MATH V2020 PROBLEM SET 1 DUE SEPTEMBER 9, 2008.

INSTRUCTOR: ROBERT LIPSHITZ

Please keep track of how many hours of undistracted work this takes you. I'll ask you this on Tuesday, to help calibrate future assignments. (My target: roughly six hours per week.)
(This is really a foreign language assignment. And while there are a lot of problems, most of the solutions are quite short.)
[Problem 9 corrected in this version.]
(1) Let $S=\{x \in \mathbb{N} \mid x$ is prime $\}, T=\{x \in \mathbb{N} \mid x$ is odd, $x<10\}$. List the elements of
(a) $S \cap T$
(b) $T \backslash S$
(c) $(S \cap T) \times(T \backslash S)$.
(2) Let $p(x)$ be an even-degree polynomial with real coefficients. View $p(x)$ as a map $\mathbb{R} \rightarrow \mathbb{R}$. Explain why the map $p(x)$ is not bijective.
(Note on interpreting the problem: the phrasing means you don't get to choose $p(x)$. You're supposed to prove that no matter what evendegree polynomial I give you, the corresponding map is not bijective.)
(3) Let $p(x)=x^{3}+a x$. For which $a \in \mathbb{R}$ is $p(x)$
(a) injective?
(b) surjective?
(c) bijective?
(Justify, but don't necessarily prove, your answer.)
(4) Fill in the blanks in the proof on page 4.
(5) Using the axioms of vector spaces, give a two-column proof of the following:

Lemma 1. Let V be a real vector space, and x, y, z, w elements of V. Then

$$
((5(x+y))+z)+w=(5 x)+((5 y)+(z+w)) .
$$

See Page 3 for an example of what I mean.
(6) Let \mathcal{P} denote the set of all polynomials in the variable x, with real coefficients. Let + be the usual operation of addition and define scalar multiplication by

$$
\lambda\left(a_{0}+\cdots+a_{n} x^{n}\right)=\left(\lambda a_{0}\right)+\cdots+\left(\lambda a_{n}\right) x^{n} .
$$

Recall that the degree of a polynomial $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ with $a_{n} \neq 0$ is n. (For instance, the degree of $0 x^{3}+3 x^{2}+x$ is 2 .)
(a) \mathcal{P} is a vector space. Why? Verify a couple of the axioms.
(b) Let $\mathcal{P}_{\leq 5}$ be the subset of \mathcal{P} of polynomials of degree at most 5 . Is $\mathcal{P}_{\leq 5}$ a vector subspace of \mathcal{P} ? Why or why not?
(c) Let $\mathcal{P}=5$ be the subset of \mathcal{P} of polynomials of degree exactly 5 . Is $\mathcal{P}_{=5}$ a vector subspace of \mathcal{P} ? Why or why not?
(7) Prove that $S=\left\{(x, y) \in \mathbb{R}^{2} \mid y=m x+b\right\}$ is a vector subspace of \mathbb{R}^{2} if and only if $b=0$.
(Note: there are two parts. One starts "Suppose that $b=0$.". The other starts either "Suppose that S is a vector subspace" or "Suppose that $b \neq 0$ ".)
(8) Let \mathcal{P} denote the vector space of polynomials in x.
(a) Prove that \mathcal{P} is not finite-dimensional, by finding an infinite number of linearly independent elements of \mathcal{P}. (This might be tricky because it's so easy.)
(b) Find a finite-dimensional subspace of \mathcal{P} and give its dimension. (Yes, lots of easy choices here.)
(9) (a) Find a basis for $V=\left\{(x, y) \in \mathbb{R}^{2} \mid 2 x+4 y=0\right\}$. What is the dimension of V ?
(b) Find a basis for $W=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+2 y+4 z=0\right\}$. (This takes a little work.) What is the dimension of W ?
(c) The vector $(10,-1,-2)$ is an element of W. Write $(10,-1,-2)$ as a linear combination of your basis vectors.
(10) For $a \in \mathbb{R}$, let $V=\operatorname{Span}\left\{\left(\begin{array}{l}a \\ a \\ b\end{array}\right)\right\}$. Let $W=\operatorname{Span}\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)\right\}$.
(a) For $a=b=1$, what are $\operatorname{dim}(V), \operatorname{dim}(W)$, $\operatorname{dim}(V \cap W)$ and $\operatorname{dim}(V+W)$? Check that your answer is consistent with Theorem 3, p. 49.
(b) For $a=1$ and $b=0$, what are $\operatorname{dim}(V), \operatorname{dim}(W), \operatorname{dim}(V \cap W)$ and $\operatorname{dim}(V+W)$? Check that your answer is consistent with Theorem 3, p. 49.
(c) For $a=b=0$, what are $\operatorname{dim}(V), \operatorname{dim}(W), \operatorname{dim}(V \cap W)$ and $\operatorname{dim}(V+W)$? Check that your answer is consistent with Theorem 3, p. 49.

Sample two-column proof:
Lemma 2. Let V be a real vector space and x, y elements of V. Then $2(x+$ $y)+3(x+y)=(5 x)+(5 y)$.
Proof.
(1) $2(x+y)=2 x+2 y$

Distributivity
(2) $3(x+y)=3 x+3 y$
(3) $2(x+y)+3(x+y)=(2 x+2 y)+(3 x+3 y)$
$(2 x+2 y)+(3 x+3 y)=(2 x+(2 y+3 x))+3 y$
(5) $(2 x+(2 y+3 x))+3 y=(2 x+(3 x+2 y))+3 y$
(6) $(2 x+(3 x+2 y))+3 y=(2 x+3 x)+(2 y+3 y)$
(7) $(2 x+3 x)+(2 y+3 y)=(2+3) x+(2+3) y$
(8) $(2+3) x+(2+3) y=5 x+5 y$
(9) $2(x+y)+3(x+y)=5 x+5 y$

Distributivity
Steps (1) and (2)
Associativity for vector addition
Commutativity for vector addition
Associativity for vector addition
Distributivity (twice)
(Arithmetic in \mathbb{R}; see below.)
Steps (3), (4), (5), (6), (7) and (8)
and the transitive property of equality (5 times)
(Yes, I know this is a pain: I had to typeset this whole monster. I wont ask this of you after this problem set. The point is that, in principle, any proof can be reduced to a sequence of steps like this. For what it's worth, I remember being surprised that the short list of axioms we have really were enough to do any manipulation like this.)
Remark. We haven't discussed axioms for arithmetic in \mathbb{Z} or \mathbb{R}, so let's not make a big deal of it. In the usual way of axiomatizing arithmetic of \mathbb{Z}, the proof that $2+3=5$ would boil down to $(1+1)+((1+1)+1)=(((1+1)+1)+$ $1)+1$, by a sequence of applications of the associative law. (Two is defined to be $1+1$, and 3 to be $((1+1)+1)$.) But that's for another course.

Theorem 1. Let X, Y and Z be sets. If $f: X \rightarrow Y$ is injective and $g: Y \rightarrow Z$ is injective then $g \circ f: X \rightarrow Z$ is injective.

Proof. Suppose that $x_{1}, x_{2} \in X$ are such that $g \circ f\left(x_{1}\right)=g \circ f\left(x_{2}\right)$. We will show that \qquad . Let $y_{1}=f\left(x_{1}\right)$ and $y_{2}=f\left(x_{2}\right)$. Then $g\left(y_{1}\right)=$ \qquad . So, since g is injective, \qquad .

So, $f\left(x_{1}\right)=$ \qquad . So, since \qquad , $x_{1}=x_{2}$, as desired.

