2 with respect to which the matrix for F is diagonal. (Hint: there is a vector v so that F(v) = v. There's another vector w so that F(w) = -w.)
- (c) Let $F: \mathbb{R}^2 \to \mathbb{R}^2$ denote reflection across the line through the origin making an angle θ with the x axis. Find the matrix for F with respect to the standard basis for \mathbb{R}^2 . (This takes some drawing.)
- (d) Find a basis for \mathbb{R}^2 with respect to which the matrix for F is diagonal.
- (7) Matrices for some maps between other vector spaces:
 - (a) Define a map $F: \mathcal{P}_{\leq 3} \to \mathcal{P}_{\leq 2}$ by F(p(x)) = p'(x) + p(2) + 3xp''(x). Find the matrix for F with respect to the bases $[1, x, x^2, x^3]$ for $\mathcal{P}_{\leq 3}$ and $[1, x, x^2]$ for $\mathcal{P}_{\leq 2}$.
 - (b) Recall that $\mathcal{C}^{0}(\mathbb{R})$ denotes the vector space of continuous functions $\mathbb{R} \to \mathbb{R}$. Let $V = \operatorname{Span}\{\sin(x), \cos(x)\} \subset \mathcal{C}^{0}(\mathbb{R})$. Let $F \colon V \to V$ be defined by F(f(x)) = f'(x). Find the matrix for F with respect to the basis $\mathcal{B} = [\sin(x), \cos(x)]$.
 - (c) With notation as in part 7b, let $G: V \to V$ be the linear transformation G(f(x)) = f''(x). Find the matrix for G with respect to the basis \mathcal{B} .
- (8) Let $F: \mathbb{R}^3 \to \mathbb{R}^3$ denote rotation about the line x = y = z by 90 degrees. Find a basis \mathcal{B} for \mathbb{R}^3 for which it is easy to express F in terms of a matrix, and find the matrix for F with respect to your basis \mathcal{B} .
- (9) This problem is **optional** (because it's confusing).

The set of linear transformations from V to W is itself a vector space: given linear transformations F and G from V to W, define F + G by (F + G)(v) = F(v) + G(v), and for $\lambda \in \mathbb{F}$ define (λF) by $(\lambda F)(v) = \lambda F(v)$. Let $\operatorname{Hom}(V, W)$ denote the vector space of linear transformations from V to W.²

- (a) Let $v \in V$. Then there is a map E_v : Hom $(V, W) \to W$ defined by $E_v(F) = F(v)$. Prove that, for each v, the map E_v is a linear transformation.
- (b) What is the dimension of Hom(V, W), in terms of the dimensions of V and W? (Hint: think about matrices.)

²Hom stands for *homomorphism*, which is another word for linear transformation.

We will use the following lemma, which is proved using the Steinitz exchange trick (in exactly the way we did in class):

Lemma 1. Let V be an n-dimensional vector space. Then any set of linearly independent vectors in V can have at most n elements.

The following is sometimes called the *basis extension theorem*.

Theorem 1. Let V be a finite-dimensional vector space, and S a linearly independent subset of V. Then S is contained in a basis for V.

Proof. Write $S = \{v_1, \ldots, v_k\}$. If Span(S) = V then S is a ______ for V and we're done. Otherwise, there is some vector $v \in V$ such that $v \notin \text{Span}(S)$. Let $S_2 = S \cup$ $\{v\}$. We claim that S_2 is linearly ______. Suppose not. Then there are numbers $a_1, \ldots, a_k, a \in \mathbb{F}$ such that ______ If $a \neq 0$ then we have v =______ So, v lies in the ______ of v_1, \ldots, v_k ,

which is a contradiction.

So, a = 0. But then

$$a_1v_1 + \dots + a_kv_k = 0.$$

Since S is _____, all of the a_i must be zero.

Now, repeat this process with ______ in place of S. Either Span $(S_2) = V$, in which case S_2 is a ______ for V and we're done; or, we can find a still larger set S_3 which is still ______. Repeat. By Lemma 1, any set of linearly ______ vectors in V can have at most dim(V) elements, the process must eventually terminate. But the only way it terminates is if one of the S_n is a basis for V.

Corollary 2. Let $F: V \to W$ be a linear transformation, with V finite-dimensional. Then

 $\dim(\ker(F)) + \dim(\operatorname{Im}(F)) = \dim(V).$

Proof. Let $\{e_1, \ldots, e_k\}$ be a basis for ker(F). By the basis extension theorem, we can find vectors f_1, \ldots, f_l so that $\{e_1, \ldots, e_k, f_1, \ldots, f_l\}$ is a basis for V. We claim that $\{F(f_1), \ldots, F(f_l)\}$ is a

basis for Im(F). To see this, we must show that $\{F(f_1), \ldots, F(f_l)\}$ ______ the image of F and are linearly ______.

First, we prove that $\{F(f_1), \ldots, F(f_l)\}$ span $\operatorname{Im}(F)$. Indeed, if $w \in \operatorname{Im}(F)$ then w = f(v) for some v in V. Since $\{e_1, \ldots, e_k, f_1, \ldots, f_l\}$ _____ V, there are numbers $a_1, \ldots, a_k, b_1, \ldots, b_l \in \mathbb{F}$ such that

$$v = a_1e_1 + \dots + a_ke_k + b_1f_1 + \dots + b_lf_l$$

But then

 $w = F(v) = \underline{\qquad}$ $= \underline{\qquad}$ $= b_1 F(f_1) + \dots + b_l F(f_l)$

since $F(e_i) = 0$. So, w is in the span of $\{F(f_1), \ldots, F(f_l)\}$.

Next, we prove that $F(f_1), \ldots, F(f_l)$ are linearly _____. Suppose that

$$a_1F(f_1) + \dots + a_lF(f_l) = 0.$$

Then,

So, $a_1f_1 + \dots + a_lf_l$ is in the ______ of F. So, $a_1f_1 + \dots + a_lf_l = b_1e_1 + \dots + b_ke_k$ for some $b_1, \dots, b_k \in \mathbb{F}$, since e_1, \dots, e_k ______ ker(F). But then $(-b_1)e_1 + \dots + (-b_k)e_k + a_1f_1 + \dots + a_lf_l = 0$. So, since $\{e_1, \dots, f_l\}$ is ______, all a_i and b_j are zero. So, $F(f_1), \dots, F(F_l)$ are linearly ______. Since _______ is a basis for Im(F), it follows that the dimension of Im(F) is l. Since _______ is a basis for ker(F), the dimension of the kernel of F is k. And, since $\{e_1, \dots, e_k, f_1, \dots, f_l\}$ is a basis for ______, the dimension of _______ is a basis for _______.

E-mail address: r12327@columbia.edu