MATH W4052 PROBLEM SET 2 DUE JANUARY 31, 2011.

INSTRUCTOR: ROBERT LIPSHITZ

Please keep track of how long this problem set takes you: I'm going to ask, for calibration purposes.

- (1) Cromwell Exercise 3.4.
- (2) Cromwell Exercise 3.5. (Hint: this is easy from 3.4.)
- (3) Cromwell Exercise 3.17.
- (4) In Section 2.11, Cromwell gives a rigorous definition of a graph: a set V and a set E of unordered pairs of elements of V.
 - (a) Give a rigorous definition of a *planar graph* (i.e., a graph embedded in the plane; see page 47 in Cromwell). (Your definition should start something like "A planar graph is a graph (V, E), for each element $v \in V$ a point $f(v) \in \mathbb{R}^2$, and for each pair $\{v_1, v_2\} \in E...$ ".)
 - (b) Building on the previous part, give a rigorous definition of a knot diagram. (Suggestion: a knot diagram is a planar graph together with some extra data.)
- (5) A knot diagram is *n*-colorable if there is a labeling of the strands in the diagram by elements of \mathbb{Z}/n so that at each crossing, if the over-strand is labeled *a* and the two under-strands are labeled *b* and *c* then

$$2a \equiv b + c \pmod{n}$$

(and not all strands are colored by the same number).

- (a) Verify that *n*-colorability depends only on the knot type, not the particular diagram, by checking it's unchanged by Reidemeister moves.
- (b) Explain that the unknot is not *n*-colorable for any n > 1. (Hint: this is trivial.)
- (c) Show that the Figure 8 knot is 5-colorable. (So, the Figure 8 knot is not the unknot.)

(This exercise is similar to Lickorish's Exercise 9 in Chapter 1.)

- (6) Let K be a knot in \mathbb{R}^3 . Recall that S^3 is the one-point compactification of \mathbb{R}^3 , so we can view K as sitting in S^3 . Prove that $\pi_1(\mathbb{R}^3 \setminus K) \cong \pi_1(S^3 \setminus K)$.
- (7) Generalize our computation of the fundamental group of the trefoil complement to compute $\pi_1(\mathbb{R}^3 \setminus T_{p,q})$ where $T_{p,q}$ is the (p,q)-torus knot.

Also, read through the rest of the exercises in Cromwell, Chapter 3. *E-mail address:* r12327@columbia.edu