MATH W4052 PROBLEM SET 2 DUE JANUARY 31, 2011.

INSTRUCTOR: ROBERT LIPSHITZ

Please keep track of how long this problem set takes you: I'm going to ask, for calibration purposes.
(1) Cromwell Exercise 3.4.
(2) Cromwell Exercise 3.5. (Hint: this is easy from 3.4.)
(3) Cromwell Exercise 3.17.
(4) In Section 2.11, Cromwell gives a rigorous definition of a graph: a set V and a set E of unordered pairs of elements of V.
(a) Give a rigorous definition of a planar graph (i.e., a graph embedded in the plane; see page 47 in Cromwell). (Your definition should start something like "A planar graph is a graph (V, E), for each element $v \in V$ a point $f(v) \in \mathbb{R}^{2}$, and for each pair $\left\{v_{1}, v_{2}\right\} \in E \ldots "$.)
(b) Building on the previous part, give a rigorous definition of a knot diagram. (Suggestion: a knot diagram is a planar graph together with some extra data.)
(5) A knot diagram is n-colorable if there is a labeling of the strands in the diagram by elements of \mathbb{Z} / n so that at each crossing, if the over-strand is labeled a and the two under-strands are labeled b and c then

$$
2 a \equiv b+c \quad(\bmod n)
$$

(and not all strands are colored by the same number).
(a) Verify that n-colorability depends only on the knot type, not the particular diagram, by checking it's unchanged by Reidemeister moves.
(b) Explain that the unknot is not n-colorable for any $n>1$. (Hint: this is trivial.)
(c) Show that the Figure 8 knot is 5 -colorable. (So, the Figure 8 knot is not the unknot.)
(This exercise is similar to Lickorish's Exercise 9 in Chapter 1.)
(6) Let K be a knot in \mathbb{R}^{3}. Recall that S^{3} is the one-point compactification of \mathbb{R}^{3}, so we can view K as sitting in S^{3}. Prove that $\pi_{1}\left(\mathbb{R}^{3} \backslash K\right) \cong \pi_{1}\left(S^{3} \backslash K\right)$.
(7) Generalize our computation of the fundamental group of the trefoil complement to compute $\pi_{1}\left(\mathbb{R}^{3} \backslash T_{p, q}\right)$ where $T_{p, q}$ is the (p, q)-torus knot.
Also, read through the rest of the exercises in Cromwell, Chapter 3.
E-mail address: rl2327@columbia.edu

