MATH W4052 PROBLEM SET 7 DUE MARCH 7, 2011.

INSTRUCTOR: ROBERT LIPSHITZ

(1) Let $F(v, w)$ be a bilinear form on a vector space V and \mathcal{B} an ordered basis for V. Let $[v]_{\mathcal{B}}$ denote the column vector representation of v with respect to $\mathcal{B}=\left[e_{1}, \ldots, e_{n}\right]$ and $[F]_{\mathcal{B}}$ the matrix representation for F with respect to \mathcal{B}. (The $(i, j)^{\text {th }}$ entry of $[F]_{\mathcal{B}}$ is $F\left(e_{i}, e_{j}\right)$.)

Prove: for any vectors $v, w \in V$

$$
F(v, w)=[w]_{\mathcal{B}}^{T}[F]_{\mathcal{B}}[v]_{\mathcal{B}}
$$

(2) With notation as above, suppose $\mathcal{C}=\left[f_{1}, \ldots, f_{n}\right]$ is another basis for V and P is the change of basis matrix from \mathcal{C} to \mathcal{B} (so the $i^{\text {th }}$ column of P is $\left[f_{i}\right]_{\mathcal{B}}$). Prove:

$$
[F]_{\mathcal{C}}=P^{T}[F]_{\mathcal{B}} P .
$$

(3) Cromwell Exercise 6.9.8.
(4) Cromwell Exercise 6.9.9.
(5) Compute the Alexander polynomial for the trefoil and figure 8 knots.
(6) Compute the Alexander polynomial for $T(2,2 n+1)$. (Use your work for Exercise 6.9.8 and some linear algebra.)

E-mail address: rl2327@columbia.edu

