MATH W4052 PROBLEM SET 7 DUE MARCH 7, 2011.

INSTRUCTOR: ROBERT LIPSHITZ

(1) Let F(v, w) be a bilinear form on a vector space V and \mathcal{B} an ordered basis for V. Let $[v]_{\mathcal{B}}$ denote the column vector representation of v with respect to $\mathcal{B} = [e_1, \ldots, e_n]$ and $[F]_{\mathcal{B}}$ the matrix representation for F with respect to \mathcal{B} . (The $(i, j)^{\text{th}}$ entry of $[F]_{\mathcal{B}}$ is $F(e_i, e_j)$.)

Prove: for any vectors $v, w \in V$

$$F(v,w) = [w]_{\mathcal{B}}^T[F]_{\mathcal{B}}[v]_{\mathcal{B}}.$$

(2) With notation as above, suppose $\mathcal{C} = [f_1, \ldots, f_n]$ is another basis for V and P is the change of basis matrix from \mathcal{C} to \mathcal{B} (so the *i*th column of P is $[f_i]_{\mathcal{B}}$). Prove:

$$[F]_{\mathcal{C}} = P^T [F]_{\mathcal{B}} P.$$

- (3) Cromwell Exercise 6.9.8.
- (4) Cromwell Exercise 6.9.9.
- (5) Compute the Alexander polynomial for the trefoil and figure 8 knots.
- (6) Compute the Alexander polynomial for T(2, 2n + 1). (Use your work for Exercise 6.9.8 and some linear algebra.)

E-mail address: rl2327@columbia.edu