Bordered Heegaard Floer homology

R. Lipshitz, P. Ozsváth and D. Thurston

May 13, 2009
(1) Review of Heegaard Floer
(2) Basic properties of bordered HF
(3) Bordered Heegaard diagrams
(4) The algebra
(5) The cylindrical setting for Heegaard Floer
(6) The module $\widehat{C F D}$
(7) The module $\widehat{C F A}$
(8) The pairing theorem
(9) Four-dimensional information from bordered $H F$.

Classical Heegaard Floer theory assigns...

To Y^{3} closed, oriented	chain complexes $\widehat{C F}(Y), C F^{+}(Y), \ldots$ well-defined up to homotopy equivalence.
To $W^{4}: Y_{1}^{3} \rightarrow Y_{2}^{3}$ smooth, oriented	chain maps $\hat{F}_{W}: \widehat{C F}\left(Y_{1}\right) \rightarrow \widehat{C F}\left(Y_{2}\right), \ldots$ well-defined up to chain homotopy.

Such that...

Classical Heegaard Floer theory assigns...

To Y^{3} closed, oriented	chain complexes $\widehat{C F}(Y), C F^{+}(Y), \ldots$ well-defined up to homotopy equivalence.
To $W^{4}: Y_{1}^{3} \rightarrow Y_{2}^{3}$ smooth, oriented	chain maps $\hat{F}_{W}: \widehat{C F}\left(Y_{1}\right) \rightarrow \widehat{C F}\left(Y_{2}\right), \ldots$ well-defined up to chain homotopy.

Such that. . .

Theorem

$$
\text { If } W_{1}: Y_{1} \rightarrow Y_{2} \text { and } W_{2}: Y_{2} \rightarrow Y_{3} \text { then } \hat{F}_{W_{1} U_{Y_{2}} W_{2}}=\hat{F}_{W_{2}} \circ \hat{F}_{W_{1}},
$$

(I'm omitting spin ${ }^{\text {c}}$-structures)

Advertising HF...

HF contains lots of geometric content:

- Detects smooth structures on 4-manifolds. (Ozsváth-Szabó)

Advertising HF...

HF contains lots of geometric content:

- Detects smooth structures on 4-manifolds. (Ozsváth-Szabó)
- Detects the genus of knots / Thurston norm of 3-manifolds. (Ozsváth-Szabó, Ni)

Advertising HF. . .

HF contains lots of geometric content:

- Detects smooth structures on 4-manifolds. (Ozsváth-Szabó)
- Detects the genus of knots / Thurston norm of 3-manifolds. (Ozsváth-Szabó, Ni)
- Detects fiberedness of knots / three-manifolds (Ozsváth-Szabó-Ghiggini-Ni, Juhasz,....)

Advertising HF. . .

HF contains lots of geometric content:

- Detects smooth structures on 4-manifolds. (Ozsváth-Szabó)
- Detects the genus of knots / Thurston norm of 3-manifolds. (Ozsváth-Szabó, Ni)
- Detects fiberedness of knots / three-manifolds (Ozsváth-Szabó-Ghiggini-Ni, Juhasz,... .)
- Obstructs overtwistedness / Stein fillability of contact structures (Ozsváth-Szabó)

Advertising HF...

HF contains lots of geometric content:

- Detects smooth structures on 4-manifolds. (Ozsváth-Szabó)
- Detects the genus of knots / Thurston norm of 3-manifolds. (Ozsváth-Szabó, Ni)
- Detects fiberedness of knots / three-manifolds (Ozsváth-Szabó-Ghiggini-Ni, Juhasz,...)
- Obstructs overtwistedness / Stein fillability of contact structures (Ozsváth-Szabó)
- Bounds the slice genus / minimal genus representatives of homology classes in 4-manifolds (Ozsváth-Szabó, ...)

Advertising HF...

HF contains lots of geometric content:

- Detects smooth structures on 4-manifolds. (Ozsváth-Szabó)
- Detects the genus of knots / Thurston norm of 3-manifolds. (Ozsváth-Szabó, Ni)
- Detects fiberedness of knots / three-manifolds (Ozsváth-Szabó-Ghiggini-Ni, Juhasz,...)
- Obstructs overtwistedness / Stein fillability of contact structures (Ozsváth-Szabó)
- Bounds the slice genus / minimal genus representatives of homology classes in 4-manifolds (Ozsváth-Szabó, ...)

And yet. . .

Heegaard Floer homology remains poorly understood:

And yet. . .

Heegaard Floer homology remains poorly understood:

- The only known definition involves (nonlinear) partial differential equations.

And yet. . .

Heegaard Floer homology remains poorly understood:

- The only known definition involves (nonlinear) partial differential equations.
- Much of it is not yet algorithmically computable.

And yet. . .

Heegaard Floer homology remains poorly understood:

- The only known definition involves (nonlinear) partial differential equations.
- Much of it is not yet algorithmically computable.
- All variants of HF for knots in S^{3} (Manolescu-Ozsváth-Sarkar).

And yet. . .

Heegaard Floer homology remains poorly understood:

- The only known definition involves (nonlinear) partial differential equations.
- Much of it is not yet algorithmically computable.
- All variants of HF for knots in S^{3} (Manolescu-Ozsváth-Sarkar).
- $\widehat{H F}\left(Y^{3}\right)$ is computable in general (Sarkar-Wang). So is $C F^{-}(Y) / U^{2} C F^{-}(Y)$ (Ozsváth-Stipsicz-Szabó).

And yet. . .

Heegaard Floer homology remains poorly understood:

- The only known definition involves (nonlinear) partial differential equations.
- Much of it is not yet algorithmically computable.
- All variants of HF for knots in S^{3} (Manolescu-Ozsváth-Sarkar).
- $\widehat{H F}\left(Y^{3}\right)$ is computable in general (Sarkar-Wang). So is $C F^{-}(Y) / U^{2} C F^{-}(Y)$ (Ozsváth-Stipsicz-Szabó).
- The cobordism maps \hat{F}_{W} are computable for most W (L-Manolescu-Wang).

And yet. . .

Heegaard Floer homology remains poorly understood:

- The only known definition involves (nonlinear) partial differential equations.
- Much of it is not yet algorithmically computable.
- All variants of HF for knots in S^{3} (Manolescu-Ozsváth-Sarkar).
- $\widehat{H F}\left(Y^{3}\right)$ is computable in general (Sarkar-Wang). So is $C F^{-}(Y) / U^{2} C F^{-}(Y)$ (Ozsváth-Stipsicz-Szabó).
- The cobordism maps \hat{F}_{W} are computable for most W (L-Manolescu-Wang).
But that's it.

And yet. . .

Heegaard Floer homology remains poorly understood:

- The only known definition involves (nonlinear) partial differential equations.
- Much of it is not yet algorithmically computable.
- All variants of HF for knots in S^{3} (Manolescu-Ozsváth-Sarkar).
- $\widehat{H F}\left(Y^{3}\right)$ is computable in general (Sarkar-Wang). So is $C F^{-}(Y) / U^{2} C F^{-}(Y)$ (Ozsváth-Stipsicz-Szabó).
- The cobordism maps \hat{F}_{W} are computable for most W (L-Manolescu-Wang).
But that's it.
- The algorithms for $\widehat{H F}$ and \hat{F}_{W} are inefficient and seem ad hoc.

And yet. . .

Heegaard Floer homology remains poorly understood:

- The only known definition involves (nonlinear) partial differential equations.
- Much of it is not yet algorithmically computable.
- All variants of HF for knots in S^{3} (Manolescu-Ozsváth-Sarkar).
- $\widehat{H F}\left(Y^{3}\right)$ is computable in general (Sarkar-Wang). So is $C F^{-}(Y) / U^{2} C F^{-}(Y)$ (Ozsváth-Stipsicz-Szabó).
- The cobordism maps \hat{F}_{W} are computable for most W (L-Manolescu-Wang).
But that's it.
- The algorithms for $\widehat{H F}$ and \hat{F}_{W} are inefficient and seem ad hoc.

It's like having only de Rham cohomology, except via nonlinear equations and without the Mayer-Vietoris theorem.

Bordered Floer homology

- The rest of the talk is about joint work with Peter Ozsváth and Dylan Thurston.
- Most of it can be found in "Bordered Heegaard Floer homology: Invariance and pairing," arXiv:0810.0687. (It's quite long.)
- We also wrote an expository paper about some of the ideas, "Slicing planar grid diagrams: a gentle introduction to bordered Heegaard Floer homology," arXiv:0810.0695, which we hope is easy to read.

The goals of bordered Floer homology

Theorem

(Ozsváth-Szabó) If $Y=Y_{1} \# Y_{2}$ then
$\widehat{C F}(Y) \cong \widehat{C F}\left(Y_{1}\right) \otimes_{\mathbb{F}_{2}} \widehat{C F}\left(Y_{2}\right)$.
(cf. homology: CF multiplicative rather than additive.)

The goals of bordered Floer homology

Theorem

(Ozsváth-Szabó) If $Y=Y_{1} \# Y_{2}$ then
$\widehat{C F}(Y) \cong \widehat{C F}\left(Y_{1}\right) \otimes_{\mathbb{F}_{2}} \widehat{C F}\left(Y_{2}\right)$.
(cf. homology: CF multiplicative rather than additive.)
Bordered Floer theory extends this more general decompositions of 3 -manifolds along surfaces.

Roughly, bordered HF assigns...

- To a surface F, a $(d g)$ algebra $\mathcal{A}(F)$.

Roughly, bordered HF assigns...

- To a surface F, a $(d g)$ algebra $\mathcal{A}(F)$.
- To a 3-manifold Y with boundary F, a
- right $\mathcal{A}(F)$-module $\widehat{C F A}(Y)$
- left $\mathcal{A}(-F)$-module $\widehat{C F D}(Y)$

Roughly, bordered HF assigns...

- To a surface F, a $(d g)$ algebra $\mathcal{A}(F)$.
- To a 3-manifold Y with boundary F, a
- right $\mathcal{A}(F)$-module $\widehat{C F A}(Y)$
- left $\mathcal{A}(-F)$-module $\widehat{C F D}(Y)$
such that
- If $Y=Y_{1} \cup_{F} Y_{2}$ then

$$
\widehat{C F}(Y)=\widehat{C F A}\left(Y_{1}\right) \otimes_{\mathcal{A}(F)} \widehat{C F D}\left(Y_{2}\right)
$$

Precisely, bordered HF assigns...

To	which is	a
Marked		
surface	a connected, closed, oriented surface, + a handle decompos. of F + a small disk in F	a differential graded

Precisely, bordered HF assigns...

\(\left.$$
\begin{array}{|l|l|l|}\hline \text { To } & \text { which is } \\
\text { Marked } \\
\text { surface } \\
F\end{array}
$$ \quad $$
\begin{array}{l}\text { a connected, closed, } \\
\text { oriented surface, } \\
+ \text { a handle decompos. of } F \\
+ \text { a small disk in } F\end{array}
$$ \quad \begin{array}{l}A differential graded

algebra \mathcal{A}(F)\end{array}\right]\)| Bordered Y^{3}, |
| :--- |
| $\partial Y^{3}=F$ | | a compact, oriented |
| :--- |
| 3-manifold with |
| connected boundary, |
| orientation-preserving |
| homeomorphism $F \rightarrow \partial Y$ |\quad.

Precisely, bordered HF assigns...

To Marked surface F	which is a connected, closed, oriented surface, + a handle decompos. of F + a small disk in F	a A differential graded algebra $\mathcal{A}(F)$
Bordered Y^{3}, $\partial Y^{3}=F$	compact, oriented 3-manifold with connected boundary, orientation-preserving homeomorphism $F \rightarrow \partial Y$	$\underline{\operatorname{Right} A_{\infty} \text {-module }}$ $\widehat{C F A}(Y)$ over $\mathcal{A}(F)$, Left $d g$-module well-defined up to homotopy equiv.

Satisfying the pairing theorem:

Theorem

If $\partial Y_{1}=F=-\partial Y_{2}$ then

$$
\widehat{C F}\left(Y_{1} \cup_{\partial} Y_{2}\right) \simeq \widehat{C F A}\left(Y_{1}\right) \widetilde{\otimes}_{\mathcal{A}(F)} \widehat{C F D}\left(Y_{2}\right) .
$$

Further structure (in progress):

- To an $\phi \in \operatorname{MCG}(F)$, bimodules $\widehat{C F D A}(\phi), \widehat{C F D A}(\phi)$.

$$
\begin{aligned}
& \widehat{C F A}(\phi(Y)) \simeq \widehat{C F A}(Y) \widetilde{\otimes}_{\mathcal{A}(F)} \widehat{C F D A}(\phi) \\
& \widehat{C F D}(\phi(Y)) \simeq \widehat{C F D A}(\phi) \widetilde{\otimes}_{\mathcal{A}(-F)} \widehat{C F D}(Y)
\end{aligned}
$$

(inducing an action of $\mathrm{MCG}_{0}(F)$ on $\mathcal{D}^{b}(\mathcal{A}(F)-M o d)$).

Further structure (in progress):

- To an $\phi \in \operatorname{MCG}(F)$, bimodules $\widehat{C F D A}(\phi), \widehat{C F D A}(\phi)$.

$$
\begin{aligned}
& \widehat{C F A}(\phi(Y)) \simeq \widehat{C F A}(Y) \widetilde{\otimes}_{\mathcal{A}(F)} \widehat{C F D A}(\phi) \\
& \widehat{C F D}(\phi(Y)) \simeq \widehat{C F D A}(\phi) \widetilde{\otimes}_{\mathcal{A}(-F)} \widehat{C F D}(Y)
\end{aligned}
$$

(inducing an action of $\mathrm{MCG}_{0}(F)$ on $\mathcal{D}^{b}(\mathcal{A}(F)$-Mod)).

- To F, bimodules $\widehat{C F D D}$ and $\widehat{C F A A}$, such that

$$
\begin{aligned}
& \widehat{C F D}(Y) \simeq \widehat{C F A}(Y) \widetilde{\otimes}_{\mathcal{A}(F)} \widehat{C F D D} \\
& \widehat{C F A}(Y) \simeq \widehat{C F A A} \widetilde{\otimes}_{\mathcal{A}(-F)} \widehat{C F D}(Y) .
\end{aligned}
$$

Advertising bordered HF

Advertising bordered HF

- It's not tautologous.

Advertising bordered HF

- It's not tautologous.
- It provides information about classical HF. For instance:

Theorem

Suppose CFK $^{-}(K) \simeq \operatorname{CFK}^{-}\left(K^{\prime}\right)$. Let K_{C} (resp. K_{C}^{\prime}) be the satellite of K (resp. K^{\prime}) with companion C. Then $\operatorname{HFK}^{-}\left(K_{C}\right) \cong H F K^{-}\left(K_{C}^{\prime}\right)$.

Advertising bordered HF

- It's not tautologous.
- It provides information about classical HF. For instance:

Theorem

Suppose CFK $^{-}(K) \simeq \operatorname{CFK}^{-}\left(K^{\prime}\right)$. Let K_{C} (resp. K_{C}^{\prime}) be the satellite of K (resp. K^{\prime}) with companion C. Then $\operatorname{HFK}^{-}\left(K_{C}\right) \cong \operatorname{HFK}^{-}\left(K_{C}^{\prime}\right)$.

- It's good for computations:

Advertising bordered HF

- It's not tautologous.
- It provides information about classical HF. For instance:

Theorem

Suppose CFK $^{-}(K) \simeq \operatorname{CFK}^{-}\left(K^{\prime}\right)$. Let K_{C} (resp. K_{C}^{\prime}) be the satellite of K (resp. K^{\prime}) with companion C. Then $\operatorname{HFK}^{-}\left(K_{C}\right) \cong \operatorname{HFK}^{-}\left(K_{C}^{\prime}\right)$.

- It's good for computations:
- $\widehat{C F D A}(\phi)$ for generators ϕ of MCG_{0} can be computed explicitly.

Advertising bordered HF

- It's not tautologous.
- It provides information about classical HF. For instance:

Theorem

Suppose CFK $^{-}(K) \simeq \operatorname{CFK}^{-}\left(K^{\prime}\right)$. Let K_{C} (resp. K_{C}^{\prime}) be the satellite of K (resp. K^{\prime}) with companion C. Then $H F K^{-}\left(K_{C}\right) \cong H F K^{-}\left(K_{C}^{\prime}\right)$.

- It's good for computations:
- $\widehat{C F D A}(\phi)$ for generators ϕ of MCG_{0} can be computed explicitly.
- This leads to computations of $\widehat{C F}(Y)$ for any Y, by factoring.

Advertising bordered HF

- It's not tautologous.
- It provides information about classical HF. For instance:

Theorem

Suppose $C F K^{-}(K) \simeq \operatorname{CFK}^{-}\left(K^{\prime}\right)$. Let K_{C} (resp. K_{C}^{\prime}) be the satellite of K (resp. K^{\prime}) with companion C. Then $\operatorname{HFK}^{-}\left(K_{C}\right) \cong H F K^{-}\left(K_{C}^{\prime}\right)$.

- It's good for computations:
- $\widehat{C F D A}(\phi)$ for generators ϕ of MCG_{0} can be computed explicitly.
- This leads to computations of $\widehat{C F}(Y)$ for any Y, by factoring.
- In fact, you can compute \hat{F}_{W} for any W^{4}.

Bordered Heegaard diagrams

- Let $\left(\bar{\Sigma}_{g}, \alpha_{1}^{c}, \ldots, \alpha_{g-k}^{c}, \beta_{1}, \ldots, \beta_{g}\right)$ be a Heegaard diagram for a Y^{3} with bdy.

Bordered Heegaard diagrams

- Let $\left(\bar{\Sigma}_{g}, \alpha_{1}^{c}, \ldots, \alpha_{g-k}^{c}, \beta_{1}, \ldots, \beta_{g}\right)$ be a Heegaard diagram for a Y^{3} with bdy.
- Let Σ^{\prime} be result of surgering along $\alpha_{1}^{c}, \ldots, \alpha_{g-k}^{c}$.

Bordered Heegaard diagrams

- Let $\left(\bar{\Sigma}_{g}, \alpha_{1}^{c}, \ldots, \alpha_{g-k}^{c}, \beta_{1}, \ldots, \beta_{g}\right)$ be a Heegaard diagram for a Y^{3} with bdy.
- Let Σ^{\prime} be result of surgering along $\alpha_{1}^{c}, \ldots, \alpha_{g-k}^{c}$.
- Let $\alpha_{1}^{a}, \ldots, \alpha_{2 k}^{a}$ be circles in $\Sigma^{\prime} \backslash($ new disks intersecting in one point p, giving a basis for $\pi_{1}\left(\Sigma^{\prime}\right)$.

Bordered Heegaard diagrams

- Let $\left(\bar{\Sigma}_{g}, \alpha_{1}^{c}, \ldots, \alpha_{g-k}^{c}, \beta_{1}, \ldots, \beta_{g}\right)$ be a Heegaard diagram for a Y^{3} with bdy.
- Let Σ^{\prime} be result of surgering along $\alpha_{1}^{c}, \ldots, \alpha_{g-k}^{c}$.
- Let $\alpha_{1}^{a}, \ldots, \alpha_{2 k}^{a}$ be circles in $\Sigma^{\prime} \backslash($ new disks intersecting in one point p, giving a basis for $\pi_{1}\left(\Sigma^{\prime}\right)$.
- These give circles $\alpha_{1}^{a}, \ldots, \alpha_{2 k}^{a}$ in $\bar{\Sigma}$.

- Let $\Sigma=\bar{\Sigma} \backslash \mathbb{D}_{\epsilon}(p)$.
- $\left.\Sigma, \alpha_{1}^{c}, \ldots, \alpha_{g-k}^{c}, \bar{\alpha}_{1}^{a}, \ldots, \bar{\alpha}_{2 k}^{a}, \beta_{1}, \ldots, \beta_{g}\right)$ is a bordered Heegaard diagram for Y.

- Let $\Sigma=\bar{\Sigma} \backslash \mathbb{D}_{\epsilon}(p)$.
- $\left.\Sigma, \alpha_{1}^{c}, \ldots, \alpha_{g-k}^{c}, \bar{\alpha}_{1}^{a}, \ldots, \bar{\alpha}_{2 k}^{a}, \beta_{1}, \ldots, \beta_{g}\right)$ is a bordered Heegaard diagram for Y.
- Fix also $z \in \bar{\Sigma}$ near p.

A small circle near p looks like:

A small circle near p looks like:
This is called a pointed matched circle \mathcal{Z}.

A small circle near p looks like:
This is called a pointed matched circle \mathcal{Z}. This corresponds to a handle decomposition of ∂Y.

A small circle near p looks like:
This is called a pointed matched circle \mathcal{Z}.
This corresponds to a handle decomposition of ∂Y.
We will associate a $d g$ algebra $\mathcal{A}(\mathcal{Z})$ to \mathcal{Z}.

Where the algebra comes from.

- Decomposing ordinary $(\boldsymbol{\Sigma}, \boldsymbol{\alpha}, \boldsymbol{\beta})$ into bordered H.D.'s $\left(\Sigma_{1}, \boldsymbol{\alpha}_{1}, \boldsymbol{\beta}_{1}\right) \cup\left(\Sigma_{2}, \boldsymbol{\alpha}_{2}, \boldsymbol{\beta}_{2}\right)$, would want to consider holomorphic curves crossing $\partial \Sigma_{1}=\partial \Sigma_{2}$.

Where the algebra comes from.

- Decomposing ordinary $(\boldsymbol{\Sigma}, \boldsymbol{\alpha}, \boldsymbol{\beta})$ into bordered H.D.'s $\left(\Sigma_{1}, \boldsymbol{\alpha}_{1}, \boldsymbol{\beta}_{1}\right) \cup\left(\Sigma_{2}, \boldsymbol{\alpha}_{2}, \boldsymbol{\beta}_{2}\right)$, would want to consider holomorphic curves crossing $\partial \Sigma_{1}=\partial \Sigma_{2}$.
- This suggests the algebra should have to do with Reeb chords in $\partial \Sigma_{1}$ relative to $\boldsymbol{\alpha} \cap \partial \Sigma_{1}$.

Where the algebra comes from.

- Decomposing ordinary $(\boldsymbol{\Sigma}, \boldsymbol{\alpha}, \boldsymbol{\beta})$ into bordered H.D.'s $\left(\Sigma_{1}, \boldsymbol{\alpha}_{1}, \boldsymbol{\beta}_{1}\right) \cup\left(\Sigma_{2}, \boldsymbol{\alpha}_{2}, \boldsymbol{\beta}_{2}\right)$, would want to consider holomorphic curves crossing $\partial \Sigma_{1}=\partial \Sigma_{2}$.
- This suggests the algebra should have to do with Reeb chords in $\partial \Sigma_{1}$ relative to $\boldsymbol{\alpha} \cap \partial \Sigma_{1}$.
- Analyzing some simple models, in terms of planar grid diagrams, suggested the product and relations in the algebra.

So...

- Let \mathcal{Z} be a pointed matched circle, for a genus k surface.

- Let \mathcal{Z} be a pointed matched circle, for a genus k surface.
- Primitive idempotents of $\mathcal{A}(\mathcal{Z})$ correspond to k-element subsets I of the $2 k$ pairs in \mathcal{Z}.
- We draw them like this:

- A pair (I, ρ), where ρ is a Reeb chord in $\mathcal{Z} \backslash z$ starting at I specifies an algebra element $a(I, \rho)$.
- We draw them like this:

More generally, given $(I, \boldsymbol{\rho})$ where $\boldsymbol{\rho}=\left\{\rho_{1}, \ldots, \rho_{\ell}\right\}$ is a set of Reeb chords starting at I, with:

- $i \neq j$ implies ρ_{i} and ρ_{j} start and end on different pairs.
- $\left\{\right.$ starting points of $\left.\rho_{i}{ }^{\prime} \mathrm{s}\right\} \subset I$.
specifies an algebra element $a(I, \rho)$.

These generate $\mathcal{A}(\mathcal{Z})$ over \mathbb{F}_{2}.

That is, $\mathcal{A}(\mathcal{Z})$ is the subalgebra of the algebra of k-strand, upward-veering flattened braids on $4 k$ positions where:

- no two start or end on the same pair

- Algebra elements are fixed by "horizontal line swapping".

Multiplication...

...is concatenation if sensible, and zero otherwise.

Multiplication...

...is concatenation if sensible, and zero otherwise.

Multiplication...

...is concatenation if sensible, and zero otherwise.

Double crossings

We impose the relation

$$
(\text { double crossing })=0
$$

e.g.,

The differential

There is a differential d by

$$
d(a)=\sum \text { smooth one crossing of } a .
$$

e.g.,

Why?

Where do all of these relations (and differential) come from?

Why?

Where do all of these relations (and differential) come from?

Studying degenerations of holomorphic curves.

Why?

Where do all of these relations (and differential) come from?

Studying degenerations of holomorphic curves.

They can all be deduced from some simple examples.
See arXiv:0810.0695.

Algebra - summary

- The algebra is generated by the Reeb chords in \mathcal{Z}, with certain relations. e.g.,

Algebra - summary

- The algebra is generated by the Reeb chords in \mathcal{Z}, with certain relations. e.g.,
- Multiplying consecutive Reeb chords concatenates them.
- Far apart Reeb chords commute.

Algebra - summary

- The algebra is generated by the Reeb chords in \mathcal{Z}, with certain relations. e.g.,
- Multiplying consecutive Reeb chords concatenates them.
- Far apart Reeb chords commute.
- The algebra is finite-dimensional over \mathbb{F}_{2}, and has a nice description in terms of flattened braids.

The cylindrical setting for classical $\widehat{C F}$:

Fix an ordinary H.D. $\left(\Sigma_{g}, \boldsymbol{\alpha}, \boldsymbol{\beta}, z\right)$. (Here, $\boldsymbol{\alpha}=\left\{\alpha_{1}, \ldots, \alpha_{g}\right\}$.)

- The chain complex $\widehat{C F}$ is generated over \mathbb{F}_{2} by g-tuples $\left\{x_{i} \in \alpha_{\sigma(i)} \cap \beta_{i}\right\} \subset \boldsymbol{\alpha} \cap \boldsymbol{\beta} .\left(\sigma \in S_{g}\right.$ is a permutation. $)$ (cf. $T_{\alpha} \cap T_{\beta} \subset \operatorname{Sym}^{g}(\Sigma)$.)

Generators: $\{u, x\},\{v, x\}$.

The cylindrical setting for classical $\widehat{C F}$:

Fix an ordinary H.D. $\left(\Sigma_{g}, \boldsymbol{\alpha}, \boldsymbol{\beta}, z\right)$. (Here, $\boldsymbol{\alpha}=\left\{\alpha_{1}, \ldots, \alpha_{g}\right\}$.)

- The chain complex $\widehat{C F}$ is generated over \mathbb{F}_{2} by g-tuples $\left\{x_{i} \in \alpha_{\sigma(i)} \cap \beta_{i}\right\} \subset \boldsymbol{\alpha} \cap \boldsymbol{\beta} .\left(\sigma \in S_{g}\right.$ is a permutation.)
- The differential counts embedded holomorphic maps

$$
(S, \partial S) \rightarrow(\Sigma \times[0,1] \times \mathbb{R},(\boldsymbol{\alpha} \times 1 \times \mathbb{R}) \cup(\boldsymbol{\beta} \times 0 \times \mathbb{R}))
$$

asymptotic to $\mathbf{x} \times[0,1]$ at $-\infty$ and $\mathbf{y} \times[0,1]$ at $+\infty$.

- For $\widehat{C F}$, curves may not intersect $\{z\} \times[0,1] \times \mathbb{R}$.

Example of $\widehat{C F}$

Generators: $\{u, x\},\{v, x\}$.

$$
\partial\{u, x\}=\{v, x\}+\{v, x\}=0
$$

Example of $\widehat{C F}$

Generators: $\{u, x\},\{v, x\}$.

$$
\partial\{u, x\}=\{\mathbf{v}, \mathbf{x}\}+\{v, x\}=0 .
$$

Example of $\widehat{C F}$

Generators: $\{u, x\},\{v, x\}$.

$$
\partial\{u, x\}=\{v, x\}\{\mathbf{v}, \mathbf{x}\}=0 .
$$

- For $(\boldsymbol{\Sigma}, \boldsymbol{\alpha}, \boldsymbol{\beta}, z)$ a bordered Heegaard diagram, view $\partial \bar{\Sigma}$ as a cylindrical end, p.
- For $(\boldsymbol{\Sigma}, \boldsymbol{\alpha}, \boldsymbol{\beta}, z)$ a bordered Heegaard diagram, view $\partial \bar{\Sigma}$ as a cylindrical end, p.
- Maps

$$
u:(S, \partial S) \rightarrow(\Sigma \times[0,1] \times \mathbb{R},(\boldsymbol{\alpha} \times 1 \times \mathbb{R}) \cup(\boldsymbol{\beta} \times 0 \times \mathbb{R}))
$$

have asymptotics at $+\infty,-\infty$ and the puncture p, i.e., east ∞.

- For $(\boldsymbol{\Sigma}, \boldsymbol{\alpha}, \boldsymbol{\beta}, z)$ a bordered Heegaard diagram, view $\partial \bar{\Sigma}$ as a cylindrical end, p.
- Maps

$$
u:(S, \partial S) \rightarrow(\Sigma \times[0,1] \times \mathbb{R},(\boldsymbol{\alpha} \times 1 \times \mathbb{R}) \cup(\boldsymbol{\beta} \times 0 \times \mathbb{R}))
$$

have asymptotics at $+\infty,-\infty$ and the puncture p, i.e., east ∞.

- The e ∞ asymptotics are Reeb chords $\rho_{i} \times\left(1, t_{i}\right)$.
- For $(\boldsymbol{\Sigma}, \boldsymbol{\alpha}, \boldsymbol{\beta}, z)$ a bordered Heegaard diagram, view $\partial \bar{\Sigma}$ as a cylindrical end, p.
- Maps

$$
u:(S, \partial S) \rightarrow(\Sigma \times[0,1] \times \mathbb{R},(\boldsymbol{\alpha} \times 1 \times \mathbb{R}) \cup(\boldsymbol{\beta} \times 0 \times \mathbb{R}))
$$

have asymptotics at $+\infty,-\infty$ and the puncture p, i.e., east ∞.

- The e ∞ asymptotics are Reeb chords $\rho_{i} \times\left(1, t_{i}\right)$.
- The asymptotics $\rho_{i_{1}}, \ldots, \rho_{i_{\ell}}$ of u inherit a partial order, by \mathbb{R}-coordinate.

Generators of $\widehat{C F D} \ldots$

Fix a bordered Heegaard diagram $\left(\Sigma_{g}, \boldsymbol{\alpha}, \boldsymbol{\beta}, z\right)$
$\widehat{C F D}(\Sigma)$ is generated by g-tuples $\mathbf{x}=\left\{x_{i}\right\}$ with:

- one x_{i} on each β-circle
- one x_{i} on each α-circle
- no two x_{i} on the same α-arc.

Generators of $\widehat{C F D} \ldots$

Fix a bordered Heegaard diagram $\left(\Sigma_{g}, \boldsymbol{\alpha}, \boldsymbol{\beta}, z\right)$
$\widehat{C F D}(\Sigma)$ is generated by g-tuples $\mathbf{x}=\left\{x_{i}\right\}$ with:

- one x_{i} on each β-circle
- one x_{i} on each α-circle
- no two x_{i} on the same α-arc.

...and associated idempotents.

- To \mathbf{x}, associate the idempotent $I(\mathbf{x})$, the α-arcs not occupied by \mathbf{x}.

- As a left \mathcal{A}-module,

$$
\widehat{C F D}=\oplus_{\mathbf{x}} \mathcal{A l}(\mathbf{x})
$$

...and associated idempotents.

- To \mathbf{x}, associate the idempotent $I(\mathbf{x})$, the α-arcs not occupied by \mathbf{x}.
- As a left \mathcal{A}-module,

$$
\widehat{C F D}=\oplus_{\mathbf{x}} \mathcal{A l}(\mathbf{x}) .
$$

- So, if I is a primitive idempotent, $I \mathbf{x}=0$ if $I \neq I(\mathbf{x})$ and $I(\mathbf{x}) \mathbf{x}=\mathbf{x}$.

The differential on $\widehat{C F D}$.

$$
d(\mathbf{x})=\sum_{\mathbf{y}} \sum_{\left(\rho_{1}, \ldots, \rho_{n}\right)}\left(\# \mathcal{M}\left(\mathbf{x}, \mathbf{y} ; \rho_{1}, \ldots, \rho_{n}\right)\right) a\left(\rho_{1}, I(\mathbf{x})\right) \cdots a\left(\rho_{n}, I_{n}\right) \mathbf{y}
$$

where $\mathcal{M}\left(\mathbf{x}, \mathbf{y} ; \rho_{1}, \ldots, \rho_{n}\right)$ consists of holomorphic curves asymptotic to

- \mathbf{x} at $-\infty$
- \mathbf{y} at $+\infty$
- $\rho_{1}, \ldots, \rho_{n}$ at $e \infty$.

Example D1: a solid torus.

$$
\begin{aligned}
d(b) & =a+\rho_{3} x \\
d(x) & =\rho_{2} a \\
d(a) & =0 .
\end{aligned}
$$

Example D1: a solid torus.

$$
\begin{aligned}
& d(b)=\mathbf{a}+\rho_{3} x \\
& d(x)=\rho_{2} a \\
& d(a)=0 .
\end{aligned}
$$

Example D1: a solid torus.

$$
\begin{aligned}
& d(b)=a+\rho_{3} x \\
& d(x)=\rho_{2} a \\
& d(a)=0 .
\end{aligned}
$$

Example D1: a solid torus.

$$
\begin{aligned}
d(b) & =a+\rho_{3} x \\
d(x) & =\rho_{2} \mathbf{a} \\
d(a) & =0 .
\end{aligned}
$$

Example D2: same torus, different diagram.

$$
d(\mathbf{x})=\rho_{2} \rho_{3} \mathbf{x}=\rho_{23} \mathbf{x} .
$$

Example D2: same torus, different diagram.

Comparison of the two examples.

First chain complex:

Second chain complex:

$$
x \xrightarrow{\rho_{23}} x
$$

Comparison of the two examples.

First chain complex:

Second chain complex:

$$
x \xrightarrow{\rho_{23}} x
$$

They're homotopy equivalent. In fact:

Theorem

If $(\boldsymbol{\Sigma}, \boldsymbol{\alpha}, \boldsymbol{\beta}, z)$ and $\left(\Sigma, \boldsymbol{\alpha}^{\prime}, \beta^{\prime}, z^{\prime}\right)$ are pointed bordered Heegaard diagrams for the same bordered Y^{3} then $\widehat{\operatorname{CFD}(\Sigma) \text { is homotopy }}$ equivalent to $\widehat{C F D}\left(\Sigma^{\prime}\right)$.

Generators and idempotents of $\widehat{C F A}$.

Fix a bordered Heegaard diagram $\left(\Sigma_{g}, \boldsymbol{\alpha}, \boldsymbol{\beta}, z\right)$
$\widehat{C F A}(\Sigma)$ is generated by the same set as $\widehat{C F D}$: g-tuples $\mathbf{x}=\left\{x_{i}\right\}$ with:

- one x_{i} on each β-circle
- one x_{i} on each α-circle
- no two x_{i} on the same α-arc.

Generators and idempotents of $\widehat{C F A}$.

Fix a bordered Heegaard diagram $\left(\Sigma_{g}, \boldsymbol{\alpha}, \boldsymbol{\beta}, z\right)$
$\widehat{C F A}(\Sigma)$ is generated by the same set as $\widehat{C F D}: g$-tuples $\mathbf{x}=\left\{x_{i}\right\}$ with:

- one x_{i} on each β-circle
- one x_{i} on each α-circle
- no two x_{i} on the same α-arc.

Over \mathbb{F}_{2},

$$
\widehat{C F A}=\oplus_{\mathbf{x}} \mathbb{F}_{2}
$$

Generators and idempotents of $\widehat{C F A}$.

Fix a bordered Heegaard diagram $\left(\Sigma_{g}, \boldsymbol{\alpha}, \boldsymbol{\beta}, z\right)$
$\widehat{C F A}(\Sigma)$ is generated by the same set as $\widehat{C F D}: g$-tuples $\mathbf{x}=\left\{x_{i}\right\}$ with:

- one x_{i} on each β-circle
- one x_{i} on each α-circle
- no two x_{i} on the same α-arc.

Over \mathbb{F}_{2},

$$
\widehat{C F A}=\oplus_{\mathbf{x}} \mathbb{F}_{2}
$$

This is much smaller than $\widehat{C F D}$.

The differential on CFA...

...counts only holomorphic curves contained in a compact subset of Σ, i.e., with no asymptotics at e ∞.

The module structure on CFA

- To \mathbf{x}, associate the idempotent $J(\mathbf{x})$, the α-arcs occupied by \mathbf{x} (opposite from $\widehat{C F D}$).

The module structure on CFA

- To \mathbf{x}, associate the idempotent $J(\mathbf{x})$, the α-arcs occupied by \mathbf{x} (opposite from $\widehat{C F D}$).
- For I a primitive idempotent, define

$$
\mathbf{x} I= \begin{cases}\mathbf{x} & \text { if } I=J(\mathbf{x}) \\ 0 & \text { if } I \neq J(\mathbf{x})\end{cases}
$$

The module structure on $\widehat{C F A}$

- To \mathbf{x}, associate the idempotent $J(\mathbf{x})$, the α-arcs occupied by x (opposite from $\widehat{C F D}$).
- For I a primitive idempotent, define

$$
\mathbf{x} I= \begin{cases}\mathbf{x} & \text { if } I=J(\mathbf{x}) \\ 0 & \text { if } I \neq J(\mathbf{x})\end{cases}
$$

- Given a set ρ of Reeb chords, define

$$
\mathbf{x} \cdot a(J(\mathbf{x}), \boldsymbol{\rho})=\sum_{\mathbf{y}}(\# \mathcal{M}(\mathbf{x}, \mathbf{y} ; \boldsymbol{\rho})) \mathbf{y}
$$

where $\mathcal{M}(\mathbf{x}, \mathbf{y} ; \boldsymbol{\rho})$ consists of holomorphic curves asymptotic to

- x at $-\infty$.
- \mathbf{y} at $+\infty$.
- ρ at e ∞, all at the same height.

A local example of the module structure on CFA.

- Consider the following piece of a Heegaard diagram, with generators $\{r, x\},\{s, x\},\{r, y\},\{s, y\}$.

A local example of the module structure on CFA.

- Consider the following piece of a Heegaard diagram, with generators $\{r, x\},\{s, x\},\{r, y\},\{s, y\}$.
- The nonzero products are: $\{r, x\} \rho_{1}=\{s, x\}$, $\{r, y\} \rho_{1}=\{s, y\},\{r, x\} \rho_{3}=\{r, y\},\{s, x\} \rho_{3}=\{s, y\}$, $\{r, x\}\left(\rho_{1} \rho_{3}\right)=\{s, y\}$.

A local example of the module structure on CFA.

- Consider the following piece of a Heegaard diagram, with generators $\{r, x\},\{s, x\},\{r, y\},\{s, y\}$.
- The nonzero products are: $\{r, x\} \rho_{1}=\{s, x\}$, $\{r, y\} \rho_{1}=\{s, y\},\{r, x\} \rho_{3}=\{r, y\},\{s, x\} \rho_{3}=\{s, y\}$, $\{r, x\}\left(\rho_{1} \rho_{3}\right)=\{s, y\}$.
- Example: $\{r, x\} \rho_{1}=\{s, x\}$ comes from this domain.

A local example of the module structure on CFA.

- Consider the following piece of a Heegaard diagram, with generators $\{r, x\},\{s, x\},\{r, y\},\{s, y\}$.
- The nonzero products are: $\{r, x\} \rho_{1}=\{s, x\}$, $\{r, y\} \rho_{1}=\{s, y\},\{r, x\} \rho_{3}=\{r, y\},\{s, x\} \rho_{3}=\{s, y\}$, $\{r, x\}\left(\rho_{1} \rho_{3}\right)=\{s, y\}$.
- Example: $\{r, x\} \rho_{3}=\{r, y\}$ comes from this domain.

A local example of the module structure on CFA.

- Consider the following piece of a Heegaard diagram, with generators $\{r, x\},\{s, x\},\{r, y\},\{s, y\}$.
- The nonzero products are: $\{r, x\} \rho_{1}=\{s, x\}$, $\{r, y\} \rho_{1}=\{s, y\},\{r, x\} \rho_{3}=\{r, y\},\{s, x\} \rho_{3}=\{s, y\}$, $\{r, x\}\left(\rho_{1} \rho_{3}\right)=\{s, y\}$.
- Example: $\{r, x\}\left(\rho_{1} \rho_{3}\right)=\{s, y\}$ comes from this domain.

Example A1: a solid torus.

$$
\begin{aligned}
d(u) & =v \\
u \rho_{2} & =t \\
u \rho_{23} & =v \\
t \rho_{3} & =v
\end{aligned}
$$

Example A1: a solid torus.

$$
\begin{aligned}
\mathbf{d}(\mathbf{u}) & =\mathbf{v} \\
u \rho_{2} & =t \\
a \rho_{23} & =v \\
t \rho_{3} & =v
\end{aligned}
$$

Example A1: a solid torus.

$$
\begin{aligned}
d(u) & =v \\
\mathbf{u} \rho_{2} & =\mathbf{t} \\
a \rho_{23} & =v \\
t \rho_{3} & =v
\end{aligned}
$$

Example A1: a solid torus.

$$
\begin{aligned}
d(u) & =v \\
u \rho_{2} & =t \\
\mathbf{a} \rho_{23} & =\mathbf{v} \\
t \rho_{3} & =v
\end{aligned}
$$

Example A1: a solid torus.

$$
\begin{aligned}
d(u) & =v \\
u \rho_{2} & =t \\
a \rho_{23} & =v \\
\mathbf{t} \rho_{3} & =\mathbf{v}
\end{aligned}
$$

Why associativity should hold...

- ($\left.\mathbf{x} \cdot \rho_{i}\right) \cdot \rho_{j}$ counts curves with ρ_{i} and ρ_{j} infinitely far apart.
- $\mathbf{x} \cdot\left(\rho_{i} \cdot \rho_{j}\right)$ counts curves with ρ_{i} and ρ_{j} at the same height.
- These are ends of a 1-dimensional moduli space, with height between ρ_{i} and ρ_{j} varying.

The local model again.

...and why it doesn't.

- But this moduli space might have other ends: broken flows with ρ_{1} and ρ_{2} at a fixed nonzero height.

...and why it doesn't.

- But this moduli space might have other ends: broken flows with ρ_{1} and ρ_{2} at a fixed nonzero height.
- These moduli spaces $-\mathcal{M}\left(\mathbf{x}, \mathbf{y} ;\left(\rho_{1}, \rho_{2}\right)\right)$ - measure failure of associativity. So...

Higher A_{∞}-operations

Define

$$
m_{n+1}\left(\mathbf{x}, a\left(\rho_{1}\right), \ldots, a\left(\rho_{n}\right)\right)=\sum_{\mathbf{y}}\left(\# \mathcal{M}\left(\mathbf{x}, \mathbf{y} ;\left(\rho_{1}, \ldots, \rho_{n}\right)\right)\right) \mathbf{y}
$$

where $\mathcal{M}\left(\mathbf{x}, \mathbf{y} ;\left(\rho_{1}, \ldots, \boldsymbol{\rho}_{n}\right)\right)$ consists of holomorphic curves asymptotic to

- x at $-\infty$.
- \mathbf{y} at $+\infty$.
- ρ_{1} all at one height at $e \infty, \rho_{2}$ at some other (higher) height at $e \infty$, and so on.

Example A2: same torus, different diagram.

$$
\begin{aligned}
m_{3}\left(x, \rho_{3}, \rho_{2}\right) & =x \\
m_{4}\left(x, \rho_{3}, \rho_{23}, \rho_{2}\right) & =x \\
m_{5}\left(x, \rho_{3}, \rho_{23}, \rho_{23}, \rho_{2}\right) & =x
\end{aligned}
$$

Example A2: same torus, different diagram.

$$
\begin{aligned}
\mathbf{m}_{\mathbf{3}}\left(\mathbf{x}, \rho_{3}, \rho_{\mathbf{2}}\right) & =\mathbf{x} \\
m_{4}\left(x, \rho_{3}, \rho_{23}, \rho_{2}\right) & =x \\
m_{5}\left(x, \rho_{3}, \rho_{23}, \rho_{23}, \rho_{2}\right) & =x
\end{aligned}
$$

Comparison of the two examples.

First chain complex:

Second chain complex:

$$
x \xrightarrow{m_{3}\left(\cdot, \rho_{3}, \rho_{2}\right)+m_{4}\left(\cdot, \rho_{3}, \rho_{23}, \rho_{2}\right)+\ldots} x
$$

Comparison of the two examples.

First chain complex:

Second chain complex:

$$
x \xrightarrow{m_{3}\left(\cdot, \rho_{3}, \rho_{2}\right)+m_{4}\left(\cdot, \rho_{3}, \rho_{23}, \rho_{2}\right)+\ldots} x
$$

They're A_{∞} homotopy equivalent (exercise).

Comparison of the two examples.

First chain complex:

Second chain complex:

$$
x \xrightarrow{m_{3}\left(\cdot, \rho_{3}, \rho_{2}\right)+m_{4}\left(\cdot, \rho_{3}, \rho_{23}, \rho_{2}\right)+\ldots} x
$$

They're A_{∞} homotopy equivalent (exercise).
Suggestive remark:

$$
\begin{gathered}
\left(1+\rho_{23}\right)^{-1} "=" 1+\rho_{23}+\rho_{23}, \rho_{23}+\ldots \\
\rho_{3}\left(1+\rho_{23}\right)^{-1} \rho_{2}="=\rho_{3}, \rho_{2}+\rho_{3}, \rho_{23}, \rho_{2}+\ldots
\end{gathered}
$$

In general:

Theorem

If $(\boldsymbol{\Sigma}, \boldsymbol{\alpha}, \boldsymbol{\beta}, z)$ and $\left(\Sigma, \boldsymbol{\alpha}^{\prime}, \beta^{\prime}, z^{\prime}\right)$ are pointed bordered Heegaard diagrams for the same bordered Y^{3} then $\widehat{C F A}(\Sigma)$ is A_{∞}-homotopy equivalent to $\widehat{C F A}\left(\Sigma^{\prime}\right)$.

The pairing theorem

Recall:

Theorem
If $\partial Y_{1}=F=-\partial Y_{2}$ then

$$
\widehat{C F}\left(Y_{1} \cup_{\partial} Y_{2}\right) \simeq \widehat{C F A}\left(Y_{1}\right) \widetilde{\otimes}_{\mathcal{A}(F)} \widehat{C F D}\left(Y_{2}\right)
$$

We'll illustrate this with three examples.

Generators of $\widehat{C F A}\left(Y_{1}\right) \otimes \widehat{C F D}\left(Y_{2}\right): u \otimes x, v \otimes x, t \otimes a, t \otimes b$.

Generators of $\widehat{C F A}\left(Y_{1}\right) \otimes \widehat{C F D}\left(Y_{2}\right): u \otimes x, v \otimes x, t \otimes a, t \otimes b$.

$$
\begin{aligned}
d(t \otimes b) & =t \otimes a+t \otimes \rho_{3} x=t \otimes a+t \rho_{3} \otimes x=t \otimes a+v \otimes x \\
d(u \otimes x) & =v \otimes x+u \otimes \rho_{2} a=v \otimes x+u \rho_{2} \otimes a=v \otimes x+t \otimes a \\
d(v \otimes x) & =v \otimes \rho_{2} a=v \rho_{2} \otimes a=0 \\
d(t \otimes a) & =0 .
\end{aligned}
$$

Generators of $\widehat{C F A}\left(Y_{1}\right) \otimes \widehat{C F D}\left(Y_{2}\right): u \otimes x, v \otimes x, t \otimes a, t \otimes b$.

$$
\begin{aligned}
d(t \otimes b) & =\mathbf{t} \otimes \mathbf{a}+t \otimes \rho_{3} x=t \otimes a+t \rho_{3} \otimes x=t \otimes a+v \otimes x \\
d(u \otimes x) & =v \otimes x+u \otimes \rho_{2} a=v \otimes x+u \rho_{2} \otimes a=v \otimes x+t \otimes a \\
d(v \otimes x) & =v \otimes \rho_{2} a=v \rho_{2} \otimes a=0 \\
d(t \otimes a) & =0 .
\end{aligned}
$$

Generators of $\widehat{C F A}\left(Y_{1}\right) \otimes \widehat{C F D}\left(Y_{2}\right): u \otimes x, v \otimes x, t \otimes a, t \otimes b$.

$$
\begin{aligned}
d(t \otimes b) & =t \otimes a+\mathbf{t} \otimes \rho_{3} x=t \otimes a+t \rho_{3} \otimes x=t \otimes a+v \otimes x \\
d(u \otimes x) & =v \otimes x+u \otimes \rho_{2} a=v \otimes x+u \rho_{2} \otimes a=v \otimes x+t \otimes a \\
d(v \otimes x) & =v \otimes \rho_{2} a=v \rho_{2} \otimes a=0 \\
d(t \otimes a) & =0 .
\end{aligned}
$$

Generators of $\widehat{C F A}\left(Y_{1}\right) \otimes \widehat{C F D}\left(Y_{2}\right): u \otimes x, v \otimes x, t \otimes a, t \otimes b$.

$$
\begin{aligned}
d(t \otimes b) & =t \otimes a+t \otimes \rho_{3} x=t \otimes a+\mathbf{t} \rho_{3} \otimes \mathbf{x}=t \otimes a+v \otimes x \\
d(u \otimes x) & =v \otimes x+u \otimes \rho_{2} a=v \otimes x+u \rho_{2} \otimes a=v \otimes x+t \otimes a \\
d(v \otimes x) & =v \otimes \rho_{2} a=v \rho_{2} \otimes a=0 \\
d(t \otimes a) & =0 .
\end{aligned}
$$

Generators of $\widehat{C F A}\left(Y_{1}\right) \otimes \widehat{C F D}\left(Y_{2}\right): u \otimes x, v \otimes x, t \otimes a, t \otimes b$.

$$
\begin{aligned}
d(t \otimes b) & =t \otimes a+t \otimes \rho_{3} x=t \otimes a+t \rho_{3} \otimes x=t \otimes a+\mathbf{v} \otimes \mathbf{x} \\
d(u \otimes x) & =v \otimes x+u \otimes \rho_{2} a=v \otimes x+u \rho_{2} \otimes a=v \otimes x+t \otimes a \\
d(v \otimes x) & =v \otimes \rho_{2} a=v \rho_{2} \otimes a=0 \\
d(t \otimes a) & =0 .
\end{aligned}
$$

Generators of $\widehat{C F A}\left(Y_{1}\right) \otimes \widehat{C F D}\left(Y_{2}\right): u \otimes x, v \otimes x, t \otimes a, t \otimes b$.

$$
\begin{aligned}
d(t \otimes b) & =t \otimes a+t \otimes \rho_{3} x=t \otimes a+t \rho_{3} \otimes x=t \otimes a+v \otimes x \\
d(u \otimes x) & =v \otimes x+u \otimes \rho_{2} a=v \otimes x+u \rho_{2} \otimes a=v \otimes x+t \otimes a \\
d(v \otimes x) & =v \otimes \rho_{2} a=v \rho_{2} \otimes a=0 \\
d(t \otimes a) & =0 .
\end{aligned}
$$

This simplifies to $\mathbb{F}_{2}\langle t \otimes a+u \otimes x\rangle \oplus \mathbb{F}_{2}\langle t \otimes b=v \otimes x\rangle$.

Generators of $\widehat{C F A}\left(Y_{1}\right) \otimes \widehat{C F D}\left(Y_{2}\right): u \otimes x, v \otimes x$.

Generators of $\widehat{C F A}\left(Y_{1}\right) \otimes \widehat{C F D}\left(Y_{2}\right): u \otimes x, v \otimes x$.
$d(u \otimes x)=v \otimes x+u \otimes \rho_{23} x=v \otimes x+u \rho_{23} \otimes x=v \otimes x+v \otimes x=0$. $d(v \otimes x)=v \otimes \rho_{23} x=v \rho_{23} \otimes x=0$.

Generators of $\widehat{C F A}\left(Y_{1}\right) \otimes \widehat{C F D}\left(Y_{2}\right): u \otimes x, v \otimes x$.
$d(u \otimes x)=v \otimes x+u \otimes \rho_{23} x=v \otimes x+u \rho_{23} \otimes x=v \otimes x+v \otimes x=0$. $d(v \otimes x)=v \otimes \rho_{23} x=v \rho_{23} \otimes x=0$.

The most interesting part is the interaction:

$\underset{X}{m_{3}\left(\cdot, \rho_{3}, \rho_{2}\right)+\ldots}$

$\langle t \otimes a, t \otimes b \mid d(t \otimes a)=t \otimes a+t \otimes b=0, \quad d(t \otimes a)=0\rangle$.
$\underset{X}{m_{3}\left(\cdot, \rho_{3}, \rho_{2}\right)+\ldots}$

$\langle t \otimes a, t \otimes b \mid d(t \otimes b)=\mathbf{t} \otimes \mathbf{a}+t \otimes a=0, \quad d(t \otimes a)=0\rangle$.

$\langle t \otimes a, t \otimes b \mid d(t \otimes b)=t \otimes a+\mathbf{t} \otimes \mathbf{a}=0, \quad d(t \otimes a)=0\rangle$.
$\underset{X}{m_{3}\left(\cdot, \rho_{3}, \rho_{2}\right)+\ldots}$

$\langle t \otimes a, t \otimes b \mid d(t \otimes b)=t \otimes a+\mathbf{t} \otimes \mathbf{a}=0, \quad d(t \otimes a)=0\rangle$.

$\underset{X}{m_{3}\left(\cdot, \rho_{3}, \rho_{2}\right)+\ldots}$

$\langle t \otimes a, t \otimes b \mid d(t \otimes b)=t \otimes a+\mathbf{t} \otimes \mathbf{a}=0, \quad d(t \otimes a)=0\rangle$.

The surgery exact sequence

Theorem
(Ozsváth-Szabó) For K a knot in Y there is an exact sequence $\rightarrow \widehat{H F}\left(Y_{\infty}(K)\right) \rightarrow \widehat{H F}\left(Y_{-1}(K)\right) \rightarrow \widehat{H F}\left(Y_{0}(K)\right) \rightarrow \widehat{H F}\left(Y_{\infty}(K)\right) \rightarrow$

The surgery exact sequence

Theorem

(Ozsváth-Szabó) For K a knot in Y there is an exact sequence $\rightarrow \widehat{H F}\left(Y_{\infty}(K)\right) \rightarrow \widehat{H F}\left(Y_{-1}(K)\right) \rightarrow \widehat{H F}\left(Y_{0}(K)\right) \rightarrow \widehat{H F}\left(Y_{\infty}(K)\right) \rightarrow$

Proof via bordered Floer.

Define

There's a s.e.s.
$0 \rightarrow \widehat{C F D}\left(\mathcal{H}_{\infty}\right) \rightarrow \widehat{C F D}\left(\mathcal{H}_{-1}\right) \rightarrow \widehat{C F D}\left(\mathcal{H}_{0}\right) \rightarrow 0$.

Is it the same sequence?

For

the maps are

Is it the same sequence?

For

the maps are

A version of the pairing theorem shows this gives the triangle map on HF.

- The map in the surgery sequence is induced by a 2-handle attachment W.
- The map in the surgery sequence is induced by a 2-handle attachment W.
- So, this map has a universal definition as a map between $\widehat{C F D}$ of solid tori.
- The map in the surgery sequence is induced by a 2-handle attachment W.
- So, this map has a universal definition as a map between $\widehat{C F D}$ of solid tori.
- More generally, the map for attaching handles along a link is given by a concrete map between $\widehat{C F D}$ of handlebodies.

