
Lecture I: Basics of Morse Theory

September 14, 2020

1 Basic Definitions and Results

Let M be a compact smooth manifold. We shall denote by C∞(M ;R) the
space of C∞-functions on M , with the C∞-topology. This is Frechet vector
space. More generally for N a smooth manifold we denote by C∞(M,N)
the space of C∞ mappings with the C∞ topology. This is Frechet manifold.

For any f ∈ C∞(M ;R) we denote by Df : M → T ∗M the map.

x 7→ Dfx : TMx → R,

where Dfx is viewed as an element of the dual space T ∗Mx. This is a smooth
section of T ∗M . The correspondence f 7→ Df defines a continuous mapping
C∞(M,R)→ C∞(M,T ∗M).

Definition 1.1. Let f ∈ C∞(M ;R).

• Then x ∈ M is a critical point of f if Dfx : TMx → R is zero; i.e., x
is a critical point of f if and only if Df(x) lies in the zero section of
T ∗M .

• A critical point x ∈ M of f is non-degenerate if Df : M → T ∗M is
transverse to the zero section of T ∗M at x.

• t ∈ R is a critical value of f if there is a critical point x of f with
f(x) = t.

• Any real number that is not a critical value of f is called a regular
value of f .

Suppose that W is a compact manifold with boundary and fix a decom-
position ∂W = ∂−W

∐
∂+W , where each of ∂±W is a union of connected

components. Then we define C∞0 (W,∂−W,∂+W ) to be the set of C∞ func-
tions f on W satisfying:
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• f is locally constant on ∂W ,

• f has no critical points on the boundary

• Df is positive, resp. negative, on outward pointing normals at points
of ∂+W , resp. ∂−W .

If ∂±W are clear from context when we will use the notation C∞0 (W )
instead of C∞0 (W,∂−W,∂+W ) to refer to this space of functions.

2 The Hessian and Local Models

2.1 The Hessian

At any point (x, 0) of the zero section of T ∗M there is a canonical decom-
position

T (T ∗M)(x,0) = TMx ⊕ T ∗Mx,

where the first factor is the tangent space to the zero section and the second
factor is the space of vertical tangents. [The second subspace of T (T ∗M) is
canonically defined at every point of T ∗M , but the first is not. One way to
produce the first at a general point of T ∗M is to fix a connection on T ∗M .]

Fix a smooth function f : M → R and suppose that x is a critical point
of f . Then we have the composition

TMx
D(Df)−→ T (T ∗M)(x,0) = TMx ⊕ T ∗Mx

π2−→ T ∗Mx.

We denote this composition Hx(f) : TMx → T ∗Mx and call it the Hessian
of f at x.

Lemma 2.1. The map Hx(f) is self-adjoint. Any local coordinate system
(x1, . . . , xn) near x determines a basis for TM consisting of {∂/∂xi}ni=1 and
the dual basis {dxi}ni=1 for T ∗M defined throughout the neighborhood. With
respect to these bases at x, we have

Hx(f) =
(

∂2f
∂xi∂xj

∣∣
x

)
.

Proof. In the given local coordinates, Df is the map

Df(y) = (y,
∑
i

∂f

∂xi
(y)dxi),
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and by definition

Hx(f) = D(π2(Df(y))) =
∑
j

∂

∂xj
(π2Df)(x)dxj .

We have
∂

∂xj
(π2Df)(x) =

∑
i,j

∂2f

∂xj∂xi
(x)dxi.

Since the matrix of second partials is symmetric, this establishes that Hx(f)
is self-adjoint.

Fix a finite dimensional real vector space V . For any self-adjoint map-
ping H : V → V ∗ there is a basis B for V such that the matrix for H is
diagonal in the basis B for V and the dual basis B∗ for V ∗. The number
of positive, negative, and zero eigenvalues are independent of the choice of
such a basis. The numbers of zero eigenvalues is called the nullity of H, or
its co-rank. The rank of H is dim(V ) minus the co-rank of H. The num-
ber of (strictly) negative eigenvalues of H is called the index of H. It is
the maximal dimension of a linear subspace of V on which H is negative
definite.

Definition 2.2. Let x be a critical point of f : M → R. The index of the
critical point x is the index of Hx(f).

2.2 Local Models

Here is a local model for a non-degenerate critical point.

Lemma 2.3. Let U ⊂ Rn be an open neighborhood of the origin Let f : U →
R have a non-degenerate critical point at the origin. Then there is an open
ball V ⊂ Rn and a diffeomorphism onto an open neighborhood of the origin
ϕ : V → ϕ(V ) ⊂ U with the property that f ◦ ϕ =

∑
i εi|xi|2 with each εi

equal to ±1.

Proof. We begin with a claim.

Claim 2.4. If a smooth function g defined in a neighborhood of 0 in Rn
vanishes at 0, then there is a smooth coordinate system (x1, . . . , xn) defined
near 0 so that g(x1, . . . , xn) =

∑
i x

ihi(x
1, . . . , xn) for smooth functions hi

with hi(0) = ∂g/∂xi(0).
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Proof. Since g(0) = 0, the fundamental theorem of calculus implies

g(x) =

∫ 1

0

∑
i

xi(∂g/∂xi)(tx)dt =
∑
i

xi
∫ 1

0
(∂g/∂xi)(tx)dt.

Set hi =
∫ 1
0 (∂g/∂xi)(tx)dt.

Now suppose that f has a non-degenerate critical point at the origin.
Now we choose coordinates (x1, . . . , xn) near the origin so that the matrix
of second partials of f at 0 is a diagonal matrix with all diagonal entries ±1.
Then the claim gives (∂f/∂xi)(x) =

∑
j x

jkij . Applying the claim again

with these expressions for the ∂f/∂xi we see there are smooth functions hi,j
such that

f(x) =
∑
i,j

xixjhi,j .

By averaging we can assume that the hi,j = hj,i for all i, j.
Denote the ith diagonal entry by εi. Then hi,i(0) = εi. Restrict to a ball

around the origin where the hi,i are all non-zero.

We set y1 =
√
ε1h1,1x

1 +
∑n

i=2
xih1,i√
ε1h11

. Then (y1, x2, . . . , xn) is a coordi-

nate system near the origin and in this system

f = εi(y
1)2 +

∑
i,j≥2

xixjhi,j ,

where the hi,j are new functions of the coordinates (y1, x2, . . . , xn).. Con-
tinuing this way by induction we find a new set of coordinates (y1, . . . , yn)
in which f =

∑
i εi(y

i)2.

Definition 2.5. For a non-degenerate critical point p of a smooth function
f , local coordinates in a neighborhood of p in which f = f(p) +

∑
i εi(x

i)2

with the εi = ±1 are called standard coordinates near p.

Corollary 2.6. If p is a non-degenerate critical point of f , then, in the
ring of germs of functions at the origin, the ideal generated by the partial
derivatives of f is the ideal of all germs vanishing at p.

3 Morse Functions

Definition 3.1. Let M be a compact manifold, possibly with boundary
with a decomposition ∂M = ∂−M

∐
∂+M as before. A Morse function on

M is an element f ∈ C∞0 (M ;R) all of whose critical points (automatically
interior points) are non-degenerate.
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One way that Morse functions on compact manifolds with boundary arise
is shown in the following example.
Example. Let f : M → R be a Morse function on a closed manifold.
For regular values b < c let W = f−1([b, c]) and set ∂−W = f−1(b) and
∂+W = f−1(c). The restriction of f to W is a Morse function.

Lemma 3.2. Let M be a compact manifold, possibly with boundary.. The
set of Morse functions is an open subset of set of C∞0 (M ;R).

Proof. As we have seen, the condition that f be a Morse function is that
Df : M → T ∗M be transverse to the zero section (including the fact that Df
is nowhere zero on ∂M). Clearly, f 7→ Df is a continuous map C∞0 (M ;R)→
C∞(M,T ∗M). The subset of maps M → T ∗M transverse to the zero section
form an open subset of all C∞-mappings. The result follows.

Notice that it follows that the number of critical points is a locally con-
stant function. Also, as we vary f in a small neighborhood the critical points
vary continuously and Hessians at the critical point also vary continuously.
Since the index is a discrete invariant of the Hessian, it is a locally con-
stant function on the set of non-degenerate quadratic forms. Thus, for all
Morse functions sufficiently close to f we have a one-to-one correspondence
of critical points preserving the indices.

Theorem 3.3. The set of Morse functions is a dense subset of C∞0 (M ;R).

Proof. The space J1(M,R) is naturally identified with the cotangent bundle
of M and J1(f) = Df . Apply Thom’s Transversality Theorem to the map
f 7→ J1(f) and W equal to the zero section Z ⊂ T ∗M . Since a function
f : M → R is a Morse function if and only if J1(f) = Df is transverse to Z,
this gives the result.

There is an analogue of this argument using a finite dimension family
inside C∞0 (M ;R), see Theorem 4.9 on page 54 of Golubitsky-Guillemin.

A variant of this argument applies in the following relative situation.

Proposition 3.4. Let W be a smooth manifold. Suppose that f : W → R is
an element of C∞0 (W ;R) whose critical C set of f is compact and contained
in the interior of M . For any neighborhood U of C, there is an arbitrarily
small C∞0 -perturbation f̂ of f , with the perturbation supported in U and
which has only non-degenerate critical points.

Proposition 3.5. Let M be a smooth manifold and let f : M → R be a
C∞-function. Suppose that the critical set C ⊂ M of f with is compact.
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If the index of every critical point is at least λ, then there is an arbitrarily
small perturbation f̂ of f with f̂ = f outside any fixed neighborhood U of C
such that every critical point of f̂ is non-degenerate and of index ≥ λ.

Proof. Take a sequence gn of Morse functions agreeing with f outside of
U and converging to f in the C∞-topology. We claim that eventually all
the critical points of gn have index ≥ λ. Suppose not. Then pass to a
subsequence and find points xn in the critical set for gn at which the index
is less than λ. Passing to a further subsequence we arrange that the xn
converge to a critical point y of f , and indeed all xn lie in a local coordinate
system for y. Of course, the matrix of second partials of gn at xn in this local
coordinate system converge to the matrix of second partials of f at y. Since
the subset of symmetric matrices that have at least λ negative eigenvalues is
an open condition, this implies that the matrix of second partials of gn at xn
have at least λ negative eigenvalues. This contradicts the fact that xn is a
critical point for gn whose Hessian has fewer than λ negative eigenvalues.

We can also arrange that distinct critical points of a Morse function lie
in different level sets of the function

Corollary 3.6. Let M be a compact manifold. The set of Morse functions
with the property that the pre-image of each critical value has exactly one
critical point is an open dense set in C∞0 (M ;R).

Proof. Clearly the condition that the restriction of a Morse function to its
critical points gives an injective function from the set of critical points to R
is an open condition on the set of Morse functions. Since the set of Morse
functions is itself an open subset of C∞0 (M ;R), it follows that those with
this extra condition form an open subset of C∞0 (M ;R).

Let us show that these Morse functions form a dense set. To do this
we need only show that any Morse function is a limit of those with distinct
critical values. Let f be a Morse function and p1, . . . , pN its critical points.
Choose disjoint neighborhoods Uj ⊂ intM centered at pj with standard
local coordinates on the Uj . For each j let ψj be supported in Uj and equal
to 1 in some neighborhood of pj . For t = (t1, . . . , tN ) is a sufficiently small
neighborhood of the origin in RN , the function f(t) = f+

∑
j tjψj is a Morse

function. Again restricting to a smaller neighborhood of the origin, f(t) has
the same number of critical points as f . But each critical point of f is a
critical point of f(t). Thus, for t in this smaller neighborhood of the origin,
the critical points of f(t) are the {p1, . . . , pN}. The critical value under f(t)
of pj is f(pj) + tj . Thus, for generic t in this neighborhood, the values of
the pj under f(t) are all distinct.
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4 A Finite Dimensional Analogue

Here is a purely finite dimensional analogue of the fact that the Morse
functions are open dense.

Proposition 4.1. Let M ⊂ RN be a compact, smooth submanifold (without
boundary). For each u in the unit sphere SN−1 we have a smooth function
fu : M → R given fu(x) = 〈x, u〉 where the inner is the Euclidean inner
product. For an open dense set of u ∈ SN−1, the function fu is a Morse
function.

Proof. We define P (M) to be the smooth locally trivial fiber bundle over M
whose fiber at x ∈M is the Grassmannian of codimension-1 linear subspaces
of the normal space at x to M . There is a smooth map

ϕ : P (M)→ Gr(N − 1, N)

that assigns to L ⊂ νx(M) the codimension-1 hyperplane L ⊕ TxM . For
any unit vector u let Vu = u⊥. Then we have the corresponding point
{Vu} ∈ Gr(N−1, N). The critical points of fu are the image in M under the
projection P (M)→M of ϕ−1({Vu)}. The map fu is a Morse function if and
only if {Vu} is a regular value for ϕ : P (M)→ Gr(N − 1, N). The standard
finite dimensional version of Sard’s Theorem implies that the regular values
of ϕ are dense. In this case since the domain is compact, they are an open
dense.

5 Bott-Morse Functions

There is a generalization of the notion of a Morse function which is often
a more natural context in which to work, especially in geometric situations
where there is a compact symmetry group.

Definition 5.1. A function f : M → R is Bott-Morse function if the set
of critical points is a submanifold (possibly with components of different
dimensions) and if at every critical point x ∈M the null space of the Hessian
Hx(f) is the tangent space at x to the critical submanifold.

Remark 5.2. The null space of a symmetric bilinear form H : V ⊗ V → R
is the set of v ∈ V for which H(v, ·) : V → R is trivial. It is easily seen to
be a subspace indeed the maximal subspace on which H is identically zero.
H induces a symmetric biinear form on the quotient of V by its null space
and this form is non-degenerate.
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Remark 5.3. (i) In passing a critical level, the change in the topology is
achieved by attaching a disk bundle of dimension equal to the index of the
critical points along each component of the critical manifold.

(ii) One way to perturb a Bott-Morse function f (at least in the case
when the critical manifold is compact) is to choose a Morse function g on
the critical manifold and then extend it to all of M , say by pulling back
to the normal bundle and damping out away from the critical submanifold.
The family f + ε = f + εg will be a Morse function for all ε > 0 sufficiently
small. Then the change in topology is given by attaching descending disks
out of these critical points. This replaces the attachment of the disk bundle
over the critical submanifold in the Bott-Morse picture but gives the same
total change in the topology.

Remark 5.4. 1. If G ×M → M is an action of a compact Lie group on
a compact manifold and f : M → R is a G-invariant function, then for a
critical point x of f , the orbit G · x consists of critical points. Thus, unless
x is a fixed point for the action of the component of the identity of G, x
cannot be an isolated fixed point, and hence cannot be a non-degenerate
critical point.
2. Let G ×M → M be a free action of a compact group and denote by
π : M → M/G the natural quotient map. if f : M/G → R is a Morse
function, then f ◦ π : M → R is Bott-Morse with each component of the
critical set being a copy of G.
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