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Abstract
We introduce a new integrable hierarchy of nonlinear differential-difference equations
which we call constrained Toda hierarchy (C-Toda). It can be regarded as a certain
subhierarchy of the 2DToda lattice obtained by imposing the constraint L̄ = L† on the
two Lax operators (in the symmetric gauge).We prove the existence of the tau function
of the C-Toda hierarchy and show that it is the square root of the 2D Toda lattice tau
function. In this and some other respects, the C-Toda is a Toda analogue of the CKP
hierarchy. It is also shown that zeros of the tau function of elliptic solutions satisfy the
dynamical equations of the Ruijsenaars–Schneider model restricted to turning points
in the phase space. The spectral curve has holomorphic involution which interchanges
the marked points in which the Baker–Akhiezer function has essential singularities.

Keywords Toda hierarchy · Integrable many-body systems

Mathematics Subject Classification 35Q51, 70H06

1 Introduction

The 2D Toda lattice hierarchy [1] is perhaps the most fundamental in the theory of
integrable systems. The commuting flows of the hierarchy are parametrized by infinite
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sets of time variables t = {t1, t2, t3, . . .} (“positive times”) and t̄ = {t̄1, t̄2, t̄3, . . .}
(“negative times”), together with the “zeroth time” t0 = x . Equations of the hierarchy
are differential in the times t, t̄ and difference in x with a lattice spacing η. A common
solution is provided by the tau function τ = τ(x, t, t̄) which satisfies an infinite set of
bilinear differential-difference equations of Hirota type [2,3]. All dependent variables
are expressed through the tau function in one or another way.

Equally fundamental is the Kadomtsev–Petviashvili (KP) hierarchy with indepen-
dent variables t = {t1, t2, t3, . . .} which can be regarded as a subhierarchy of the 2D
Toda lattice obtained by fixing the times t̄ and t0. Equations of the KP hierarchy are
purely differential.

Many if not all known integrable nonlinear partial differential and difference equa-
tions are reductions or special cases of the 2D Toda lattice and KP hierarchies.
Remarkably, they also contain most of the known finite-dimensional many-body inte-
grable systems. For example, solutions of theKP hierarchywhich are elliptic functions
of t1 with N poles in the fundamental domain (zeros of the tau function) give rise to the
N -body elliptic Calogero–Moser system [4–6]: Zeros of the tau function as functions
of t2 move as Calogero–Moser particles (see [7–10] and [11] for a review). Later, it
was shown that this correspondence can be extended to all commuting flows of the
hierarchy: The t j -dynamics of zeros of the tau function is the same as the Calogero–
Moser dynamicswith respect to the higher Hamiltonian Hj (see [12–14]). In their turn,
poles of solutions of the 2D Toda lattice hierarchy which are elliptic functions of t0
move as particles of the Ruijsenaars–Schneider model [15,16] which can be regarded
as a relativistic extension of the Calogero–Moser model (see [17,18]).

Given an integrable hierarchywith a space of solutionsM, one can define a subhier-
archy by imposing some constraints which restrict the space of solutions to X ⊂ M.
In known examples, the constraints are preserved by only a part of the commuting
flows of the hierarchy and are destroyed by the other part, so these time variables
should be frozen.

Well-known examples of such situation are provided by the B- and C-versions of
the KP hierarchy (BKP and CKP). In particular, the CKP hierarchy is introduced by
imposing the constraint L† = −L on the Lax operator of the KP hierarchy, where the
operation † is defined as ( f (x) ◦ ∂nx )† = (−∂x )

n ◦ f (x). The constraint is preserved
by the “odd” flows and is destroyed by the “even” ones, so one should fix “even”
times to zero values: t2 j = 0 for all j . The CKP hierarchy was introduced in the paper
[19] and later different aspects of it were discussed in [20–23]. Recently, in [24], a
characterization of the CKP hierarchy in terms of KP tau function was obtained: It
was shown that the KP tau functions that provide solutions of the CKP hierarchy (with
frozen “even” times) are characterized by the condition

∂t2 log τ

∣
∣
∣
t2 j=0

= 0. (1.1)

This conditionmakes sense as defining “turning points” for zeros xi of the tau function
in the variable x = t1: ∂t2xi = 0 (the velocities vanish). For elliptic solutions, the zeros
of the tau function move as particles of the elliptic Calogero–Moser system, so the
condition (1.1) indeed defines the submanifold of turning points in the phase space,
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where all momenta pi = 2∂t2xi are equal to zero. General algebraic geometrical
solutions to the CKP hierarchy are obtained starting from algebraic curves which have
a holomorphic involution, with the marked point on the curve (the point where the
Baker–Akhiezer functionhas essential singularity) being afixedpoint of the involution.

Moreover, one can prove that the CKP hierarchy possesses its own tau function
τCKP which is a function of the “odd” times only, and this tau function is given by
square root of the KP tau function restricted to the turning points.

In this paper, we suggest a Toda analogue of this story. To wit, we introduce a
subhierarchy of the 2D Toda lattice which is related to it in the way much similar
to the relation between the CKP and KP hierarchies. We call it C-Toda hierarchy.1

(“C” is from “constrained” and simultaneously points to the similarity with CKP.) The
constraint connects the two pseudo-difference Lax operators L, L̄ as follows:

L̄ = L† (1.2)

(in the symmetric gauge). This constraint is preserved by the flows ∂t j − ∂t̄ j and is
destroyed by the flows ∂t j + ∂t̄ j , so one should fix t j + t̄ j = 0 and vary only the times

Tj = 1
2 (t j − t̄ j ). We show that solutions to the C-Toda hierarchy among all solutions

to the 2D Toda lattice are characterized by the condition

(∂t1 + ∂t̄1) log τ

∣
∣
∣
t j+t̄ j=0

= 0. (1.3)

Similarly to the CKP case, this condition makes sense as defining “turning points” for
zeros xi of the tau function in the variable x (the “zeroth time” of the 2D Toda lattice):
(∂t1 + ∂t̄1)xi = 0. For elliptic solutions, the zeros of the tau function move as particles
of the elliptic Ruijsenaars–Schneider system, so the condition (1.3) indeed defines the
submanifold of turning points in the phase space.

We also prove that the C-Toda hierarchy possesses its own tau function τC which
is a function of the times Tj only, and this tau function is given by square root of the
2D Toda lattice tau function restricted to the turning points.

The analogies between the CKP and C-Toda hierarchies are summarized in the
table:

CKP C-Toda

Evolution times
t1, t3, t5, . . . ;

t2 j = 0
t1− t̄1, t2− t̄2, t3− t̄3, . . . ;

t j + t̄ j = 0
Constraints
forL − operators

L† = −L L̄ = L†

Tau functions τCKP = √
τKP τC−Toda = √

τToda

Turning points
conditions

∂t2 log τKP
∣
∣
∣
t2 j=0

= 0 (∂t1 + ∂t̄1 ) log τToda
∣
∣
∣
t j+t̄ j=0

= 0

Bilinear relations
∮

C∞
ψ(t, k)ψ(t′,−k)dk=0

(∮

C∞
−
∮

C0

)

ψ(t, k)ψ(t′, k−1)
dk

k
=0

Algebraic curves
involutionι,
ιP∞ = P∞

involutionι,
ιP∞ = P0, ιP0 = P∞

1 It is different from what is called Toda hierarchy of C-type in [1].
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The paper is organized as follows: In Sect. 2.1, we briefly review the 2DToda lattice
hierarchy. In Sect. 2.2, the constrained Toda hierarchy (C-Toda) is introduced, and in
Sect. 2.3 we prove the existence of the tau function for this hierarchy. Section 3 is
devoted to the elliptic Ruijsenaars–Schneider model. We show that elliptic solutions
of the C-Toda hierarchy generate the Ruijsenaars–Schneider dynamics of their poles
(zeros of the tau function) restricted to the subspace in the phase space corresponding
to turning points. We also prove that the spectral curve of the Lax matrix of the
Ruijsenaars–Schneider model for turning points admits a holomorphic involution.

2 Constrained Toda hierarchy

2.1 2D Toda lattice

First of all, we briefly review the 2D Toda lattice hierarchy following [1]. Let us
consider the pseudo-difference Lax operators:

L = eη∂x +
∑

k≥0

Uk(x)e
−kη∂x , L̄ = c(x)e−η∂x +

∑

k≥0

Ūk(x)e
kη∂x , (2.1)

where eη∂x is the shift operator acting as e±η∂x f (x) = f (x ± η) and the coefficient
functions Uk , Ūk are functions of x , t, t̄. The Lax equations are

∂tmL = [Bm,L], ∂tm L̄ = [Bm, L̄] Bm = (Lm)≥0, (2.2)

∂t̄mL = [B̄m,L], ∂t̄m L̄ = [B̄m, L̄] B̄m = (L̄m)<0. (2.3)

Here and below, given a subset S ⊂ Z, we denote
(∑

k∈Z
Uke

kη∂x
)

S

=
∑

k∈S
Uke

kη∂x . For

example, B1 = eη∂x +U0(x), B̄1 = c(x)e−η∂x . An equivalent formulation is through
the zero curvature (Zakharov–Shabat) equations:

∂tnBm − ∂tmBn + [Bm,Bn] = 0, (2.4)

∂t̄nBm − ∂tm B̄n + [Bm, B̄n] = 0, (2.5)

∂t̄n B̄m − ∂t̄m B̄n + [B̄m, B̄n] = 0. (2.6)

For example, putting

c(x) = eϕ(x)−ϕ(x−η), (2.7)

we have from (2.5) at m = n = 1:

∂t1∂t̄1ϕ(x) = eϕ(x)−ϕ(x−η) − eϕ(x+η)−ϕ(x). (2.8)

123



Constrained Toda hierarchy and... Page 5 of 26 23

This is the famous 2D Toda lattice equation.
Note that from (2.2) and (2.3), it follows that

∂tmϕ = (Lm)0, ∂t̄mϕ = −(L̄m)0. (2.9)

The zero curvature equations are compatibility conditions for the auxiliary linear
problems

∂tmψ = Bm(x)ψ, ∂t̄mψ = B̄m(x)ψ, (2.10)

where the wave function ψ depends on a spectral parameter k: ψ = ψ(x, t, t̄; k). The
wave function has the following expansion in powers of k:

ψ(x, t, t̄; k) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

kx/ηeξ(t,k)
(

1 +
∑

s≥1

ξs(x)k
−s
)

, k → ∞,

kx/ηeξ(t̄,k−1)+ϕ(x)
(

1 +
∑

s≥1

χs(x)k
s
)

, k → 0,

(2.11)

where

ξ(t, k) =
∑

j≥1

t j k
j . (2.12)

The wave function satisfies the linear equation

∂t1ψ(x, k) = ψ(x + η, k) + v(x)ψ(x, k), (2.13)

where v(x) = U0(x).
The wave operators are pseudo-difference operators of the form

W(x) = 1 + ξ1(x)e−η∂x + ξ2(x)e−2η∂x + . . .

W̄(x) = eϕ(x)(1 + χ1(x)e−η∂x + χ2(x)e−2η∂x + . . .)

(2.14)

with the same coefficient functions ξ j , χ j as in (2.11), then the wave function can be
written as

ψ = W(x)kx/ηeξ(t,k), k → ∞,

ψ = W̄(x)kx/ηeξ(t̄,k−1), k → 0.
(2.15)

The dual wave function ψ∗ is defined by

ψ∗ = (W†(x))−1k−x/ηe−ξ(t,k), k → ∞, (2.16)
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where the adjoint difference operator is defined according to the rule ( f (x)◦enη∂x )† =
e−nη∂x ◦ f (x). The auxiliary linear problems for the dual wave function have the form

− ∂tmψ∗ = B†
m(x)ψ∗. (2.17)

The Lax operators (2.1) are obtained by “dressing” of the shift operators by W ,
W̄:

L = Weη∂xW−1, L̄ = W̄e−η∂x W̄−1. (2.18)

So far we have used the standard gauge in which the coefficient of the first term of
L is fixed to be 1. In fact, there is a family of gauge transformations with g = eαϕ(x)

[25,26]:

L → g−1Lg, L̄ → g−1L̄g,
Bn → g−1Bng − g−1∂tn g, B̄n → g−1B̄ng − g−1∂t̄n g

of which α = 0 corresponds to the standard gauge L = L(0), L̄ = L̄(0). At α = 1
2 ,

we have the so-called symmetric gauge:

Ls = cs(x)eη∂x +
∑

k≥0

Us
k (x)e

−kη∂x ,

L̄s = cs(x−η)e−η∂x +
∑

k≥0

Ū s
k (x)e

kη∂x , (2.19)

cs(x) = e
1
2 (ϕ(x+η)−ϕ(x)). (2.20)

Hereafter, wewrite simplyLs , L̄s instead ofL(1/2), L̄(1/2) for brevity. In the symmetric
gauge, the generators of the tm- and t̄m-flows Bm , B̄m are

Bs
m = ((Ls)m)>0 + 1

2
((Ls)m)0, B̄s

m = ((L̄s)m)<0 + 1

2
((L̄s)m)0. (2.21)

Similar to (2.18), the Lax operators Ls , L̄s are obtained by dressing of the shift
operators:

Ls = Wseη∂x (Ws)−1, L̄s = W̄se−η∂x (W̄s)−1, (2.22)

where the wave operators are

Ws(x) = e− 1
2 ϕ(x)W, W̄s(x) = e− 1

2 ϕ(x)W̄. (2.23)

We also note that the wave functions are given by

ψ(x, k) = e
1
2 ϕ(x)W̄s(x)kx/ηeξ(t̄,k−1), k → 0, (2.24)
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ψ∗(x, k) = e− 1
2 ϕ(x)(Ws†(x))−1k−x/ηe−ξ(t,k), k → ∞. (2.25)

A common solution to the 2D Toda lattice hierarchy is provided by the tau function
τ = τ(x, t, t̄) [2,3]. The tau function satisfies the bilinear relation

∮

C∞
k

x−x ′
η

−1eξ(t,k)−ξ(t′,k)τ
(

x, t − [k−1], t̄
)

τ
(

x ′ + η, t′ + [k−1], t̄′
)

dk

=
∮

C0

k
x−x ′

η
−1eξ(t̄,k−1)−ξ(t̄′,k−1)τ

(

x + η, t, t̄ − [k]
)

τ
(

x ′, t′, t̄′ + [k]
)

dk (2.26)

valid for all x, x ′, t, t′, t̄, t̄′. It is assumed that x − x ′ ∈ ηZ. The integration contour
C∞ in the left-hand side is a big circle around infinity separating the singularities
coming from the exponential factor from those coming from the tau functions. The
integration contour C0 in the right-hand side is a small circle around zero separating
the singularities coming from the exponential factor from those coming from the tau
functions. The bilinear relation (2.26) encodes all differential-difference equations of
the hierarchy.

Setting x − x ′ = η, tn − t ′n = 1
n a

−n , t̄n − t̄ ′n = 1
n b

−n in (2.26) and taking the
residues, we get the three-term bilinear equation of the Hirota–Miwa type:

τ
(

x, t − [a−1], t̄
)

τ
(

x, t, t̄ − [b−1]
)

− τ
(

x, t, t̄
)

τ
(

x, t − [a−1], t̄ − [b−1]
)

= (ab)−1τ
(

x − η, t − [a−1], t̄
)

τ
(

x + η, t, t̄ − [b−1]
)

. (2.27)

The functions ϕ(x),U0(x) are expressed through the tau function as follows:

ϕ(x) = log
τ(x + η)

τ(x)
, (2.28)

U0(x) = ∂t1 log
τ(x + η)

τ(x)
= ∂t1ϕ(x). (2.29)

Thewave functionψ(x, k) and its dualψ∗(x, k) are expressed through the tau function
as follows [1–3]:

ψ(x, k) = kx/η exp

⎛

⎝
∑

j≥1

t j k
j

⎞

⎠

τ
(

x, t − [k−1], t̄
)

τ(x, t)
, k → ∞,

ψ(x, k) = kx/η exp

⎛

⎝
∑

j≥1

t̄ j k
− j

⎞

⎠

τ
(

x + η, t, t̄ − [k]
)

τ(x, t)
, k → 0,

ψ∗(x, k) = k−x/η exp

⎛

⎝−
∑

j≥1

t j k
j

⎞

⎠

τ
(

x + η, t + [k−1], t̄
)

τ(x + η, t)
, k → ∞,
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23 Page 8 of 26 I. Krichever, A. Zabrodin

ψ∗(x, k) = k−x/η exp

⎛

⎝−
∑

j≥1

t̄ j k
− j

⎞

⎠
τ
(

x, t, t̄ + [k])
τ(x + η, t)

, k → 0, (2.30)

where

t ± [k] =
{

t1 ± k, t2 ± 1

2
k2, t3 ± 1

3
k3, . . .

}

. (2.31)

Taking into account Formula (2.30), one can represent (2.26) as a bilinear relation for
the wave functions:

(∮

C∞
−
∮

C0

)

ψ(x, t, t̄; k)ψ∗(x ′, t′, t̄′; k) dk

2π ik
= 0, x − x ′ ∈ ηZ. (2.32)

2.2 The C-Toda hierarchy

The C-Toda hierarchy is defined by imposing the constraint

L̄s = Ls† (2.33)

(in the symmetric gauge). In the standard gauge, it looks as follows:

L̄eϕ = eϕL†. (2.34)

This means that Ū s
j (x) = Us

j (x + jη) for j ≥ 0. In terms of the wave operators, this
is equivalent to the constraint

W̄sWs† = WsW̄s† = 1. (2.35)

It is important to note that not all time flows of the full Toda hierarchy are consistent
with the constraint. Let us introduce the following linear combinations of times:

Tj = 1

2
(t j − t̄ j ), y j = 1

2
(t j + t̄ j ), (2.36)

then the corresponding vector fields are

∂Tj = ∂t j − ∂t̄ j , ∂y j = ∂t j + ∂t̄ j . (2.37)

One can see that the Tj -flows preserve the constraint. Indeed, we have:

∂t j (L̄s − Ls†) = [Bs
j , L̄s] − [Bs

j ,L]s† = [Bs
j , L̄s] + [Bs†

j ,Ls†]
= [Bs

j + B̄s
j , L̄s] = (∂t j + ∂t̄ j )L̄

s .
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Similarly,

∂t̄ j (L̄
s − Ls†) = [B̄s

j , L̄s] − [B̄s
j ,L]s† = [B̄s

j , L̄s] + [B̄s†
j ,Ls†]

= [Bs
j + B̄s

j , L̄s] = (∂t j + ∂t̄ j )L̄
s,

so

(∂t j − ∂t̄ j )(L̄
s − Ls†) = ∂Tj (L̄s − Ls†) = 0

for all Tj . At the same time, the y j -flows destroy the constraint, so we should put
y j = 0 for all j . The situation is similar to the embedding of the CKP hierarchy into
the KP one, where the constraint is preserved only by the “odd” times and all “even”
times are fixed to be 0.

Set

Am = Bs
m − B̄s

m . (2.38)

In particular,

A1 = cs(x)eη∂x − cs(x − η)e−η∂x ,

A2 = cs(x)cs(x + η)e2η∂x + cs(x)(v(x) + v(x + η))eη∂x

−cs(x − η)(v(x) + v(x − η))e−η∂x − cs(x − η)cs(x − 2η)e−2η∂x ,

where v(x) = U0(x) = 1
2∂T1ϕ(x). The Zakharov–Shabat equations for the C-Toda

hierarchy read

[∂Tm − Am, ∂Tn − An] = 0. (2.39)

The simplest equation is obtained at m = 1, n = 2. It reads:

(∂T2 − ∂2T1)ϕ(x + η) − (∂T2 + ∂2T1)ϕ(x)

= 2eϕ(x)−ϕ(x−η) − 2eϕ(x+2η)−ϕ(x+η) + 1

2
(∂T1ϕ(x + η))2 − 1

2
(∂T1ϕ(x))2.

(2.40)

Eq. (2.15) together with the constraints (2.35) implies that the dual wave function
ψ∗ in the C-Toda hierarchy is expressed through the wave function ψ as follows:

ψ∗(x, k) = e−ϕ(x)ψ(x, k−1)

∣
∣
∣
t j+t̄ j=0

. (2.41)

The bilinear relation (2.32) for the C-Toda hierarchy acquires the form

(∮

C∞
−
∮

C0

)

ψ(x, t, t̄; k)ψ(x ′, t′, t̄′; k−1)
dk

2π ik
= 0, x − x ′ ∈ ηZ, (2.42)

where it is assumed that t j + t̄ j = t ′j + t̄ ′j = 0.
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Using relation (2.30), we see that Eq. (2.41) in terms of the tau function reads

τ(x, t, t̄ − [k−1]) = τ(x, t + [k−1], t̄) at tk + t̄k = 0. (2.43)

Expanding it in powers of k, we obtain, in the leading order:

(∂t1 + ∂t̄1) log τ(x, t, t̄) = 0 at tk + t̄k = 0. (2.44)

This is the necessary condition which should be obeyed by the tau function of the 2D
Toda lattice in order to provide a solution to the C-Toda hierarchy. We conjecture that
this condition implies

(∂t j + ∂t̄ j ) log τ(x, t, t̄) = 0 at tk + t̄k = 0 (2.45)

for all j ≥ 1, i.e., ∂y j log τ = 0. We stress that in general this condition does not
mean that the tau function is independent of y j . (In particular, the second derivative
∂2y j log τ may be nonzero.) However, an important particular case is the reduction to
the 1D Toda lattice, where the solutions do not depend on the variables y j . Then, the
conditions (2.45) are obviously satisfied and we see that any solution of the 1D Toda
hierarchy solves the constrained Toda hierarchy.

2.3 Tau function of the C-Toda hierarchy

The wave functions of the C-Toda hierarchy can be expressed through the tau function
τ = τ T of the 2D Toda hierarchy according to Formula (2.30). However, one may ask
whether there exists a tau function τC of the C-Toda hierarchy which depends on the
time variables Tj = 1

2 (t j − t̄ j ) = t j only. (Hereafter, because at t j + t̄ j = 0 we have
Tj = t j , we use the notation t j for the time variables Tj .) Below, we show that the
answer is in the affirmative.

Theorem 2.1 There exists a function τC = τC (x, t) such that

ψ(x, t; k) = e
1
2ϕ(x,t)

√

χ2(x, t; k) − χ2(x−η, t; k), k → ∞, (2.46)

ψ(x, t; k−1) = e
1
2ϕ(x,t)

√

χ̄2(x, t; k) − χ̄2(x+η, t; k), k → ∞, (2.47)

where

χ(x, t; k) = kx/ηeξ(t,k)− 1
2ϕ(x,t) τ

C (x, t − [k−1])
τC (x, t)

, (2.48)

χ̄(x, t; k) = k−x/ηe−ξ(t,k) τ
C (x + η, t + [k−1])

τC (x, t)
, (2.49)

ϕ(x, t) = log

(
τC (x + η, t)

τC (x, t)

)2

. (2.50)
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Definition 2.1 The function τC = τC (x, t) is called the tau function of the C-Toda
hierarchy.

Proof of Theorem2.1 The starting point of the proof is the bilinear relation (2.42):

(∮

C∞
−
∮

C0

)

ψ(x, t,−t; k)ψ(x ′, t′,−t′; k−1)
dk

2π ik
= 0, x − x ′ ∈ ηZ.

(2.51)

We can represent the wave functions in the form

ψ(x, t,−t; k) = kx/ηeξ(t,k)w(x, t; k), k → ∞,

ψ(x, t,−t; k−1) = k−x/ηe−ξ(t,k)w̄(x, t; k), k → ∞,

(2.52)

then the bilinear relation can be written as

∮

C∞
kn−1eξ(t−t′,k)w(x, t; k)w̄(x−nη, t′; k)dk

=
∮

C0

kn−1e−ξ(t−t′,k−1)w̄(x, t; k−1)w(x−nη, t′; k−1)dk.

(2.53)

One can always normalize the functions w(x, t; k), w̄(x, t; k) in the following way:

w(x, t;∞) = 1, w̄(x, t;∞) = r(x, t) = eϕ(x,t). (2.54)

Now, choosing t − t′ and n in some special ways, one is able to obtain different
relations for the functions w(x, t; k), w̄(x, t; k) with certain shifts of the variables.

1. t − t′ = [a−1], n = 1. In this case, eξ(t−t′,k) = a

a − k
and the bilinear relation

acquires the form

∮

C∞

a

a − k
w(x, t; k)w̄(x−η, t − [a−1]; k)dk

=
∮

C0

(

1 − 1

ka

)

w̄(x, t; k−1)w(x−η, t − [a−1]; k−1)dk.

The residue calculus yields

w(x, t; a)w̄(x − η, t − [a−1]; a) = r(x − η, t − [a−1]) − a−2r(x, t). (2.55)
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2. t − t′ = [a−1] + [b−1], n = 2. In this case, the bilinear relation acquires the form

∮

C∞

abk

(a − k)(b − k)
w(x, t; k)w̄(x−2η, t − [a−1] − [b−1]; k)dk

=
∮

C0

k
(

1 − 1

ka

)(

1 − 1

kb

)

w̄(x, t; k−1)w(x−2η, t − [a−1] − [b−1]; k−1)dk.

The residue calculus yields

c
ab

a−b

(

aw(x, t; a)w̄(x−2η, t−[a−1]−[b−1]; a)−bw(x, t; b)w̄(x−2η, t−[a−1]−[b−1]; b)
)

= abr(x − 2η, t − [a−1] − [b−1]) − (ab)−1r(x, t).
(2.56)

3. t − t′ = [a−1] − [b−1], n = 0. In this case,

∮

C∞
k−1 a(b − k)

b(a − k)
w(x, t; k)w̄(x, t − [a−1] + [b−1]; k)dk

=
∮

C0

k−1 k − a−1

k − b−1 w̄(x, t; k−1)w(x, t − [a−1] + [b−1]; k−1)dk

and residue calculus yields

c
(

1 − a

b

)

w(x, t; a)w̄(x, t−[a−1]+[b−1]; a)−
(

1 − b

a

)

w̄(x, t; b)w(x, t−[a−1]+[b−1]; b)

= b

a
r(x, t) − a

b
r(x, t − [a−1] + [b−1]).

(2.57)

Expressing w̄ through w with the help of (2.55), we can represent the other two
relations, (2.56) and (2.57), as a system of two equations for two “variables”

Xa = w(x − η, t − [b−1]; a)

w(x, t; a)
, Xb = w(x − η, t − [a−1]; b)

w(x, t; b) . (2.58)
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The system has the form

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ab

a−b

[

ag(x−η, t−[b−1]; a)X−1
a − bg(x−η, t−[a−1]; b)X−1

b

]

= abr(x−2η, t−[a−1]−[b−1]) − (ab)−1r(x, t)

(

1− a

b

)

g(x, t; a)Xa −
(

1− b

a

)

g(x, t; b)Xb

= b
a r(x−η, t−[b−1]) − a

b r(x−η, t−[a−1]),

(2.59)

where

g(x, t; z) = r(x − η, t − [z−1]) − z−2r(x, t). (2.60)

Next, we take the product of the left-hand sides of the two equations (2.59) and equate
it to the product of the right-hand sides. After some transformations, we obtain the
remarkable relation

(
Xa

Xb

)2

= w2(x, t; b)w2(x − η, t − [b−1]; a)

w2(x, t; a)w2(x − η, t − [a−1]; b) = g(x, t; b)g(x − η, t − [b−1]; a)

g(x, t; a)g(x − η, t − [a−1]; b)
(2.61)

which implies that

w0(x, t; z) := w(x, t; z)g−1/2(x, t; z)

obeys the relation

w0(x, t; b)w0(x − η, t − [b−1]; a)

w0(x, t; a)w0(x − η, t − [a−1]; b) = 1. (2.62)

It follows from this relation that there exists a function τC (x, t) such that

w0(x, t; z) = τC (x − η, t − [z−1])
τC (x, t)

. (2.63)

The proof is almost literally a repetition of the proof of a similar statement for the
CKP hierarchy presented in [24].

Therefore, we have

w(x, t; k) = g1/2(x, t; k)τ
C (x − η, t − [k−1])

τC (x, t)
(2.64)

123
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with g(x, t; k) as in (2.60). The normalization of w implies that

1 = w(x, t,∞) = r1/2(x − η, t)
τC (x − η, t)

τC (x, t)
,

whence

r(x, t) =
(

τC (x + η, t)
τC (x, t)

)2

. (2.65)

On the other hand, we know that

r(x, t) = τ T (x + η, t,−t)
τ T (x, t,−t)

, (2.66)

where τ T is the tau function of the 2DToda lattice hierarchy. This implies the following
relation between the two tau functions:

τ T (x, t,−t) = C(t)(τC (x, t))2, (2.67)

where C(t) is a quasi-constant in x (i.e., it is an η-periodic function of x) depending
on t. Below, we shall see that in fact C does not depend on t.

Finally, we conclude that the factorw(x, t; k)which enters the k → ∞ asymptotics
of the wave function ψ(x, t,−t; k) (see (2.52)) is expressed through the tau function
as follows:

w(x, t; k) =
[

1 − k−2
(

τC (x + η, t)τC (x − η, t − [k−1])
τC (x, t)τC (x, t−[k−1])

)2
]1/2

τC (x, t − [k−1])
τC (x, t)

.

(2.68)

The function w̄(x, t; k) which enters the k → 0 asymptotics of the function
ψ(x, t,−t; k) can be found from the relation (2.55) which reads

w(x, t; k)w̄(x − η, t − [k−1]; k) = g(x, t; k).

After a simple algebra, we obtain

w̄(x, t; k) =
[

1 − k−2
(

τC (x, t)τC (x + 2η, t + [k−1])
τC (x + η, t)τC (x + η, t+[k−1])

)2
]1/2

×τC (x + η, t)
τC (x, t)

τC (x + η, t + [k−1])
τC (x, t)

.

(2.69)

We can represent Eqs. (2.68) and (2.69) in a more suggestive form. Introduce
modified “wave functions” χ , χ̄ which are connected with τC in the same way as ψ ,
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ψ∗ are connected with τ T :

χ(x, t; k) = kx/ηeξ(t,k)− 1
2ϕ(x,t) τ

C (x, t − [k−1])
τC (x, t)

, (2.70)

χ̄(x, t; k) = k−x/ηe−ξ(t,k) τ
C (x + η, t + [k−1])

τC (x, t)
, (2.71)

where

eϕ(x,t) = r(x, t) =
(

τC (x + η, t)
τC (x, t)

)2

. (2.72)

Recalling (2.65), it is easy to check that Formulas (2.68) and (2.69) are equivalent to

ψ(x, t; k) = e
1
2ϕ(x,t)

√

χ2(x, t; k) − χ2(x−η, t; k), k → ∞, (2.73)

ψ(x, t; k−1) = e
1
2ϕ(x,t)

√

χ̄2(x, t; k) − χ̄2(x+η, t; k), k → ∞. (2.74)

These formulas resemble the corresponding formula for the CKP hierarchy (see [24]),
with the x-derivative substituted by the difference. ��

We already proved relation (2.67) between τC and τ T . Now, we are going to prove
that C(t) = C is a quasi-constant in x which does not depend on the times, so that
τC is essentially the square root of τ T (restricted to the submanifold t + t̄ = 0 and
satisfying the “turning points” condition (2.45)).

Theorem 2.2 The tau functions τC and τ T are related as τ T = C(τC )2, where C is a
quasi-constant in x, i.e., the tau function of the C-Toda hierarchy is essentially square
root of the 2D Toda lattice tau function.

Proof First of all, we recall that together with (2.68) alternative formulas forw(x, t; k)
through τ T hold:

w(x, t; k) = τ T (x, t − [k−1],−t)
τ T (x, t,−t)

= τ T (x, t,−t + [k−1])
τ T (x, t,−t)

(2.75)

(the second equality is due to (2.43)). Substituting them into (2.68) and taking square
of both sides, we obtain the relation

(
τC (x, t − [k−1])

τC (x, t)

)2

− k−2
(

τC (x + η, t)τC (x − η, t − [k−1])
τC (x, t)τC (x, t)

)2

= τ T (x + η, t,−t)
τ T (x, t,−t)

[
τ T (x, t − [k−1],−t)τ T (x, t,−t + [k−1])

τ T (x + η, t,−t)τ T (x, t,−t)

]

.
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Now, we are going to use the Hirota–Miwa equation (2.27) for a = b = k which we
rewrite in the form

τ T (x, t − [k−1],−t)τ T (x, t,−t + [k−1])
τ T (x + η, t,−t)τ T (x, t,−t)

= τ T (x, t − [k−1],−t + [k−1])
τ T (x + η, t,−t)

− k−2 τ T (x − η, t − [k−1],−t + [k−1])
τ T (x + η, t,−t)

.

Substituting the right-hand side instead of the brackets [. . .] in the previous relation,
we get

(
τC (x, t − [k−1])

τC (x, t)

)2

− k−2
(

τC (x + η, t)τC (x − η, t − [k−1])
τC (x, t)τC (x, t)

)2

= τ T (x, t − [k−1], −t + [k−1])
τ T (x, t, −t)

− k−2 τ T (x − η, t − [k−1], −t + [k−1])τ T (x + η, t, −t)
τ T (x, t, −t)τ T (x, t, −t)

.

Plugging here (2.67), we obtain

(
C(t − [k−1])

C(t)
− 1

)[(
τC (x, t − [k−1])

τC (x + η, t)

)2

− k−2
(

τC (x − η, t − [k−1])
τC (x, t)

)2
]

= 0.

Since the factor in the square brackets is nonzero, we conclude that C(t − [k−1]) −
C(t) ≡ 0 as a power series in k. This implies that C(t) does not depend on t and,
therefore, τC = √

τ T . ��

3 Turning points of Ruijsenaars–Schneider model

3.1 Elliptic Ruijsenaars–Schneider model

Here, we collect the main facts on the elliptic Ruijsenaars–Schneider system [15]
following the paper [16].

The N -particle elliptic Ruijsenaars–Schneider system (a relativistic extension of
the Calogero–Moser system) is a completely integrable model. The canonical Poisson
brackets between coordinates andmomenta are {xi , p j } = δi j . The integrals ofmotion
in involution have the form

Ik =
∑

I⊂{1,...,N }, |I |=k

exp

(
∑

i∈I
pi

)
∏

i∈I , j /∈I

σ(xi − x j + η)

σ (xi − x j )
, k = 1, . . . , N ,

(3.1)

where σ(x) is the Weierstrass σ -function and η is a parameter which has a meaning
of the inverse velocity of light. The σ -function with quasi-periods 2ω1, 2ω2 such that
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Im(ω2/ω1) > 0 is defined as

σ(x) = σ(x | ω1, ω2) = x
∏

s �=0

(

1 − x

s

)

e
x
s + x2

2s2 ,

s = 2ω1m1 + 2ω2m2 with integer m1,m2.

It is connected with the Weierstrass ζ - and ℘-functions by the formulas ζ(x) =
σ ′(x)/σ (x), ℘(x) = −ζ ′(x) = −∂2x log σ(x). Important particular cases of (3.1) are

I1 = H1 =
∑

i

e pi
∏

j �=i

σ(xi − x j + η)

σ (xi − x j )
(3.2)

which is the Hamiltonian H1 of the chiral Ruijsenaars–Schneider model and

IN = exp

(
N
∑

i=1

pi

)

. (3.3)

It is natural to put I0 = 1. In comparison with the paper [16], our formulas differ by
the canonical transformation

epi → epi
∏

j �=i

(
σ(xi − x j + η)

σ (xi − x j − η)

)1/2

, xi → xi ,

which allows one to eliminate square roots in [16].
Let us denote the time variable of the Hamiltonian flow with the Hamiltonian

H = I1 by t1. The velocities of the particles are

ẋi = ∂H1

∂ pi
= epi

∏

j �=i

σ(xi − x j + η)

σ (xi − x j )
, (3.4)

where dot means the t1-derivative. The Hamiltonian equations ṗi = −∂H1/∂xi are
equivalent to the following equations of motion:

ẍi = −
∑

k �=i

ẋi ẋk
(

ζ(xi − xk + η) + ζ(xi − xk − η) − 2ζ(xi − xk)
)

=
∑

k �=i

ẋi ẋk
℘′(xi − xk)

℘ (η) − ℘(xi − xk)
.

(3.5)

One can also introduce integrals of motion I−k as

I−k = I−1
N IN−k =

∑

I⊂{1,...,N }, |I |=k

exp
(

−
∑

i∈I
pi
) ∏

i∈I , j /∈I

σ(xi − x j − η)

σ (xi − x j )
. (3.6)
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In particular,

I−1 =
∑

i

e−pi
∏

j �=i

σ(xi − x j − η)

σ (xi − x j )
. (3.7)

It can be easily verified that equations of motion in the time t̄1 corresponding to the
Hamiltonian H̄1 = σ 2(η)I−1 are the same as (3.5):

◦◦
x i= −

∑

k �=i

◦
xi

◦
xk
(

ζ(xi − xk + η) + ζ(xi − xk − η) − 2ζ(xi − xk)
)

. (3.8)

Here and below, ◦ means the t̄1-derivative. The velocity
◦
xi is given by

◦
xi= ∂ H̄1

∂ pi
= −σ 2(η)e−pi

∏

j �=i

σ(xi − x j − η)

σ (xi − x j )
. (3.9)

Multiplying (3.4) and (3.9), we obtain the important relation between ẋi and
◦
xi :

ẋi
◦
xi= −σ 2(η)

∏

k �=i

σ(xi − xk + η)σ (xi − xk − η)

σ 2(xi − xk)
(3.10)

(see [17,18]). The physical Hamiltonian of the Ruijsenaars–Schneider model is H =
H1 + H̄1.

3.2 The Ruijsenaars–Schneider model from the 2DToda lattice

In the paper [17] (see also the review [11]), itwas shown that theRuijsenaars–Schneider
dynamics is the same as dynamics of poles of elliptic solutions to the 2DToda equation
in the Toda times t1, t̄1. Later, in [18], this observation was extended to a complete
isomorphism between the elliptic Ruijsenaars–Schneider model (with higher Hamil-
tonian flows) and elliptic solutions to the whole 2D Toda lattice hierarchy.

In terms of the tau function, the 2DToda equation (thefirst equation of the hierarchy)
reads

∂t∂t̄ log τ(x) = −τ(x + η)τ(x − η)

τ 2(x)
, (3.11)

where t = t1, t̄ = t̄1. The tau function for elliptic solutions of the 2D Toda lattice
hierarchy has the form

τ(x, t, t̄) = exp
(

−
∑

k≥1

ktk t̄k
) N
∏

i=1

σ(x − xi (t, t̄)). (3.12)
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The zeros xi of the tau function are poles of the solution. They are assumed to be all
distinct.

One can see that the relation (3.10) is a consequence of the 2D Toda equation.
Indeed, (3.10) is obtained from (3.11) with the tau function (3.12) by equating the
coefficients at the highest (second order) poles at x = xi of both sides.

3.3 The Laxmatrix and the spectral curve

The equations of motion of the Ruijsenaars–Schneider model admit the Lax represen-
tation. The Lax matrix depends on a spectral parameter λ and has the form [17,18]

Li j (λ) = e−(xi−x j )ζ(λ) ẋi
σ(xi − x j − η + λ)

σ(λ)σ (xi − x j − η)
, i, j = 1, . . . , N . (3.13)

The characteristic polynomial of the Lax matrix is the generating function of the
integrals of motion (3.1):

det
(

z I − L(λ)
)

=
N
∑

n=0

σ(λ − nη)

σ (λ)σ n(η)
Inz

N−n (3.14)

(here I is the unity matrix).
The characteristic equation

R(z, λ) := det
(

z I − L(λ)
)

= 0 (3.15)

defines a Riemann surface �̃ which is an N -sheet covering of the λ-plane. Any point
of it is P = (z, λ), where z, λ are connected by Eq. (3.15). There are N points of the
curve above each point λ. It is easy to see from the right-hand side of (3.14) that the
Riemann surface �̃ is invariant under the simultaneous transformations

λ �→ λ + 2ωα, z �→ e−2ζ(ωα)ηz. (3.16)

The factor of �̃ over the transformations (3.16) is an algebraic curve�which covers the
elliptic curve with periods 2ωα . It is the spectral curve of the Ruijsenaars–Schneider
model. The points P∞ = (∞, 0) and P0 = (0, Nη) are special. They aremarked points
of the algebraic curve, where the Baker–Akhiezer function for the elliptic solutions of
the 2D Toda lattice hierarchy has essential singularities.

Let us note that the Lax matrix has the form of the elliptic Cauchy matrix times
diagonal matrices from the left and from the right. The explicit form of determinant
of the elliptic Cauchy matrix is known:

det
1≤i, j≤N

(
σ(xi − y j + λ)

σ(λ)σ (xi − y j )

)

=
σ
(

λ +
N∑

i=1
(xi − yi )

)

σ(λ)

∏

i< j
σ(xi − x j )σ (y j − yi )

∏

i, j
σ(xi − y j )

. (3.17)
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This allows one to obtain an explicit expression for the matrix inverse to the L(λ):

(LT (λ))−1
i j = e(xi−x j )ζ(λ) ẋ−1

i
σ(xi − x j − η + Nη − λ)σ 2(η)

σ (Nη − λ)σ(xi − x j − η)

×
∏

k �=i

σ(xi − xk − η)

σ (xi − xk)

∏

m �=i

σ(x j − xm + η)

σ (x j − xm)
. (3.18)

Here, LT is the transposed matrix.

3.4 Turning points

Turning points of the Ruijsenaars–Schneider model are defined by the conditions

ẋi+ ◦
xi= 0 or (∂t1 + ∂t̄1)xi = 0, i = 1, . . . , N . (3.19)

They mean that the velocities of all particles in the physical Ruijsenaars–Schneider
model with the Hamiltonian H = H1 + H̄1 are equal to zero. From Eq. (3.10), we see
that this is equivalent to

ẋi = σ(η)
∏

k �=i

(σ (xi − xk + η)σ (xi − xk − η))1/2

σ(xi − xk)

= σ N (η)
∏

k �=i

√

℘(η) − ℘(xi − xk) (3.20)

or

epi = σ(η)
∏

j �=i

(
σ(xi − x j − η)

σ (xi − x j + η)

)1/2

. (3.21)

The turning points form an N -dimensional submanifold T ⊂ P of the 2N -
dimensional phase space P .

Proposition 3.1 The Hamiltonian flow ∂T1 = ∂t1 − ∂t̄1 with the Hamiltonian H̄ =
H1 − H̄1 preserves the submanifold T .

Proof The corresponding time variable will be denoted as T1 = 1
2 (t1 − t̄1). We have

∗
xi= ∂ H̄

∂ pi
= 2σ(η)

∏

k �=i

(σ (xi − xk + η)σ (xi − xk − η))1/2

σ(xi − xk)
on T , (3.22)

where star means the T1-derivative. Taking the T1-derivative of (3.21), we get

∗
pi= 1

2

∑

j �=i

(
∗
xi − ∗

x j )
(

ζ(xi − x j − η) − ζ(xi − x j + η)
)

. (3.23)
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At the same time,

∗
pi= −∂ H̄

∂xi
= −epi

∏

j �=i

σ(xi − x j + η)

σ (xi − x j )

∑

l �=i

(

ζ(xi − xl + η) − ζ(xi − xl)
)

+σ 2(η)e−pi
∏

j �=i

σ(xi − x j − η)

σ (xi − x j )

∑

l �=i

(

ζ(xi − xl − η) − ζ(xi − xl)
)

+
∑

l �=i

e pl
∏

j �=l

σ(xl − x j + η)

σ (xl − x j )

(

ζ(xl − xi + η) − ζ(xl − xi )
)

−σ 2(η)
∑

l �=i

e−pl
∏

j �=l

σ(xl − x j − η)

σ (xl − x j )

(

ζ(xl − xi − η) − ζ(xl − xi )
)

.

Plugging here the turning point condition (3.21) and using (3.22), we obtain (3.23).
This means that the submanifold T is indeed invariant under the T1-flow. ��

Now, we are going to prove that for any turning point the spectral curve � admits
a holomorphic involution.

Theorem 3.1 For any turning point, the spectral curve � admits the holomorphic
involution

ι : (z, λ) → (z−1, Nη−λ). (3.24)

Proof Substituting (3.20) into (3.13) and (3.18), we see that

(LT (λ))−1 = UL(Nη − λ)U−1, (3.25)

where U = diag(U1, . . . ,UN ) is the diagonal matrix with

Ui = exi (ζ(λ)+ζ(Nη−λ))
∏

k �=i

σ(xi − xk)

σ (xi − xk + η)
. (3.26)

Therefore, the spectral curve (3.15) has the holomorphic involution (3.24). ��
Note that the involution interchanges the twomarked points: ιP∞ = P0, ιP0 = P∞.

The following proposition characterizes fixed points of the involution.

Proposition 3.2 The involution ι has two fixed points for even N and four fixed points
for odd N.

Proof The fixed points may lie above points λ∗ such that λ∗ = Nη − λ∗ modulo the
lattice with periods 2ωα , i.e., λ∗ = 1

2Nη − ω, where ω is either 0 or one of the three
half-periods. Substituting this into the equation of the spectral curve (3.14) and taking
into account that for turning points it holds Ik = IN−k , we conclude that for even N
the fixed points are (±1, 1

2Nη), while for odd N the fixed points are (1, 1
2Nη) and

three points (−e−ζ(ω)η, 1
2Nη − ω) for the three half-periods ω. ��
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We have shown that from the condition on the turning points it follows that the
spectral curve has a holomorphic involution with fixed points. Now, we are going to
prove the inverse statement: The involution of the curve (which can be not necessarily
the spectral curve of the Ruijsenaars–Schneider model) having fixed points implies the
turning points condition for zeros of the tau function corresponding to the algebraic
geometrical solution constructed from the curve according to the general construction
of quasi-periodic (algebraic geometrical) solutions [27,28]. Quasi-periodic solutions
to the Toda lattice equation were constructed in [29]. The algebraic geometrical data
include an algebraic curve � of genus g with two marked points P0, P∞, local param-
eters near the marked points and an effective divisor D of degree g on �. Algebraic
geometrical solutions of the constrained Toda hierarchy were recently constructed in
[30].

Theorem 3.2 Let � be an algebraic curve with holomorphic involution ι which has
fixed points and two marked points P∞, P0 such that P0 = ιP∞. Let k−1 be a local
parameter in the vicinity of P∞ (k−1(P∞) = 0), we assume that the local parameter
in the vicinity of P0 is k (k(P0) = 0), so that ι(k) = k−1. Besides, we fix an effective
divisor D of degree g on � such that

D + ιD = K + P0 + P∞, (3.27)

where K is the canonical class. Then, zeros of the tau function of the solution to the
2D Toda lattice constructed from these algebraic geometrical data satisfy the turning
points condition.

Proof Let ψ(x; P) = ψ(x, t, t̄; P) be the Baker–Akhiezer function on the curve �

(P is a point on �). It has simple poles at the points of the divisor D. Its behavior in
the vicinity of the marked points is

ψ(x; P) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

kx/ηekt
(

1 +
∑

s≥1

ξs(x)k
−s
)

, P → P∞ (k → ∞),

eϕ(x)kx/ηek
−1 t̄
(

1 +
∑

s≥1

χs(x)k
s
)

, P → P0 (k → 0).

(3.28)

The function ϕ(x) is expressed through the tau function as in (2.28). The Baker–
Akhiezer function satisfies the linear equation

∂tψ(x; P) = ψ(x + η; P) + v(x)ψ(x; P), (3.29)

where

v(x) = ∂t log
τ(x + η)

τ(x)
= ϕ̇(x). (3.30)

Substituting (3.28) into (2.13), we obtain, in the limit k → ∞:

v(x) = ξ1(x) − ξ1(x + η), ξ1(x) = −∂t log τ(x). (3.31)
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The dual Baker–Akhiezer function ψ∗(x; P) satisfies the equation

− ∂tψ
∗(x; P) = ψ∗(x − η; P) + v(x)ψ∗(x; P). (3.32)

Its behavior in the vicinity of the marked points is

ψ∗(x; P) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

k−x/ηe−kt
(

1 +
∑

s≥1

ξ∗
s (x)k−s

)

, P → P∞ (k → ∞),

e−ϕ(x)k−x/ηe−k−1 t̄
(

1 +
∑

s≥1

χ∗
s (x)ks

)

, P → P0 (k → 0).

(3.33)

Substituting (3.33) into (3.29), we obtain v(x) = ξ∗
1 (x)− ξ∗

1 (x +η). Comparing with
(3.31), we conclude that

ξ∗
1 (x) = −ξ1(x + η). (3.34)

On the curve with involution such that P0 = ιP∞, we can consider the function

ψι(x; P) = ψ(x; ιP). (3.35)

The condition (3.27) imposed on the divisorD and the behavior ofψι near the marked
points imply (due to uniqueness of the Baker–Akhiezer function) that we can identify

ψ∗(x, t, t̄; P) = e−ϕ(x)ψι(x, t, t̄; P)

∣
∣
∣
t+t̄=0

, (3.36)

whence

χs(x) = ξ∗
s (x) (3.37)

and the behavior of the function ψι near P∞ is

ψι(x; P) = eϕ(x)k−x/ηek t̄
(

1 +
∑

s≥1

ξ∗
s (x)k−s

)

, k → ∞. (3.38)

Substituting this into the linear equation (2.13) as k → ∞, we obtain, in the order
k−1:

ξ̇∗
1 (x) = eϕ(x+η)−ϕ(x). (3.39)
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Equation (3.34) allows one to rewrite this relation as

ξ̇1(x + η) = −eϕ(x+η)−ϕ(x), (3.40)

or, using (2.28) and (3.31),

∂2t log τ(x) = τ(x + η)τ(x − η)

τ 2(x)
at t + t̄ = 0. (3.41)

This is the turning points condition in terms of the tau function. Writing it as

τ̈ (x)

τ (x)
−
( τ̇ (x)

τ (x)

)2 = τ(x + η)τ(x − η)

τ 2(x)
(3.42)

and comparing the leading singularities of both sides at x = xi , where xi is any zero
of the tau function, we obtain the turning points condition (3.20). ��

Comparing (3.41) with the 2D Toda Eq. (3.11), we can represent it in the form

(∂t1 + ∂t̄1)∂t1 log τ(x) = 0 or (∂t1 + ∂t̄1)ξ1(x) = 0att1 + t̄1 = 0 (3.43)

which agreeswith (2.44).Moreover, from (3.36) it follows that the solution constructed
according to the data from Theorem 3.2 is a solution to the whole C-Toda hierarchy.
Indeed, (3.36) is equivalent to (2.41), which, being written in terms of the tau function,
yields (2.43) and (2.45).

4 Conclusion

The main result of this paper is introduction of a new integrable hierarchy which we
have called the constrained Toda hierarchy or simply C-Toda hierarchy. It is obtained
from the 2DToda lattice by imposing a constraint on the twoLax operators of the latter.
The constraint is invariant with respect to only a “half” of the hierarchical time flows,
so the other half of the time variables should be “frozen” (fixed to zero values). The
story is to much extent analogous to the way in which the CKP hierarchy is obtained
from the KP hierarchy. The analogy also manifests itself in the construction of the tau
function of the C-Toda hierarchy.

A related result concerns elliptic solutions to the C-Toda hierarchy and their relation
with the elliptic Ruijsenaars–Schneider model. We have shown that zeros of the tau
function of the elliptic solutions move as Ruijsenaars–Schneider particles restricted to
a half-dimensional submanifold in the phase space corresponding to turning points.
In this respect, too, the situation is analogous to the CKP case, where the dynam-
ics of poles of elliptic solutions is the Calogero–Moser dynamics restricted to the
submanifold of turning points, i.e., points with zero momenta, as is shown in [24].
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