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Summary. A fundamental relationship is established between Jones’ knot invari-
ants and Vassiliev’s knot invariants. Since Vassiliev’s knot invariants have a firm
grounding in classical topology, one obtains as a result a first step in understanding
the Jones polynomial by topological methods.

Introduction

The main result in this paper is to establish a deep connection between two seminal
papers about knots and links in 3-space. The first paper is by Jones [J2]. The
second and more recent is the work of Vassiliev [V].

Jones’ paper, published in 1986, has received considerable attention. It led to
the discovery of vast new families of Laurent polynomial invariants of knots and
links in 3-space. It is not even impossible that, taken together, they constitute
a complete set of knot and link invariants. These are related in many ways to areas
of mathematics and physics in which knotting or linking had not previously been
thought to play any role, for example to the study of type II, factors in von
Newmann algebras, and to the study of exactly solvable models in statistical
mechanics.

The Jones polynomial and its relatives are computable from a knot diagram or
from a closed braid representative of a knot, the computation involving in an
essential way the computation of related invariants of links. The computation is
not difficult for simple examples, however its complexity grows exponentially with
crossing number or with braid index. The invariants are multiplicative under
connected sum. At this writing they are best understood as combinatorial objects
associated to a knot diagram, and the various known proofs of their topological
invariance offer little insight into the underlying topology. An outstanding open
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problem about them is to find a topological interpretation. Thus we are in
a situation where we could have at hand a definitive solution to the knot problem,
without having any real understanding of what it means.

The Vassiliev knot invariants have both similarities with and differences from
the Jones invariants. Unlike the Jones invariants, they rest on firm topological
foundations, and in fact introduce a new and exciting way to look at knots which
both generalizes the classical approach and adds new insight. In classical knot
theory, one studies the topology of a single knot (or more generally a single link) in
3-space. For example, the Alexander polynomial of a knot, one of the most useful
knot invariants derived from the classical theory, describes aspects of the integral
homology of the universal abelian covering space of the complement of a knot.
Vassiliev broadens this classical approach. His first change is a very natural one in
the history of mathematics: instead of thinking of a knot as the image of an
embedding of S* in R3 he changes the point of view and focusses on the embedding
itself. He then broadens his approach by introducing the space .# of all smooth
maps from S to IR 3, allowing one to study not just a single knot but also the way
in which distinct knots (thought of as imbeddings of S! into R 3) fit together in .Z.
The discriminant 2 of # is defined to be the set of maps which are not embeddings.
The components of .#\Z are clearly in one-one correspondence with knot types.
Thinking of a numerical knot invariant as a function on the components of .#\Z,
one is led to study the cohomology of .#\ZX. -

Vassiliev introduces a system of subgroups of H(.#\ZX):

0=G,c G,c Gy - < H(#\2),

where H* is reduced cohomology with integer coefficients and G, is free abelian of
finite rank. Note: for our purposes it will be more convenient to work with
cohomology over the rationals. This will not change the underlying mathematics,
so from now on we assume we are working with rational coefficients. The evalu-
ation of an element in G;/G;_; on the component of .#\X corresponding to an
oriented knot type K gives us a rational number v;(K) associated to K. This is
a Vassiliev invariant of order i. Let I; be the rank of G;/G;_ . There are [; linearly
independent such invariants for each i. The first few values of I; are I, =0,
I, =13 =1 and I, = 3. Notice that the zero-dimensional cohomology classes
of the space .#\X distinguish knot types in IR3. It is not known whether the
Vassiliev subgroups are close enough to the full group to determine a complete
system of knot invariants. Vassiliev conjectures (see 6.1 of [V]) that they do. At the
very least, his approach gives a framework in which one can think about the
problem.

One computes Vassiliev’s invariants, like the Jones invariants, from a knot
diagram via crossing changes to the unknot, however the computation involves in
an essential way the computation of related invariants for special types of knotted
graphs rather than of links. The combinatorics of the computation are much more
difficult than the corresponding computation for the Jones polynomial. For
example, the reader who studies [V] can anticipate considerable difficulty in
reproducing the calculations given there, even though they are restricted to knots
which have diagrams with < 7 crossings and to order < 4. It is not clear from the
work in [V] whether non-trivial Vassiliev invariants of order i = 5 exist.

Our main result is very easy to describe. We state it now, in the special case of
the one-variable Jones polynomial, which is a Laurent polynomial in the variable ¢:



Knot polynomials and Vassiliev’s invariants 227

Theorem. Let K be a knot and let J,(K) be its Jones polynomial. Let U.(K) be
obtained from J,(K) by replacing the variable t by e*. Express U (K) as a power
series in X:

UK) = 3 u,(K)x'.

i=0
Then uo(K) = 1 and each u;(K),i = 1 is a Vassiliev invariant of order i.

We will also prove corresponding assertions for the HOMFLY and Kauffman
polynomials ([FHLMOY] and [K1], [K2]), and work out some interesting
consequences about the relationships between these invariants and Vassiliev’s.

As an immediate corollary, we obtain a result which seems to be inaccessible by
the combinatorial methods in [V]:

Corollary. Non-trivial Vassiliev invariants of every order exist.

We now describe, in very general terms, the meaning of v;(K). If ¢oe.#
determines a knot type K, there is a path @, in .# which joins K to the unknot
O and @ to a representative of O. The path may be chosen so that for all but a finite
number of values of ¢t the map @, is an embedding. We may further assume that
where @, fails to be an embedding it has a single transverse double point. See Fig. 1.
Let .#, < X be the subspace of maps in ¥ which have at least one transverse
double point. Iteratively, let .#, be the space of all maps ®e.# which have
k transverse double points (and possibly other singularities too), so that
MMy D MyD> My . Call amap Pe H, a k-embedding if its only singu-
larities are the k transverse double points. Let X, be the subspace of all maps
e #, which are not k-embeddings. The ith Vassiliev invariant v;(K) is an
invariant of K which takes into account topological information about the embed-
ded graph types associated to the cells in A4 \2, #,\2,, ..., M \X;, in the
collection of paths from K to the unknot O.

Here is a guide to the paper. In §1 we review Vassiliev’s results. Our review
culminates in §1.5 and §1.6 with a description of the combinatorial scheme given in
[V] for the computation of the invariants.

In §2 we introduce the knotted graphs which are an essential part of the picture
and describe their “configurations”. We then show that Vassiliev’s invariants are
determined (much like the Jones invariants) by a set of axioms and initial data. The
axioms are very simple, but the initial data is the heart of the matter. Without
explaining how to compute it, we give the initial data in the cases i = 2, 3 and 4.
We then illustrate by an example how one uses the axioms and the initial data to
compute one of Vassiliev’s invariants.
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In §3 we treat the construction of the initial data. We prove that the determina-
tion of the initial data is equivalent to solving a particular system of homogeneous
linear equations in a very large number of unknowns. The unknowns are the
Vassiliev invariants of a special set of knotted graphs. The equations express
relationships between the invariants of these graphs. Roughly speaking, it will be
seen that the axioms and initial data of Vassiliev’s invariants incorporate in a single
setting the crossing change formulas and initial data which determine the
HOMFLY and Kauffman polynomials.

To begin to construct the initial data, one sets up a table A (i) which Vassiliev
calls an “actuality table of order i”. The table A(i) has a row R(i, j) for each j with
i=j =2 The top row R(i, i) consists of a list of certain combinatorial patterns
known as “admissible [i]-configurations”. The row R(j, j) foreachj=2, ...,i — 1
consists of a list of immersions in .#. Each of them “respects” the associated
“admissible [ j]-configuration”. These immersions are also associated with un-
known indices which are put together into a column vector X ;. We show in §3 that
the construction of the initial data for a Vassiliev invariant of order i in terms of
constructing an actuality table of order i is equivalent to solving a system of linear
equations:

{Mixi =0,

Here the integer matrices IM; and IM; for 1 <j < i — 1 are all of the same nature
and depend only on certain combinatorial patterns. The components of the column
vector N; ; are linear functions (depending on the choice of the immersions in the
table) of components of X ;. {, ..., X; with integer coefficients. Thus, our system is
actually a much larger system of homogeneous linear equations in the combined

set of variables:
MiXi =0,

where X' is a column vector made up out of the previously defined column vectors
(X;, X;-4, ..., X;). The dimension of the space of solutions of this combined
system of homogeneous linear equationsis [; + ... + [;, where [; is the number of
linearly independent Vassiliev invariant of order j < i.

In §4 we use the knowledge gained in §2 and §3, to study knot polynomials in
the Vassiliev setting. In Theorems 4.1 and 4.8 we derive generalized versions of the
theorem stated above for the HOMFLY and Kauffman polynomials. Corollary 4.2
is the result we stated above. Corollaries 4.3, 4.4 and 4.7 and Example 4.5 are other
consequences of the main theorems.

In §5 we prove that the unknotting number of a knot cannot be a Vassiliev
invariant. This result seemed surprising to us initially, because the unknotting
number of a knot has such a natural interpretation in the Vassiliev setting, as the
fewest number of passages across the discriminant X in a path in .# from the given
knot K to the unknot Q. However, it leaves open the possibility that unknotting
number is the limit of a sequence of Vassiliev invariants. The question of whether
every numerical knot invariant is obtained as the limit of such a sequence is clearly
of deep importance.

Remarks.
1. The second author has proved, in a separate paper [L], that the axioms and
initial data actually determine much more, i.e. every knot invariant which arises in
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the setting of quantum groups. A different proof has also been given by the first
author in [B].

2. Ted Stanford [S] has used the axiomatic approach which is developed in
Section 2 of this paper to define Vassiliev-like invariants for links and for rather
general types of embedded graphs. His invariants reduce to Vassiliev invariants in
the special case of knots. His methods, however, are very different from those used
by Vassiliev in [V]. They involve a direct application of the axiomatic approach
which we introduce here in Section 3 and use generalized Reidemeister moves and
other techniques from PL topology.

3. Approaching the knot problem from yet another direction (via Witten’s
formulation and perturbative Chern-Simons theory), Bar-Natan has proved in
[BN] that associated to every irreducible representation of a simple Lie algebra
there is a solution to the system of equations IM;X; = 0 which were described
above. He was not, however, able to prove that his solutions can always be
extended to solutions to the full system IM‘X* = 0. Thus his results fall short of
giving knot invariants.

4. M. Kontsevich has recently proved the very striking result that every
solution to the system of equations IM;X; = 0 extends to solutions to the full
system IM'X' = 0, thereby proving that Bar-Natan’s work does indeed give knot
invariants. His methods, however, do not yield a constructive procedure for filling
in the actuality tables. Thus, at this writing, the method we use to prove Corollary
4.2 is essentially the only known way (apart from a difficult case-by-case computa-
tionfori = 2,3, 4,5, ....) to construct actuality tables. A fundamental open problem
in the area is to prove Kontsevich’s theorem by direct combinatorial methods.

1 A review of Vassiliev’s work
1.1 Basic ideas

The space .# which is the basic object of interest is infinite-dimensional, and
Vassiliev’s work begins with the construction of certain finite-dimensional approx-
imations to .. The first step is to pass from maps with domain S* to maps with
domain R*'. Admissible maps are then required to have a fixed assymptotic
direction at infinity. Let I'?e.# be the space of maps from R! to R3 given by

t—=(p1(t), p2(t), p3(t)),

where the p;(t)’s are polynomials of the form
Y Latt + L+ oagt,

with d even.Thus the maps in I'? tend assymptotically to (1, 1, 1)and (— 1, — 1,
— 1) as t tends to infinity. The space I'? may be identified with Euclidean space of
dimension 3d. Deforming I'? by a small perturbation, if necesssary, we may assume
that the resulting subspace (which we call a generic I'?)is in general position with
respect to X. It will still be a 3d-dimensional affine space.

Notice that for fixed d, the maps in I'? necessarily yield finitely many knot types
because a polynomial only has a finite number of maxima and minima. Notice also
that we cannot embed I'? in I'**! in the obvious way because the coefficient of
t%*1 is 1 for a polynomial in I'? but is not 1 in general for a polynomial in '**?.
So, instead, we reparametrize the real line by setting t = s®> + s to obtain an
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embedding 'Y —» I'3*2 Thus if {d,} is a sequence of integers determined by the
recursive formula

dn+1 = 3dn + 2,

which begins with an even integer, then we have a sequence {I'**} of subspaces of
M and embeddings I,: '* — I'+1. The Weierstrass approximation theorem then
implies that

HO(#\Z)= lim HO(M=\I'* ~ %),
Jm

where H* means reduced cohomology with rational coefficients.
If we have cohomology classes v™ e H°(I'*\I'*" ~n X) which stabilize when

n— oo, then v= lim v™ is a cohomology class in H°(.#\ZX). Since H* is

cohomology with rational coefficients, we thus obtain a rational knot invariant
v(K), with v(0) = 0.

The fact that I'? is homeomorphic to R3¢ allows us to apply the Alexander
duality theorem, so:

HOM\I'* n Z)=Hs,_ (' n %),

where H, means closed homology, i.e. the homology of the one point compactifi-
cation of the space, modulo the compactifying point. Thus we are led to the study
of the closed homology H , (I'* n X), for generic I'?.

1.2 The configuration of the discriminant

The discriminant contains maps with very complicated types of singularities. The
set of ideas which we now review help Vassiliev to order them in a systematic
fashion. Let A be a finite sequence of # A positive integers {a;, ..., a4 } with
a;2a; = - 2aga 22 Let|Ad| =a; +a, + -+ + ay 4. An A-configuration is
a family of | 4| distinct points on the real line R*, partitioned into groups whose
cardinalities are a,, a,, ..., a44. Let { be a non-negative integer. An (A4, {)-
configuration is an A-configuration, together with an additional family of { distinct
points on IR!, some of which may coincide with points in the A-configuration.

The complexity k= k(4,{) of an (A4, ()-configuration is the number
|A] + ¢ — 4 A. Tt is well-defined on equivalence classes. Three cases will be of
special interest later:

1. A=1{2,2,...,2}, #A = iand { = 0. An example is the “[4]-configuration”
in Fig. 2.

2. A=1{3,2, ...,2}, #A4 = iand { = 0. An example is the “(4)-configuration”
in Fig. 2.

3.A=1{2,2, ...,2}, #A =i— 1,{ = 1 and the only additional point does not
coincide with any of 2(i — 1) points constituting the corresponding A-configura-
tion. An example is the “[3] * -configuration” in Fig. 2.

These types of (4, { )-configurations are called non-complicated (A, {)-configura-
tions.
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Let J be an (4, { )-configuration. A map 0:IR' —» R> respects J if it has
singularities (where derivatives vanish) at each of the { distinguished points of J,
and if in addition the points in each of the # A groups in the underlying A-
configuration are mapped by 0 to a single point in R 3, so that 0 has # 4 multiple
points of order a;, a,, ..., as,. For example, if K = 0(R') is a knot, and if
n:IR3® - R? is a projection which defines an i-crossing diagram for K, then 76 will
respect a non-complicated (4, { )-configuration of type 1.

Two (4, { )-configurations are equivalent if one can be sent into the other by an
orientation-preserving diffeomorphism of R* which sends points in one configura-
tion to points in the other configuration. We shall regard equivalent configurations
as being identical. The space of (4, {)-configurations which are equivalent to
a given one is an open cell whose dimension is equal to the number of geometrically
distinct points in its definition. It is at most |A4| + (.

Recall that I'* has dimension 3d. Let .# (I'%, J) be the set of maps in I'* which
respect J. They are determined by 3k linear equations, where k is the complexity
k(A, ). For a generic I'* we may assume that these 3k equations are linearly
independent for almost all (4, { )-configurations equivalent to J. Notice that the
space of all (A, ()-configurations equivalent to J has dimension at most
|A| + ¢ £ 2k. From this observation and the weak transversality theorem in
singularity theory, we have the following lemma:

Lemma 1.1 (Lemma 2.1.2 of [V]) For a generic I'* and any (A, { )-configuration J,
the following hold.

(i) For almost all J'~J the set .4 (I'*,J’) = I'* has codimension 3k. In particu-
lar, if k > d, it is empty.

(ii) Assume k < d. Then, in the set of all J'~J:

(@) {J; 4%, J) =0} has codimension = 3d — 3k + 1;

(b) {J; codim (A (%, J)) =3k —i,i =2 1} has codimension 2 i(3d — 3k +
i + 1). In particular, if k < (3d + 1)/5, the codimension of #(“,J) for any J of
complexity k is 3k.

(i) Assume k>d. Then {J'~J; dim (M (%, J')) 20} is of codimension
> (s + 1)3k — 3d + s). In particular, the set of all J' such that .4 (%, J’) + 0 is of
codimension = 3k — 3d. It is empty when k > 3d.

In view of Lemma 1.1, we may take k < (3d + 1)/5 as our stable range.
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1.3 The resolvent of the discriminant and a spectral sequence

A resolvant Q for I'? n X is an auxiliary space whose closed homology coincides
with that of ' n . Let 1:(t, t')—(t, t) be an involution on R?2. Let ¥ = R?/1.
The following lemma allows us to construct a resolvent.

Lemma 1.2 (Lemma 2.3.1 of [V]) For any integer n > O, there exists an integer
N > 0 and an embedding J.:¥ — RY with the property that no set of n distinct points
in ¥ are mapped into an (n — 2)-dimensional affine plane in RV,

Let L be a finite set of points in R !. A generating family for L is a non-ordered
family {(t; +¢y), ..., (t, #¢,)} of distinct, non-ordered pairs of points of
IR! such that for all maps 8:R* — R 3, the following statements are equivalent:

(i) 0 identifies all the points in L, and
(i) Forany j= 1,2, ...,r, 0 identifies ¢; and ¢}.

For example, if L = {1,2, 3}, then T = {(1,2), (2, 3)} is a generating family of L.
A pair (7, Y), where T = {(ty,t}), ..., (t,, t;)} and Yis a certain set of points
Uy, ...,V in R, is a generating family of an (4, { )-configuration if T is the union
of generating families for each of the # A sets constituting the underlying A-
configuration, while is the set of ¢ points which make the 4-configuration into an
(A4, {)-configuration.
There is a unique maximal generating family of cardinality

ILI( L] — 1)/2

consisting of all pairs of distinct points in L. Similarly, for an (4, { )-configuration
J there is a unique maximal generating family of cardinality

aila; — 1)
; > ¢
Now, suppose the (4, { )-configuration J is of complexity k. Let
(T; Y) = {(tl’ tll)a tees (trs t;')’ Vi, «oey U(}

be a generating family of J. For a generic I'?, we know that .# ("%, J) = () when
k > 3d, by Lemma 1.1(iii). So we always assume k < 3d. Then

r+C§Zai(ai2_ 1)+C§(k+1)zi(ai—21)+c

_(k+ Dk _(d+1)3d

2 = 2
Let us fix the embedding A:¥ — R" in Lemma 1.2 for n = 3d(3d + 1). By
Lemma 1.2 the r + { points A(ty,t}), ..., A(t,, ty), ALy, V1), ..., A(Og, V) in

RN span an (r + { — 1)-dimensional simplex in RN, which we call a standard
simplex associated with (7, Y'). The choice of n ensures that two standard simplices
in RN either have no common interior point or are identical.

Let S; be the standard simplex associated with the maximal generating family
of J. Then, all other standard simplices associated with other (non-maximal)
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generating families of J are sub-simplices of S;. The resolvent of I'* N 2 is defined
to be:

Q=ur*,J)xS; =I'* n ZxRN,

where the union is taken over all (4, { )-configurations J having complexity < 3d.

Here is another interpretation of the resolvent Q. Consider the map 7:Q — RN
induced by the projection I'* x RN — RN, The image n(®) is a simplicial complex.
For any point x in n(Q2), let s be the standard simplex such that x is in the interior of
s. The vertices of s correspond to points in Y. They generate an (4, { )-configuration
J. The pre-image © ~*(x) is the affine space .#(I'?, J).

Theorem 1.3 (Theorem 2.3.5 of [V]) The map Q —» I'* N X induced by the projec-
tion I'* x RN — I'? is proper and induces an isomorphism between the closed homol-
ogyof Qand IT'* n Z.

1.4 A Spectral Sequence

Let Q be the resolvent of 'Y N X for a generic I'Y. Let Q; be the subset of
Q consisting of all elements in Q = I'* x RN whose projection on I'¢ are maps
respecting (A4, { )-configurations with complexity =< i. Another way to describe
Q; is as the union of = ~!(s) over all standard simplices s whose vertices, thought of
as points in Y, generate (4, { )-configurations with complexity =< i. Then we get an
increasing filtration

Ql CQZ < ... CQ3d_1 CQ3d =Q.

Consider thelogy spectral sequence {E’ ,(d)} generated by this filtration. It
converges to H, (2). We can transform it into a cohomology sequence by renam-
ing the term E’ ,(d) as E; 73 ~179(d). For the purpose of constructing knot
invariants, we are primarily interested in H 3,-,(€2), and the sequence {E, "'(d)}
converges to it.

Theorem 1.4 (See [V, Corollary 2.5.1.]) For generic I'* and I'", we have
E; % (d) =E @) for all r=12,..,00 and all even d,d with
d'>d=6i—1))3

Let us denote by E ;"' the stabilized limit of {E;*(d)} for i=1,2, .... An
element in E "' determines a knot invariant in the following way. In the stable
range i < (3d + 1)/5, we identify E 7! with E ."¥(d). An element in E ;,"/(d) can be
lifted to H ,_ (). The lifts corresponding to different d’s are also stabilized when
d — oco. Thus by the discussion in §1.1 and Theorem 1.4, the stabilized limits of
these lifts gives us a knot invariant. This knot invariant is defined to have the
order i.

Examples: Vassiliev invariants of order 1 and 2

Let J be an arbitrary (4, { )-configuration. A J-block is the subset Bj of Q defined
by

By =4I, J) xS, ,
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where the union is taken over all (4, { )-configurations J' equivalent to J. Then
B; is the total space of the locally trivial fibration whose base is the space of all
(4, ¢ )-configurations equivalent to J and whose fibre is .# (I'%, J) x S;. So, By is an
open cell whose dimension is determined by J. For non-complicated (A4, {)-
configurations J, the dimensions of B; are listed below:

1. If J is of type 1, then dim B; = 3d — 1.
2. If J is of type 2, then dim B; = 3d — 1.
3. If J is of type 3, then dim By = 3d — 2.

We will soon see that we only need to consider non-complicated J-blocks of
types 1 and 2. Let us work this out, in the simplest examples. Assume that we are in
the stable range: i < (3d + 1)/5. By definition, E7"' = H3,_,(Q;\Q;_,).The
simplest case is i = 1, that is the group:

Efhl = ﬁSd—l(Ql)'
By definition, Q, is homeomorphic to the (3d — 1)-dimensional half sphere
{Gery oo ux3a-1)eR¥ 7 x; 20}

In fact, Q, is the total space of a locally trivial fibration whose base is the space of
all (4, { )-configurations with complexity 1 and whose fibre over an (4, { )-config-
uration J with complexity 1 is the (3d — 3)-dimensional affine space .#(I'“, J). So
Q, is the union of two J-blocks B;, and B, where J, is an (4, { )-configuration
with 4 = {2}, { = 0 and J, is an (4, { )-configuration with 4 = @, { = 1. We have
dimB; =3d —1,dimB;, = 3d — 2 and 0B, = B,,. Thus we conclude that:

Ei_l’l =O=E;1,1

so that the first order Vassiliev invariant is zero for every knot.
Next let us try to figure out the case i = 2.

ET%? = H33-1(Q,\2)).

Let J be an (4, { )-configuration with complexity 2. If dim By = 3d — 1, than either
A={2,2}and { =0o0r A = {3} and { = 0, i.e. J must be of non-complicated type
1 or 2. Let us consider the boundary of these (3d — 1)-cells.

For an (4, { )-configuration J with A = {3} and { = 0, S, is a 2-simplex. It has
3 edges corresponding to the 3 non-maximal generating families of J, each having
two pairs of points. They can be specified by distinguishing one of the 3 points in J.
In 0B, there are only three (3d — 2)-cells, corresponding to the three edges of S;.
This part of 0By can be written as

a4, J) %3S .,

where J' runs over all (4, { )-configurations equivalent to J. The other part of 0B,
comes from the boundary of the space of all (4, { )-configurations equivalent to J.
This part of the boundary can be obtained by successfully shrinking all finite
segments of R which are bounded by neighboring points in J, to obtain two
(3d — 3)-cells.

For an (4, { )-configuration J with 4 = {2,2} and { = 0, §; is a 1-simplex. The
part of 0B; corresponding to

(4, J) x2S,
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consists of (3d — 2) -cells in . Just as in the previous case, the other part of 0B,
can be obtained by shrinking neighboring points in J successively. If two neighbor-
ing points belong to the same pair in J, the (4, {)-configuration resulting from
shrinking the interval between them will have A = {2} and { = 1 where the singular
point corresponds to the shrunken segment. If two neighboring points belong to
different pairs in J, the resulting (4, {)-configuration has 4 = {3} and { =0.
Moreover, the point corresponding to the shrunken segment is distinguished so
that it determines a non-maximal generating family for the triple.

In view of the above discussion, it is not hard to see that E [ %2 >~ Z is generated
by a linear combination of (3d — 1)-dimensional J-blocks, where the J’s are non-
complicated (A4, { )-configurations of complexity 2.

The next term E; %2 in the spectral sequence is the (co)homology of

Ei—3.2 _)E1—2,2 —>E1_1'2.

We have E{'"?=H; ,Q,)=0 and E;*?=H3(Q;\2;)=0. So
E;%2? = E{%?~Z. Using the fact that E2*9 =0 if p + g < 0 (Theorem 2.5 in
[V]), we can get E *? = E; %% ~7. Thus there is one integer knot invariant of
order 2.

Notice that an elementin E; %2 = H3,_{(2,\Q,) is a relative homology class.
Let y; €eE{ %2 be thought of as a linear combination of (3d — 1)-dimensional cells
(top dimensional J-blocks) in €,. Then 0dy, is a linear combination of 3d — 2)-
dimensional cells in Q,. To get a cycle in Q,, we should have some linear
combination of components of ,\dy,, say y,, such that d(y, + y,) = 0. We can
always accomplish this in the following way. If a component of 2, \dy,; meets 0Q,,
then the coefficient of that component in y, is zero. If two components of Q;\dy,
are separated by a cell in 0y, their coefficients in y, will differ by the coefficient of
that cell in dy{, multiplied by + 1 (the incidence coefficient). The standard
homological argument shows that this procedure is well-defined. Thus, the cycle
91 + y, gives us a homology class [y; + 7,] in Hs,_;(Q). The inverse limit of
[y1 + y2] is a knot invariant of order 2.

1.5 The group E{%'

We now generalize the previous examples, and describe how to figure out the group
ET%! for arbitrary i. The group E{%' is the kernel of an explicitly defined
homomorphism h;: % ; — % between free abelian groups %'; and % ; of finite ranks.

The group &'; is freely generated by all possible [i]-configurations and {i)-
configurations, where an [i]-configuration is a non-complicated (4, { )-configura-
tion of type 1 with # A = i and an <i)-configuration is a non-complicated (A, { )-
configurations of type 2 with # A4 =i — 1. The group %, is freely generated by
(iy* -configurations and [i — 1] * -configurations. See Figure 2 for examples. The
former are < i > -configurations with one of the three points in the triple distin-
guished. An [i — 1]* -configuration is a non-complicated (A4, { )-configuration of
type 3 with #4 =i — 1.

Let {ty, .., t,} be n distinct points in an (4, { )-configuration, ordered by the
orientation of R, so that t; <t, < --- <t,. The homomorphism h;:&; - %,
will be defined on generators of Z';. It can then be extended linearly to all of Z';.
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—m/\* +//'\\/\ .

Examples o wlustrate the homomorphuism h;

Fig. 3

The reader may wish to consult the examples in Fig. 3 as an aid in understanding
the definition.

e If B is an (i)-configuration, then h;(f) is a linear combination of the three
{iy* -configurations which belong to the same underlying {i»-configuration, the
coefficients being — 1, + 1, — 1 according as the distinguished point is the first
one in the “missing triple”, the second one or the third.

e If o is an [i]-configuration, then h;() is a linear combination of the 2i — 1
configurations which are obtained by shrinking, one after the other, the seg-
ments on R ' which are bounded by neighboring points in the array {t,, ..., £3;}.
If two neighboring points belong to the same pair in o, then the finite segment
they bound shrinks to a singular point and the resulting configuration will be an
[i — 1]* -configuration. If neighboring points belong to different pairs in o, the
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finite segment they bound shrinks to a distinguished point in a triple and the
resulting configuration is an {i)*-configuration. The element h;(x) will be
a linear combination of these configurations, with coefficients which are deter-
mined in the following manner. If a configuration in h;(x) is obtained from
shrinking the finite segment bounded by the ¢,,_; and t,,, its coefficient will be
( _ 1) itm—1 .

Thus we have defined the homomorphism 4;:2"; > %.

Theorem 1.5 (See §2.5 of [V]) The group E{"' is equal to the kernel of h; for all
i=2

As in the case i = 2, an element yeE[ "' is a linear combination of (3d — 1)-
dimensional J-blocks consisting of [i]- or {i)-configurations in Q;. The boundary
of y, is a linear combination of (3d — 2)-cellsin Q;_,. For y, to survive as a part of
acyclein Q; < @, we should find a linear combination of components of Q;_;\dy,,
say y,, such that d(y; + y,) is a linear combination of 3d — 2)-cells in Q;_,. Keep
going in this way until we obtainacycley, + y, + - + y; in Q; = Q. The inverse
limit of the homology class [y; + vy, + --- + y;] will be a knot invariant of order i.

1.6 Actuality tables and extended actuality tables

The actual computation of knot invariants of order i cannot begin until one has
constructed an actuality table of order i. The careful reader will see that this table
was used implicitly in the case i = 2. The actuality table is computed as a subset of
an extended actuality table , which we now describe.

First, we describe the figures in the extended tables. The top row of the extended
table contains a list of all the [i]- and <{i)-configurations. The figures in the jth row,
j=i—1,i—2,...,2is a list of immersions in .# (defined via pictures of their
images in R?) whose configurations of self-intersections are in one-one corres-
pondence with all possible [ j]- and {j)-configurations, subject to the following
restriction: Let @ be an immersion whose image represents some [ j]- or {j)>-
configuration. Suppose there is a double point x in ®(IR') which has the property
that @ ~'(x) consists of a pair of points t,,t,+;€R' which are not separated on
IR! by any other points ¢, in the underlying set of points on R ! which are mapped
to multiple points by ®. Then ® must be chosen so that the loop @([t,, t,+]) in
IR* bounds a disk whose interior has empty intersection with ®(IR!). Also, if we
identify R' U {oo} (resp. R* U {o0}) with S (resp. $*) and if ¢,,¢,., are
neighboring points on S, then the loop @([t,, ] U [0, f,+,]) in S bounds
a diswhose interior has empty intersection with @(S!). Here #:S' — S3 is the
natural extension of @:R! — R3.

We also need to attach indices to each picture. The indices in the top row are
determined by an element y, € E{ "’ = kernel (h;), in the following manner. Since
kernel (h;) = Z';, we see that y, is a linear combination Y (4,0, + B,f,) of [i]-
configurations «, and {i)-configurations f§;. The index of «, is 4, and the index of
B, is By.

The method for computing the indices of the immersions in rows
i—1,i—2,...,2 is described in §4.4-4.6 of [V]. Let m =i —j + 1, so that row
i corresponds to m = 1. Assume, inductively, that we have determined rows
i,i—1, ...,i—m+ 2 of an extended actuality table. The figures, together with
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their indices in rows i,i — 1, ...,i —m + 2 give rise to a chain y; + -+ + Y-,
in Q; whose boundary in Q;_,., is zero. We need to consider its boundary
in @, ,+;. The latter can be thought of as an element
d*@y + - +9Ym-1) € ¥+ given in the following way.

First, it can be shown that d*(y; + --- + y,,—) contains no [i —m + 1]*-
configurations. Our task is to figure out the coefficient of each (i —m + 1)*-
configuration in d*(y; + -+ + ynu-1). We describe how to determine the coeffic-
ient of a particular {i — m + 1)>* -configuration J* in d*(y; + - + yu-1). We
make the initial assumption that the indices of the immersions chosen for the mth
row are all zero. Let {x, y, z} be the triple in J * with z the distinguished point. Let
J be the (i — m + 1)-configuration obtained from J* by forgetting that there is
a distinguished point. We split the point z in J into a pair of neighboring points z’
and z”, and pair these two points with x and y to obtain a [i — m + 1]-configura-
tion. There are two ways to pair these four points, i.e. pair x with z’ and y with z” or
pair x with z” and y with z'. Thus we obtain two [i — m + 1]-configurations J’ and
J".If ¥ is the immersion which we selected to respect J, then a corresponding pair
of resolutions, denoted ¥’ and ¥”, of ¥ respect J' and J”. In general, these will not
coincide with the immersions @' and " we chose in the table to respect J' and J”.
However since we have assumed temporarily that the indices of @' and @ are zero,
we can compute the indices of ¥ and ¥” by using crossing changes to change ¥’
and ¥” to @ and @" respectively, referring our computation to the indices we know
inrow i,i — 1, ...,i —m + 2. In this way we compute the indices of ¥ and ¥".
Then, the coefficient of the element we selected, ie. J*,in %;_,,., will be

e[Ind;(¥’) + Ind;(¥")]

where the sign ¢ = + 1 is the coefficient of J* in h,,(J') = h,,(J"’). The coefficients
of the other (i — m + 1)* -configurations in d*(y; + -+ + y,.—1) are computed
similarly.

Let J4, ..., J, be the list of all (i —m + 1)*-configurations in %;_,,.,. We
have associated to each J, a coefficient C,. Then d*(y, + -
+ Ym—l) = Zcq']q-

The last step will be to correct the assumption that the indices of the immer-
sions chosen in row m are all zero. To do this, we need to find an element
Ym € X i—m+1 such that:

hioms1Gm) +d* @1+ - +ym-1) =0.

Then, the indices in the mth row will be the coefficients in y,, of the corresponding
[i —m+ 1]- and {i — m + 1)-configurations.

In this way we have described (inductively) Vassiliev’s construction of an
extended actuality table. If we can carry out the procedure down to the bottom
row (m=i—1 as the row m=i can be completed automatically), then
Y1 + - + yi-1 + y; will be a cycle of dimension 3d — 1. This gives us a homology
class

[yi + - +9:0eHs-1(Q).

Its stabilized limit is a knot invariant of order i.

Thus, there is a non-trivial knot invariant of order i whenever we can complete
the construction of an extended actuality table whose indices in the top row are not
all zero. Finally, an actuality table is just the subset of an extended actuality table
corresponding to all [ j]-configurations, j =i,i — 1, ..., 2.
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2 An axiomatic description of Vassiliev’s work

In this section we will translate Vassiliev’s recipe for constructing his invariants
into a set of axioms and initial data, which allow one to begin with a knot diagram
and compute v;(K). Our translation will seem natural to knot theorists because it
points up the similarities (and differences) between Vassiliev’s work and related
computations for other knot polynomials, and sets the stage for the direct connec-
tion we will later make between the two. The main result is Theorem 2.4.

In our review of Vassiliev’s work in §1 above we saw that it was important to
the technical work that Vassiliev worked with maps @: R' — IR ? rather than maps
@:S' - R3, for in the latter case the Weierstrass Approx1mat10n theorem would
not be valld We will see that, having his invariants in hand, we will be able to
return to maps with domain S!. This will make the calculations we need to do
much more efficient. We will do this carefully, as there are some subtle points
having to do with the signs of the invariants. The two cases will be distinguished
notationally by the addition of a circumflex in the circular case, as above. R

Assign a fixed orientation to the circle ' and to 3-space R* and let @/:
S' — R3 be an immersion whose singularities are restricted to j transverse double
points. Call such an immersion j- genertc In the case j = 0 the image K® = & °(S!)
is a knot. More generally K/ = ®J(S') is an oriented knotted graph. Each vertex
will have valence four. Such graphs have appeared elsewhere in the literature which
relate to the Jones polynomial, for example in the work of Yamada [Y], who calls
the graphs in question flat vertex graphs because they may be obtained from
a knot diagram by collapsing some of the vertices to double points. Thus, for each
vertex v of K/, there is a neighborhood B, of v in 3-space and a proper 2-disk
P, = B, such that K/ n B, < P,. In Vassiliev’s work such graphs arise when two
(j — 1)-generic immersions are related by a single passage through the j th level of
the discriminant. At the instant of passage one obtains a j-generic immersion
@/ whose image #/(S') is a flat vertex graph.

We shall pass freely from the concept of a j-generic immersion to its associated
flat vertex graph whenever it improves clarity to do so, e.g. when we are looking at
diagrams. An immersion will always mean a j-generic immersion and a graph will
always mean a flat vertex graph, unless it is stated otherwise. We will add the
qualifying adjectives only if we wish to stress the special nature of our immersions
and graphs.

_ Weneed an equivalence relation between immersions. Two immersions &} and
&f are equivalent if there is an isotopy taking @} to @) with each ¢/ a J- generlc
immersxon also during the isotopy the order of the edges which meet at a vertex is
to be preserved. This implies that two graphs K4 and K/ are _equivalent if there is
an isotopic deformation h, of R3 with hy = 1dent1ty, h,(K}) = KJ, such that
each h,(K}) is a flat vertex graph. This equivalence relation (which is also the one
considered in [Y]) is not the usual notion of isotopy of graphs in 3-space when
j > 0. For example, Fig. 4 shows two flat vertex graphs which are isotopic as
ordinary graphs but are not equivalent in the sense considered here. We shall not
distinguish between equivalent immersions, or between equivalent graphs. The
equivalence class of @’ will be denoted £®’. The equivalence class of K/ will be
denoted K.

An invariant of an immersion is a numerical invariant which is unchanged by
the equivalence relation which we just defined. In the special case j =0, it is
a numerical knot invariant, in the usual sense.
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Fig. 4

Here is a non-numerical invariant which one may associate to our immersions.
Regard the domain S* of &/ as an oriented planar circle which bounds a disc J in
the plane. Choosing pomts t,, ts which are pre-images on S* of a double point of @,
join t, to t, by an arc in é. Do this for every double point of &/. The resulting
pattern of arcs in 6, denoted &/, is the (circular) [j] -configuration which
& respects. Equivalent immersions respect the same configuration. We shall write
& =C (<I)J ) when we wish to stress that &’ respects at.

Let ®/ be the equivalence class of @/ and let ®/ be the corresponding circular
equivalence class. The Vassiliev invariants v;(K) of knots which were introduced in
[V] and reviewed in §1 of this paper were shown there to generalize in a natural
way to invariants Ind;(®/),0 <j <i,i = 1,2, 3, ... The first step in our work is to
prove that Ind;(®’) is well-defined on circular graphs, i.e. is independent of the
choice of the point at infinity.

Lemma 2.1 Supppose that two immersions &4 and @4 determine the same circular
equivalence class ®’. Then:

Ind (@) = Ind,(®}).

Proof. A careful reading of [V] (see §0.2 and §0.3 and especially §3.3) reveals that
the invariants Ind;(@’) satisfy a recursive formula. To describe it let @, and
&I be immersions which coincide everywhere except near a single crossing point
in a defining diagram, where they differ in the manner indicated in Fig. 5. Let
®i*! be the immersion which is obtained from ®J  and &, by replacing the
crossing by a double point. The recursive formula is:

21 Ind@},) — Ind;@] ) = (- )/**Ind;(@}""), 0<jsi—1.

The quantity Ax in (2.1) is defined as follows: Let o’ be the [j] -configuration
which ®J, and ®/ respect. and let « i*1 be the [j + 1] -configuration which
L ZA respects Then a/*! is obtained from o/ by adding one new arc, say t, and 4x
is the number of arc endpoints in «/*! which lie between the two endpoints of the
new arc .

There is a one-to-one correspondence between the knot types of embeddings of
R! and of S! in IR3. Thus the invariant v,(®) is 1ndependent of the choice of the
point at infinity. Assume, inductively, that Ind;(@®/) is well-defined, independently
of the choice of the point at infinity. Then (2.1) shows that the same is true for
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Crossing Changes

Fig. 5

Ind;(@/*1), if the coefficient (— 1)7*4* in (2.1) does not depend upon the choice of
the initial point. Now, the total number 2(j + 1) of points in the underlying point
set for the [ j + 1]-configuration of 4/*! is even. Fixing any two points, there will
be an even number of points which remain. Thus the parity of 4x is independent of
which way around the circle we do the counting. Thus Ind;(@®/*!) is well-
defined. O

We now define two numerical invariants which are determined by a circular [ j]
-configuration which an immersion ®/ respects. The intersection number |C(®7)]
is the minimum number of intersections between the arcs in C(@/) when they are
deformed so that two arcs intersect at most once and all intersections are transverse
double points. For example, in Fig. 4 we have |C(@®?2)| = 1. The sign of C(®’) is

S(C((i)f)) =(— 1)](j‘1)/2+|C((i)j)|'
The invariant we will consider here agrees with Vassiliev’s invariant Ind;(@®/)
up to sign. It is:
(22) l)i((i)j) = S(C@’))(Ind,((i)f))

Notice that in the case j = 0 we have Ind {(@°) = v,(®°) by definition. Since the
sign of C(®°) = 1 trivially, we see that (2.2) makes sense for every j = 0.

Lemma 2.2 The numerical invariant v;(®’) satisfies the following simplified version
of the recursion formula 2.1) :

0@, ) — 0D ) = v,@LF) forall jZO0.

Proof. In view of Lemma 2.1, we may replace each immersion ®’ in (2.1) by the
corresponding immersion ®’. Since |C ((I) 1}| = 0 (because there is only one arc in
a circular [1] -configuration, so that no other arcs can intersect it) we see that
S(C(@®"')) = 1. Thus (2.2) shows that Ind(®') = v,(@"), therefore our formula
holds when j = 0. As for the case when j > 0, we see that (2.1) and (2.2) imply:

0@, ) — 0@ ) = (— 1)/ S(C@))S(C@D* 1)), @it?)
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Using (2.2), we thus see that our formula will hold if:
(2.3) JH+Ax+ (G = D2+ C@)| +(j+ D)2 + |C@TH)|
is congruent to zero mod 2. Since
|IC@7*1)| = |C@)| + Ax(mod2),
our expression reduces to
j+j?+21C@%)| + 24x

and the latter is congruent to zero mod 2. [
To continue, let @/ be a circular [ j]-configuration and let , ..., 7; be the arcs in
d which define &/. An arc t, is separating if the endpomts of 7, are not separated by
the endpoints of 7, for any q * p. The configuration alis madmzsszble if it contains
a separatmg arc. See Fig, 6 for examples. Let @ be a Jj-generic immersion with
= C(®’). We say that &/ is a good model for &’ if the following holds: Among all
separatmg arcs in &/ there is at least one, say t, with the property: the endpoints of
t separate S! into subarcs u; and u,, and their images ®/(u;) and ®/(u,) are
geometrically unlinked. See Fig. 7 for an example.

Lemma 2.3 (i) Given any circular [j] -configuration 4’ we may find a immersion
@’ which respects al.

(ii) If &’ is inadmissible, the immersion constructed in (i) may be chosen so that
it is a good model for &/,

(iii) Any two immersions which respect the same circular [j] -configuration
may be changed to equivalent immersions by a series of crossing changes.

Proof. (i) Fig. 8 shows a general method for construction a immersion which
respects a given circular [ j]-configuration: replace each arc t in the configuration
by a loop in the manner indicated there. If two arcs 7, u intersect in J, then one of
the loops must pass above the other in order not to create unwanted double points.

>
NS

Examples of inadmissible circular (j}-configurations

Fig. 6

Example of a good model respecting an inadmissible configuration

Fig. 7



Knot polynomials and Vassiliev’s invariants 243

: - :
\ PR 7

Construction of an immersion respecting a given circular [j}-configuration

Fig. 8

(ii) The method of Fig. 8 yields a good model when the configuration is
inadmissible. R R R

(iti) If #/ and ¥/ both respect &/, we may modify @/ and ¥’ by a series of
crossing changes to immersions which have unknotted and unlinked edges and
which still respect 8. Since there are only finitely many such immersions, and since
all are clearly equivalent under crossing changes, the assertion follows. [J

Theorem 2.4 The invariants v;(@®7), i > 1 and j = 0 are determined by axioms and
initial data:

2.4) Ui((i){u ) — U:(‘i)fc ) = Ui((i){cﬂ)-

(2.5) v,(®) depends only on &' = C(®'). Equivalently, v,(@®7) =0 if j > i.

(2.6) v;(0O) = 0 for all i, where O denotes an unknotted circle.

2.7) v;(@7) =0 if @’ is a good model which respects an inadmissible [jl-
configuration.

(2.8) The remaining initial data is in the form of a table A (i) which Vassiliev calls

an actuality table. It gives the values of v,(®”) on a basic set of model immersions, one
respecting each admissible [ j]-configuration with 2 <j < i.

Proof. We have two tasks: to prove that (2.4)«2.8) are valid, and to prove that they
suffice for the computation of v;(@®7). We consider the second task first.

If j = 0 and if ®° is the unknot, then by (2.6) we are done. If not, we choose
a series of crossings x, ..., x,, on our diagram for @° such that after switching all of
them we obtain the unknot. Similarly, if j > 0, we determine the [ j]-configuration
&’/ which ®/ respects. If &/ is inadmissible and if @’ is a good model, we are done,
by (2.7). If not, we choose a series of crossing changes x, ..., x, in our diagram for
®/ such that after switching all of them we obtain a good model for an immersion
respecting &’. This is possible by Lemma 2.3. Finally, if 4/ is admissible, and if
®’ agrees with the model immersion in the actuality table which was chosen to
respect 4’ we are done. If not, we choose a series of crossing changes which modify
®/ to the given model. Since the terms on the left hand side in (2.4) each have one
less double point than the term on the right, one may then apply (2.4) repeatedly to
modify the immersions with j + 1 double points until they agree with the model
immersion in the actuality table. In so-doing, new immersions with j + 2 double
points enter into the equation. Iterating the process, we modify each immersion
with fewer than i — 1 double points to one of the models in the table, and then
evaluate its index. The process ends because by (2.5) the index of a immersion with
exactly i double points depends only on its configuration, and so it can be
determined from the top row of the table, no matter what its embedding may be.
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It remains to prove that (2.4)~(2.8) are implicit in Vassiliev’s work and our
modifications of it. We have already shown (Lemma 2.2) that (2.4) holds. The first
assertion in (2.5) is to be found at lines 10-11 on page 29 of [ V], with details given
in the latter part of [V]. Clearly the first assertion in (2.5) implies the second. The
second assertion in (2.5) together with (2.4) implies the first assertion in (2.5).
Assertion (2.6) is a consequence of the assumption that our invariants are elements
of the reduced cohomology group H(.#\Z).

With regard to (2.7), our first observation is that by Lemma (2.3) we may
always find a good model respecting an inadmissible configuration. So, assume
that @7 is a good model which respects 4/ and let x be the double point which splits
®/ into unlinked subimmersions. Change @/ to immersions ®/! and ®.~' by
replacing x by positive and negative crossings. From Figure 1.4 it is clear that
(i){; U and ®J~! must be equivalent immersions, since the crossing at x is “nuga-
tory”, so (2.4) implies (2.7).

Only one thing remains: to show that Vassiliev’s work allows one to construct
a table A(i). Trivially, we can always fill in the table with zeros, but we are hoping
there are non-trivial tables. An algorithm which will yield a non-trivial table
whenever one exists is given in §4.3—4.6 of [V]. It is summarized in §1.5-1.6 of our
review in this paper. In the next section we will begin to investigate it in detail, and
to translate it into a new form. As we shall see, it is the heart of the difficulty in
understanding Vassiliev’s invariants. [J

Example. Figures 9-11 are actuality tables A(i) for i = 2, 3, 4. Without justifying
them, we illustrate how to use the table in Fig. 10 to compute v3(T) when T is the
trefoil knot. Refer to Fig. 11. Label the three crossings p, g and r and use the
subscripts x ., x —, x to denote a positive crossing, negative crossing or double
point respectively at x, where xe{p, g, r}. Thus our copy of the trefoil knot is
T . We compute its third order Vassiliev invariant:

Prdsrs
03Ty, gr,) =03(Tp g,r,) +03(Thy, )
=0+ v3(Th, )
=03(Tpe ) +03(T70,)
=0+ v3(T3,, )
=03(Thy ) + v3(The)

In this calculation the first equality is (2.4). The second equality follows from
the fact that T, ., ., is the unknot. The graph T respects an inadmissible [1]-

pPa+r+
configuration, but it is not a good model, so we change the crossing at q in the third

j=2

(1
Actuality table for i=2

Fig. 9
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m (2)
" @
(0)

Actuality table for i=3

Fig. 10

- 169|Q|B B B|E

(-3,2,1) | (-2,1,1)| (-1,0,1) | (1,-1,0) | (1,0,0) | (0,1,0) (0,0,1)

X

(0,0,0) {0,1,0)

(0,0,0)

/TN
)
LI/

Actuality table for i=4

Fig. 11

equality, using (2.4) again, to change it to a good model. Its Vassiliev invariant is
then zero, as in the fourth equality. Now we look at the table in Fig. 10 and see that
T2, isnot the same as the model immersion in the table, so we need to switch the
crossing at r. This gives the fifth equality. Both T2, and T}, coincide with the
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models in the table, so we can use the tables to evaluate their Vassiliev invariants,
obtaining:
U3(T = 2

P+¢1+"+)

As an exercise, the reader may wish to verify by a similar calculation, that
UZ(TP+¢1+"+ ) = 1

3 The initial data

In this section we consider the problem of computing the actuality table, that is the
table of initial data A(i) which was described in (2.8) of Theorem 2.4. The main
result is Theorem 3.7.

Initially we will work with linear immersions @/ and [ j]-configurations o,
rather than with circular immersions ¢/ and configurations 47, We will also need to
work initially with the index invariant Ind;@®/) rather than with
0;(®7) = S(C(®7))Ind,®’. Later, when it is possible to do so, we will return to
circular immersions and configurations and to the invariant v;(®/).

Recall (see Fig. 2) that:

® An [i]-configuration is an array of 2i points (¢, ..., t,;) on R?, joined up into
i pairs by arcs. The symbol o, will be reserved for a single [i]-configuration.

® An (i)-configuration is an [i — 2]-configuration, augmented by the addition of
3 more points, anywhere in the natural order of the points ¢4, ..., t,;_4, so that
there are 2i — 1 points in all. The symbol g, will be reserved for a single
{iy-configuration.

e An (i) *-configuration is an {i)-configuration in which one of the points in the
supplementary triple is distinguished.

e An [i — 1]* -configuration is an [i — 1]-configuration, augmented by the addi-
tion of one distinguished point.

The underlying point set in an [i]-configuration « (resp. an {i)-configuration f)
is the collection of 2i (resp. 2i — 1) points on R which define them. These points
have a natural order on R!. The pairings which define « and B are denoted by:

(3.1 (B sty )y oo s (g s iy )

(32) Brl@uistuy)s o Cuzis Luia)> (6 95 2))-

We call the arrays in (3.1) and (3.2) the defining symbols for « and f. The triple in f is
the ordered triplet (x, y, z), with x < y < z. Note that x, y and z can be located in an
arbitrary way in R*\{t,, ..., t2;—4}, subject to the restriction that x < y < z.
We begin with the indices in the top row of A(i), that is the case j = i. Recall
that this top row is special, because by (2.5) the indices Ind; of immersions with
exactly 1 double points only depend upon the [i]-configuration which they respect.
It was proved by Vassiliev in [V] (see also §1.4 and §1.6 above) that these indices
depend upon the kernel of a certain homomorphism h; between finitely generated
abelian groups, and our first goal is to investigate the groups and the homomor-
phism. Let &';; (respectively & ;,) be the free abelian group with free basis the set of
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all [i]-configurations (respectively (i)-configurations). Recall that % ;=
X1 ®Zi,. Thus a general element of Z; is a linear combination of [i]- and
{iy-configurations. Let %, (resp. % ;,) be the free abelian group with free basis the
set of all <i)*-configurations (resp. [i — 1]*-configurations). Recall that
WY, =%, P¥;,. We refer the reader to §1.5 and Fig. 3 for the definition of
Vassiliev’s map h;:Z'; = ¥ ;. Let 5; be the kernel of h;. Fix a basis £y, ..., &, for
A ;. Then each basis element &, in J#; has a natural expression as a sum:

(33) ék = Z Arkar + ZBskﬁs-

The index array of the [i]-configuration a, is the k;-tuple of integers:
(34) Indi(ar) =(ArlaAr2’ ~'-7Ark,)'
The kth entry is the kth index.

Lemma 3.1 Let &, € #; be given by (3.3). Then h;(Bs) € ¥;, for all s. Also, if
Ark + 0, then hi((x,.) EJZJ“.

Proof. The first claim is true by definition. Let us prove the second claim.

The definition of h;|Z;; shows that h;(x,) projects to %;, non-trivially if and
only if the defining symbol in (3.1) for «, contains a pair (t,,, t,, +)- If this occurs,
the distinguished point in h;(x,) will be the y,th point, so a necessary condition for
cancellation between the contributions from two such terms, one in A4,,h;(x,) and
the other in A4 ,.h;(x,) is that both contain the same pair (¢, ,t, +1). Even more,
hi(x,) and h;(e,) must contain the same [i — 1]* -configuration, with contribu-
tions cancelling. However, if we remove the distinguished point from the image we
obtain an [i — 1]-configuration, and since the two [i — 1]-configurations must
coincide we conclude that o, = «, and A4,, = 0. Since we have assumed that the
coefficient A4,, in (3.3) is non-zero, it follows that for h;(&,) to be zero, no such pair
(ty, >ty +1) occurs in a,. But then hy(x;) € #;,. U

Our next lemma underscores the difficulties in understanding the kernel of h;.
Lemma 3.2 The restrictions h;|%';; and h;|% ;, are one-to-one.

Proof. 1t is easy to see that h;|%;, is one-to-one. For, by definition, h;(8;) is
a linear combination of three (i) *-configurations which have identical patterns of
paired points and the same triple, but different distinguished points in the triple.
There cannot be any cancellation between these three terms because the distin-
guished points are different. There also cannot be cancellation between Bh;(f;)
and C,h;(8,) unless S coincides with f§, and B, = — C,.

To see that h;|% ;; is one-to-one, suppose that

(3.5) o=Aja; + - + A,a,

with each 4, #+ 0 and h;(o) = 0. It will be convenient to use the notation introduc-
ed in (3.1) to describe the [i]-configurations «, in (3.5). Without loss of generality
we may assume that the pairs (t,,, ,,t,,;) in this symbol are arranged so that
tu, <tuy, tu, <tu,, «ooy by, , <ty and that the pairs are ordered so that

tyy, <ty <ty < - <ty ,.Let up —pq, g —ps, o, foi — pai-y be the
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lengths of the arcs which define the pairings in a. Let the length ||, || of a, be the
length of the shortest arc in «,. Order the terms in (3.5) so that

lagll = ozl £ - = Yol

We ask: what are the possibilities for |ja, ||?

The first thing to notice is that |jay | = 2. For, if not, we would have an arc of
length 1 in o;, and h;(e; ) would project to % ;, non-trivially, contradicting Lemma
3.1. We will complete the proof by showing, by induction on |« |, that in fact no
length is possible.

Let ,, denote an {i)* -configuration whose gth point is distinguished. Since
hi(x,) is contained entirely in % ;; , it must be a linear combination of exactly 2i — 1
such configurations, i.e.

2i—-1

(3.6) 0=hile,) = Y (=1 By
g=1
Therefore
w 2i—-1
(3.7) 0=hie) = Z Ap Z Bra-
p=1 gq=1

Now, there cannot be any cancellation in (3.7) between f,, and f,, if g # r because
the gth point is distinguished in the former and the rth in the latter. Thus the only
way we can have cancellation on the right hand side of (3.7) is if there are p,r, q
such that a, # a,, but g,, = f,,. We can say more about such pairs «, and «,. Let
x be the distinguished point in f8,,. Now, h; !(8,,) contains exactly three config-
urations: the {i)-configuration § which is obtained from f,, by forgetting that x is
a distinguished point, and the two [i]-configurations + f*! and + p*? which are
the resolutions of § at x. Thus a, may be obtained from a, by a single transposition
of a pair of adjacent points in the underlying point set. That is, the [i]-configura-
tions «, and «, are identical everywhere except near a single pair of arcs, where
they differ in the manner indicated in Fig. 12.

Suppose that |, || is m. Let [t,_, t,] be the arc of length m in o ;. Then the
symbol in (3.1) for a; must take the form:

Oy iy (bgmmrtg)s byt tgm14u)s o)

where t,_,, <ty_y <t, <t,_1+, because if not there would be an arc of length
less than m in the defining symbol for «,. But then, «; must be paired with an
o, which is obtained from it by a transposition of t,_; and t,, as in Fig. 12.
However this would produce an arc of length m — 1 in a,, contradicting (3.5). Thus
h;|%Z;, is one-to-one. [J

-1 q q q-1
inoy ine

Fig. 12
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Recall that in §2 we defined the notions of a separating arc in a [ j]-configura-
tion, and of admissible and inadmissible circular [ j]-configurations. We now
extend these ideas to {j)-configurations. An arc 7 in a {j)-configuration will be
called separating if it is separating in the underlying circular [ j — 2]-configura-
tion, and if all three points in the defining triple are on the same side of .
A {j>-configuration  and its associated circular {j)-configuration B are inadmiss-
ible if B contains a separating arc. Otherwise, both are admissible.

Lemma 3.3 Let &, = ZA,koc, + ZBskﬁs be a basis element for # ;. Choose any
fs with defining symbol (3.2). Then By, is zero if §; is inadmissible.

Proof. Since h;|% ;, is one-to-one by Lemma 3.2, the only way that B could be
non-zero is if each component of its image under h; cancels against a correspond-
ing component from some «,. However, if the circular ¢i)-configuration £, had
a separating arc, the index of the associated [i]-configuration would be zero by
(2.7). Thus no such cancellation could occur. [J

Choose any admissible {i)-configuration . Then f is defined by an associated
(2i — 1)-tuple, as in (3.2). Choose any point p in the triple (x, y, z). We resolve f§ into
[i]-configurations B! and B72, as follows. Replace the point p by a pair of points
{p, p"'}, which are assumed to be arbitrarily close to p on R'. Then form two
[i]-configurations by pairing p’ and p” with the other two points in the triple, in the
manner illustrated in Fig. 13. There are two ways to do this. The six resolutions of
f are the six [i]-configurations:

B = (s ty)s o s (g Ly )s (X5 ), (X, 2)),
B2 =t tiy)s oo s gy Luy, )5 (5 2), (X, 1)),
B = s tiy)s oo (g iy, ) (6,9, 07, 2)),
B2 =ty tiy)s s (o iy, )5 (6, 7), (0 2)),
B = (tuys tiy)s oo s gy yo T, (6, 27), (0, 2)),
(3.8) B = (s tus)s s (s Ly, )5 (6, 2), (0, 27)).

Lemma 3.4 Let &, =) Ao, + ) Byf be a basis element for #°;. Choose any
admissible ;. Assume that the defining symbol for f; is given by (3.2). Then By, is
determined by the indices of the two resolutions of f,, at any one of the three points
in the triple.

p
P
7/ N
! \
r q
~ _
B

Resolutions of & circular <j>-configuration

Fig. 13
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Proof. Let B = f and let B be its unknown coefficient in &,. Let (x, y, z) be the
triple in f. Choose pe{x, y, z} and let 7! and B*? be the two resolutions of f. Thus
each 7! and each B*? is an [i]-configuration. Let Ind;(3”') and Ind;(8??) be the
indices of B! and p?”2. Now, the images of f, f”' and BP? under h; each have
a component in the {i)* -configuration * which is obtained from $ by making
the point p the distinguished point. Even more, h; ! (8* ) meets these three basis
elements of &'; and no others. From this it follows that in order for h;(¢;) to be
zero, the following relations must hold:

B = ( _ ])i+1+#x[1ndi(ﬂxl) + Ind,-(ﬁ"z)]
= — (= 1) ®[Ind,(8*") + Ind,(*?)]
(3.9 = (=11 * [Ind(f*") + Ind,(f*?)],

where #x, #y and #z are the positions of x, y and z among the 2i — 1 points in
the ordered underlying point set. The minus sign in front of the middle expression
results from the fact (see §1.5) that if § is an {i)-configuration, then h;(8) is a linear
combination of the three (i) * -configurations which belong to the same underlying
{iy-configuration, the coefficients being — 1, + 1, — 1 according as the distin-
guished point is the first, the second or the third point in the triple. Since every
{iY>-configuration B, arises as h; '(8F) for some {i>*-configuration B¥, the
assertion of Lemma 3.4 follows. [

Now, we may eliminate B from Eqgs. (3.9), changing the three equations into two
equations, which only involve the indices of [i]-configurations. These equations
then go over to two new equations between the associated circular [i]-configura-
tions *¢, because by Lemma 2.1 we know that if two [i]-configurations define the
same circular [i]-configuration their indices coincide. With this simplification in
place, we may use Egs. (2.2) to replace the invariant Ind;(87) by the related
invariant v;(87?). The modified version of the first equation in (3.9) will then be:

(= 1) *=+18 p,(B*1) — 0,B*%)] + (— 1) *12  [w,(B*1) — v4(f?2)] = 0.

The minus sign inside the brackets occurs because |?'| = | 72| + 1 for every
pe{x, y, z}. To simplify this expression still further, let & be the circular [i — 2]-
configuration obtained from the f§ by deleting the triple of . Let 7., 7,, and 7, be
the arcs joining x to y, y to z, and z to x respectively. Let |7,,| denote the
intersection number of 7, with the arcs in 4. Then:

#x— #Fy= |1,] +1(mod 2)
and

'Exll - Igyll = |sz' - |Tyz|
= |t + |75 = 75| (mod 2).

Thus after simplification we obtain the following two equations from (3.9)
(3.10),, oi(B) — viB?) = vi(B') — vilB?),
(3.10),. i) = v:i(F?) = vi*) — vilh),
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where there is one such set for each ﬁ in the set {ﬁs; s=1, ..., m} of admissible
circular {i)-configurations.

Regard the system of equations defined by (3.10) as a system of linear equations
in unknowns

(X 115 ooy X i) = (0i&y), ..., 0:@d,)).
Let
Xi=Xq, o X))
Rewrite the system (3.10) in the form:
(3.11) M;X; =0

where and IM; is the 2m by n matrix of coefficients in the system of equations
defined by (3.10), and (3.10),,, for s =1, ..., m.

Lemma 3.5 A necessary condition for the existence of non-trivial Vassiliev invariants
of order i is that the solution space to the homogeneous system of equations (3.11) have
positive dimension k; > 0.

Proof. The equations in (3.9) express each By, in (3.3) in three possibly distinct
ways as a sum of indices A4, of associated [i]-configurations 74. After eliminating
By, we are left with two (in general distinct) linear equations in the unknown
indices which are simplified using the related invariants to (3.11).

These equations in the unknown indices are the only relations between the
indices of admissible circular [i]-configurations, because by Lemma 3.2, the image
of an [i]-configuration which has non-zero coefficient under h; projects trivially to
%, and we have given a full description of h; *(8S) as B¥ ranges over the basis
for % ;. Thus, equations (3.11) are the only relations between the invariants of
order i of admissible circular [i]-configurations. [J

We have seen how to compute the Vassiliev invariants of the configurations in
the top row of the actuality table A(i). We next proceed to modify our calculations
in order to determine the Vassiliev invariant of the immersions in the remaining
rows. The basic new complication which we must deal with is that (2.5) does not
hold if j <i. Thus the invariant v;(®) of an immersion which respects our
configuration depends not only on the configuration, but also on the choice of the
immersion. R

The first thing we need to do is to describe generic immersions ¥ which respect
circular ¢ j)-configurations. Such immersions must contain j — 2 transverse double
points and one triple point. In order to give precise meaning to the notion of
transverse near a triple point, we require that the three branches of the image of our
immersion of the oriented circle S* coincide locally with the positively oriented x, y
and z axes near the triple point, as in Fig. 14. In the following discussion, an
immersion will always mean a generic immersion.

Next we need a notion of equivalence of immersions respecting {j)>-configura-
tions. Call ¥, and ¥ equivalent if they are isotopic via an isotopy ¥, such that
¥, is a generic immersion for each 0 < ¢ < 1. This implies that ¥ and ¥, respect
the same {j)-configuration.

The next step is to develop a scheme for resolving the triple point into a pair of
double points, in such a way that the resolutions of ¥ respect the resolutions



252 J.S. Birman and X.-S. Lin

local picture of an immersion near a triple point
12 12
2 2
y /g
1 2 q\ 2 2 f
[ X
/2' ]1 7%
1
2
) y 2 y
2 2 2 12 /
2
1
1
‘ X

1 1

S A
| -

local pictures of the six resolutions of a triple point

Fig. 14

considered earlier for . See Fig. 14. Recall that we defined resolutions of g at
p (respectively g and r). The corresponding three resolutions of ¥ are: resolve along
the x (respectively y and z) axes by sliding the y or z (respectively z or x, x or y) axes
along the x (respectively y, z) axes. For each of these three choices there are two
possibilities: slide in the positive or in the negative direction. This gives six
resolutions of an immersion ¥ which respect the corresponding six resolutions of
the circular {j)-configuration f.
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Recall that earlier we defined the concept of an inadmissible {;j)-configuration.
Our immersion ¥ is a good model respecting an inadmissible f if, whenever
[3 contains a separating arc 1, the two components of the image of S! split along the
endpoints of t are geometrically unlinked. Notice that this implies that each of the
six resolutions of ¥ is a good model respecting an inadmissible [ j] configuration.
The reason is: the double point which belongs to the separating arc in ¥ divides the
image of ¥ into two subgraphs, say a red one and a blue one, and the changes
which occur in passing to the resolutions of ¥ are always entirely in the red half or
entirely in the blue half, and so cannot introduce any linking between the two.

We can always choose an good model respecting an inadmissible p. Thus, in the
following discussion, we will only consider admissible f’s since the Vassiliev
invariant of good models respecting inadmissible circular [ j]-configurations are
always zero.

Notice that an admissible circular {j)-configuration f may have inadmissible
resolutions. This happens exactly when the triple of f contains an adjacent pair.
Thus, we may choose an immersion ¥ respecting f# with the property that every
resolution of ¥ respectmg an inadmissible resolution of f is good. For example, we
only need to require that for an adjacent pair in the triple of B, the corresponding
loop in the image of the immersion ¥ chosen to respecting f bounds a disk whose
interior has no intersection with the image of V.

We are now ready to proceed with our calculation. Since we know the Vassiliev
invariants in the top row R(i, i) of our table we may proceed inductively, assuming
that R(i, n) has been constructed for every n with j < n <i. Let:

® 4y, ..., be the list of admissible circular [ j]- conﬁguratlons
° <D be a ch01ce of an 1mmers1on respecting 4,, r = 1, N5
° (P be the equivalence class of d,:
e fy, .. ﬂm be the list of admissible circular < j > -configurations;
o ¥, be a choice of an immersion respecting f,, s =1, ... ,m; such that every
resolutlon of ¥, respecting an inadmissible resolutlon of B, is good;
s be the equlvalence class of 7.

The data which is needed to complete R(i, j) is the set of unknown invariants:
(@), ..., Ui((i){;, )

Notice that each resolution of an immersion ¥ which respects a { j>-configura-
tion is an immersion ¥ which respects a [ j]-configuration. The latter has
a well-defined index Ind;(¥?9). It is an invariant of the equivalence class of the
immersion.

Let ¥ = ¥,. The analogue of (3.9) for immersions is:

(3.12) Ind,(¥) = (— 1)I*1***[Ind (¥*') + Ind;(¥*?)]
=(—1)""*[Ind;(¥’") + Ind,(¥*?)]
=(—1)"*1**:[Ind (¥*') + Ind,(¥72)].

Equations (3.12) determine a system of equations which are the natural general-
ization of (3.10) ,, and (3.10),, for immersions:

(3.13),y 0 (B) — 0, (¥?) = 0,(F") — 0,(P?),
(3.13),, 0 (#7") — 0,(¥7?) = 0,(¥7') — 0, (¥7?).
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In principal, we should now be able to go over to the analogue of (3.11),
however there is a complication. Earlier, we chose a model immersion @, as our
representative immersion which respects &,. Unfortunately, the immersions which
occur in equations (3.13) may not agree with these chosen models. To handle this
problem, we now recall that by Lemma (2.3), part (iii), we know that ¥ 74 coincides
with @, up to crossing changes. Therefore we may use (2.4), together with the data
in R(i, n) forj + 1 < n < i, to compute the difference between the Vassiliev invari-
ants of ¥# and ®,. Set

(3.14) NP = 0,(®,) — v,(F2).

Then N¥? is a linear function of the Vassiliev invariants in R(i, n) for
j+ 1 =n<iwith integer coeflicients. Let X{? = X,; denote the unknown Vas-
siliev invariant of ®,, so that X{1e{X y;, ... ,X,,jj}. R

If f?4 is inadmissible, ¥?? is a good model for an immersion respecting 74 by
our choice of ¥;. In this case, we may set X7 = 0 as well as N? = 0. Then, we
have

(3.15) vi(#27) = X1 — NP

for any resolution pra.
Substituting (3.15) into (3.13) ,, and (3.13),,, we obtain the required analogues
of 3.10),, and (3.10) ,, for the case j < i

(B16)y  [X5! — X5 —[X3! — X332 = [N§! — N§2] = [N3s! — N2,

(3.16),,
[X3! = X22] = (X3! — X32] = [N} = N32] =[N3 = N32),

The right hand sides of (3.16),, and (3.16) ,, are known integers. Comparing
(3.10) ., and (3.10),, with (3.16),, and (3.16) ,,, we see that we have replaced the
homogeneous system of equations in (3.11) with a corresponding inhomogeneous
system. Thus we have proved:

Lemma 3.6 Choose an assignment of Vassiliev invariants to the top row R(i, i) of the
actuality table, i.e. a solution to the homogeneous system of equations (3.11). Then this
assignment extends to an assignment of Vassiliev invariants to R(i,j), 1 <j <i— 1,

if and only if, corresponding to it there is a solution to the inhomogeneous systems of
equations

(3.17) MX;=N,;;, 15j<i—-1
where:
® X isal by n; matrix containing the unknown array of invariants (X, ..., X,,)
of the immersions chosen to respect the admissible circular [ j1-configurations 4,
T

o M; is ‘the n j by 2m; matrix constructed in_the computation of R(j,j). It has
a column for each &, and two rows for each f;

e N, ;isthe 1 by 2m; matrix determined from the entries on the right hand side of
(3.16) », and (3.16) ,.. These are computed from (3.14), using the data in R(i, n) with
j<nZi
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We may now put together Lemmas (3.5) and (3.6), to state the main result in
this section. First, we put the Eqgs. (3.11) and (3.17) together:

{M,’Xl’ = 0

M,X;=N,;, 1<j<i-1

ijs
Now observe that that the components of the column vector N, ; are linear
functions of components of X;,;, ..., X; with integer coefficients. Thus, our
system is actually a much larger system of homogeneous linear equations in the
combined set of variables:

(3.19) MX =0

where X' is a column vector made up out of the previously defined column vectors
X Xm0 X))

Theorem 3.7 Consider the space of solutions of the combined system of homogeneous
linear equations (3.19). There are non-trivial Vassiliev invariants of order i only if the
solution space to this system has positive dimension. The number of linearly indepen-
dent Vassiliev invariant of order < i is the codimension of the subspace of those
solutions such that X; = 0.

Proof. The unknowns in this system are the components of the vectors X;, X, _;,

, X;. The vector X, for j =1, ..., i, has an entry for each admissible circular
[ j1-configuration. A solution to this system of equations with X; = 0 gives us an
actuality table for a Vassiliev invariants of order i and hence determines a Vassiliev
invariant of order i. On the other hand, the invariants in an actuality table A(i)
certainly satisfy this system of equations. Moreover, the system of equations is
consistent with respect to the order meaning that if we set X; = 0, it reduces to the
system of equations corresponding to the order i — 1. This proves Theorem 3.7. [

Examples are in order, but before we give them we address an important
question. In order to set up the system (3.19) it was necessary to make a choice of
model immersions representing all [ j]-configurations with j < i. Different choices
will lead to different equations, because the matrices IN; ; depend upon the choice
of the model immersions. Our question is: does the existence of a solution depend
upon making a correct choice? The answer is no:

Corollary 3.8 The existence of a solution to the system of Egs. (3.19) is independent of
the choice of the immersions which respect [ j]-configurations.

Proof. Let us assume that an actuality table A (i) of order i has been completed. It
suffices to prove that if we change one of the immersions in the table, say dto &
where & and &' respect the same circular [ j]-configuration, we can complete a new
actuality table A'(i).

Rows R(i, i), R(i, i —1), ..., R(,j+ 1) in A'(}) can clearly be chosen to be
identical to the corresponding rows in A(i). Since @ and @ both respect the same
[ j]-configuration, we know from Lemma (2.3), part (iii), that we may find a dia-
gram for & (S') which coincides with that chosen earlier for ®(S*) up to crossing
changes. Since rows i, ...,Jj + 1 have already been filled in for A’(i), we may then
use (2.5) to compute the invariant X’ of the new immersion @'. Suppose that

(3.20) v(®) = v,(®) + 4.
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Then Eq. (3.15) will be modified, if it should happen that a particular @7 coincides
with @, to:

(3.22) vi(PP1) = (X1 — A) — (N29 — 4).

Thus whenever this particular term X?? occurs in (3.16),, or (3.16) ., terms on
both sides of the equation will change in corresponding ways, and the equality will
still be satisfied.

The entries in row j — 1 of A’(i) will be identical with those in A (i), because the
invariants in row j are only used as a reference point in the computation of the
invariants of an immersion in row j — 1. [J

Example 3.9

In Figs. 9-11 we exhibited actuality tables for Vassiliev invariants of orders
i=2,3 and 4. We now use Theorem 3.7 to show how the table for i = 4 was
constructed.

The first step is to list the admissible circular [ j]-configurations for 2 < j £ 4
and to choose an immersion which respects each for the cases j = 3, 2. In this
regard, the following notation was useful to us: A circular [ j]-configuration is
determined uniquely by choosing any initial point and recording the lengths of the
joining arcs in the order in which they are encountered, travelling around the circle
clockwise and measuring each arc by the differences between the order of its initial
point and endpoint. Of course, this series of lengths is non-unique, since it depends
upon the choice of the initial point. The name of a [ j]-configuration is the smallest
number so-obtained, as the initial point is varied. Using this notation and observ-
ing that the unknown invariants are in one-to-one correspondence with circular
[ j]-configurations, we may order the entries in the vectors of unknowns by the
lexicographically ordered names of their configurations. Let X ; denote the invari-
ant of the immersion which respects the kth [ j]-configuration, in this lexicographi-
cal ordering. Reading the rows from top to bottom, and reading across each row
from left to right in Fig. 8 we then note that the configurations in the three rows of
the table in Fig. 8 are denoted by the symbols (2222, 2332, 2433, 2442, 3443,
3533, 4444), (232, 333), (22) respectively.

The indices of the configurations in the top row are determined by solving
equations (3.10), so the next step is to set up the equations, which are in 1-1
correspondence with admissible circular {4)-configurations. See Fig. 15. The first
thing to notice is that if a {j)-configuration contains three adjacent dots it will
determine two trivial equations, and we have omitted the unique <{4)-configuration
with this property. Notice also that if there is a pair of adjacent dots or if certain
symmetries occur the two equations will reduce to one, and we have only shown one.

Solving the six equations listed below the pictures in Fig. 15, we find that:

04(2222) = — 30,(3443) + 204(3533) + v,(4444),
04(2332) = — 20,(3443) + v,(3533) + v,(4444),
04(2433) = — v,(3443) + v,(4444),

04(2442) = v,(3443) — v,(3533).

Thus we have shown that v4(3443), v4(3533) and v4(4444) determine the remaining
indices, and may be chosen as a basis for the solution space to (3.10), which has
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v4( 2332) - V4(2433 ) = V4( 2222) - v4( 2332)
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@ v,(2433)-  v,(3443) - v,(2332) - v,(3533)

Equations relating the indices of circular [4]-configurations

Fig. 15

dimension 3. We may choose them in an arbitrary fashion, a natural choice being
(1, 0, 0), (0, 1, 0), and (0, O, 1) respectively. See Fig. 11. With these choices we

compute

04(2222) =(—3,2,1),
v4(2332) = (- 2,1,1),
v4(2433) = (- 1,0,1),

04(2442) = (1,

—1,

0).
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The indices in the top row of the table in Fig. 11 have been filled in. (Remark: It’s
probably a complete accident that the indices of the numerically largest configura-
tions determine the indices of the remaining ones, but the general problem is
sufficiently difficult so that we cannot ignore even such small hints of possible
structure.)

We pass to the row associated to j= 3. There is a unique circular {3)-
configuration, denoted ®, depicted in the top left corner of Fig. 16. To its right is an

An immersion respecting the unique admissible <3>-configuration
21 12

The six resolutions of & and the [3]-configurations they respect

Fig. 16
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immersion which we have chosen to respect it. The image of S' under the
immersion is to be regarded as being embedded in 3-space so that the positive x, y,
and z axes are as indicated. Then, referring to Fig. 14 the six resolutions of ® are as
illustrated. They are related by equations (3.13) ,, and (3.13) ., namely:

4@ ) — 04 @) = 04(@3) — v4(DPy),
04 @) —v4(@3) = 04(@5) — v,(DPs).

Now, @, and @5 are good immersions which respect inadmissible configurations,
so by Theorem 2.4, assertion (2.7), both v4(®, ) and v, (®s) must be zero. Thus our
two equations reduce to:

—04(@;) = 04(@3) —V4(@4) = — v, D).

Next we notice, from the pictures in Fig. 17, that @, is in fact isotopic to ®s.
Identifying ®, with ®4 our two equations reduce to a single equation, namely:

04(@3) — v4(@,) + v4(Dg) = 0.

Next, observe that @ ; and ®¢ respect the same [3]-configuration. However, from
Fig. 18 we see that they only become equivalent after a crossing change. By
Theorem 2.7, assertion (2.4) it follows that:

v4(®@3) — v4(@s) = v4(3533) = (0, 1, 0).

Thus if we choose v4(®;) = v,4(®,4) = (0, 1,0) and v4(®@¢) = (0, 0, 0) in the three
cases all of our consistency conditions will be satisfied. Since the immersions in the
middle row of Fig. 11 may be identified with ® 4 and ®,, we have extended the
solution to the middle row of the actuality table for i = 4.

Finally, we see that there are no admissible <2 )-configurations, so there are no
constraints on the entries in the bottom row of the table, and we may take the
indices of the unique [2] -configuration to be (0, 0,0). We have completed an
actuality table for the index 4.

Open problem 3.10

Find a constructive proof that every solution to the system of equations (3.11) can
be extended to a solution to the system of equations (3.19).

< N
% !

2

2 ¢6

Fig. 17
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/@
¢6
EZ 3 1 3 1

Fig. 18

4 Knot polynomials and Vassiliev invariants

In this section we will establish a connection between the HOMFLY [FHLMOY]
and Kauffman [K1] polynomials and Vassiliev invariants, and work out various
consequences.

We will no longer need to concern ourselves with the distinctions between
immersions of ! in R 3 and immersions of R*! in R 3. Therefore we may simplify
our notation and drop all “hats.”

The HOMFLY polynomial is a Laurent polynomial in two variables which,
like the Vassiliev invariants, is determined by axioms and initial data. The particu-
lar model for it which is most appropriate to our work here is an infinite sequence
of one-variable specializations which are defined as follows [J3]. Let O denote the
unknot, and let K,, ,K, and K, be link diagrams which are identical every-
where except near one crossing, where they are related in the manner indicated in
Fig. 5. Then for each knot or link type K there is a doubly infinite sequence of
Laurent polynomials #, ,(K) in the variable t *!, indexed by the integer n, with
n =% — 1, which are determined by the crossing-change formula

@1) "V, (K, )=tV (K, ) + (¢ — T A, (K,
and the initial data:
4.2) Hn:(0) =1,

It is known [J3] that the sequence of polynomials +#, ,(K) determine the 2-
variable polynomial of [J2], discovered simultaneously and independently by
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Freyd and Yetter, Hoste, Lickorish and Millett and Ocneanu. The 1-variable Jones
polynomial of [J2] is obtained by setting n = — 3.

Theorem 4.1 Let K be a knot and let #,, (K) be its nth HOMFLY polynomial. Let
W, «(K) be obtained from # , ,(K) by replacing the variable t by e*. Using the power
series expansion of e~ to express W, .(K) as a power series in x:

43) W) = 3w i(K)x"
i=0

Then w, o(K) = 1 and each w, ;K),i = 1 is a Vassiliev invariant of order i.

We begin our work by proving Theorem 4.1. We will then work out some
interesting consequences. See Corollaries 4.2, 4.3, 4.4 and 4.7 and Theorem 4.8, also
Example 4.5. At the end of this section we will show how to modify Theorem 4.1 for
the Kauffmann polynomial.

Proof of Theorem 4.1 The basic idea of the proof is to show that the coefficients
vn,i(K) in the power series P, ,(K) satisfy the axioms for a Vassiliev invariant of
order i which we gave in Theorem 2.4.The first step is to use the fact that 5#, ,(K) is
defined on all knots to construct a related invariant of flat vertex graphs. Moti-
vated by (2.4), we notice that the vertex at p can be resolved into a positive crossing
p+ Or a negative crossing p_, so, recursively, we define:

4.4) yfn,l(K{)) = c}f,,,t(K{,: 1) - %n,t(K{?jl)

Applying this formula first for j = 1, then for j =2, ... gives a well-defined
invariant which we call the HOMFLY polynomial #, (K/). It is a sum of
HOMFLY polynomials of 2/ knots.

It also follows that (4.1) yields a crossing-change formula for #,, ,(K/), namely:

@45) A, (K1) =70, (KT + (72 =R, (K.
Substituting (4.5) into (4.4) we obtain:
4.6) A, (K} =" =), (KT + 7" =T "TP2)HEKL ).

Suppose, now, that the vertices in K/ are labeled 1,2, ...,j. We can use (4.6) to
resolve the j crossings. The final result will be to express #, (K{ . ;) as
a weighted sum of HOMFLY polynomials of 2/ links Kj:

@7 A Ki, ) =200 —DrET TR e, (K,),
s ER-TIRIR N 5

where:

® 6=(0;,0,, ...,0;), where each J, is a minus sign or a zero,
® ps = the number of minus signs in 9,

® g; = the number of zeros in 9§,

L K5 = Kl.n , 252, s oyt

We now pass to the power series version of (4.7) :

(48) W, (Ki, ;) =Yl " D — 1P ™2 —e TR B W, (K,)
é
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Let |K;| denote the number of components in the link K. In [J2] it is shown that
H, (K;) =(@n+1)%!"1 5o that each summand W, ,(K;) in (4.8) has a non-
vanishing constant term (n + 1) %! =1, As for the remaining terms, when we replace
e* by its Taylor series, the first non-vanishing term in the power series expansion of
(e~™*>* — 1)» will be (— (n + 1)x)?, and the first non-vanishing term in the
power series expansion of (e ~™/? — ¢ ~("*2)x/2)4 wi]] be x%. Using the fact that

Ds + qs =ja

we conclude that the coefficients of the x/ on the right hand of (4.8) is zero if i < j.
That is, our power series expansion will take the form:

4.9) Wn,x(KJi,Z, ,) = Z Wn,i(KJi,z, ...,j)xia where Wn,i(K{,Z, 1) =0ifi<j.

i=0

We are now ready to use Theorem 2.4 to prove that w, ;(K) is a Vassiliev
invariant of order i. Property (2.4) is a consequence of (4.4). Property (2.5) coincides
with (4.9). Property (2.6) follows from (4.2). It is always possible to satisfy (2.7). So
the only thing which remains is to construct the actuality table (2.8). In our
situation that is easy. We began with a knot invariant 5#, (K) and used it to
construct a graph invariant, so our graph invariant may be used to construct an
actuality table. The table will, of course, be rather special, since it belongs to the
HOMFLY polynomial. The indices in the top row of the table are, in fact, given by
a very explicit formula which follows directly from the remarks just before the
statement of Eq. (4.9) :

(4.10) Wn,j(K’iz...j) - Z(_ 1)Po(n + )P HIKsI-1
s

The invariants in (4.10) satisfy Eqgs. (3.10) ., and (3.10) ,, and the invariants in the
remaining rows satisfy (3.17),, and (3.17),, because these equations follow from
the fact that Vassiliev invariants do not depend on the particular series of crossing
changes which take K to the unknot O. That is clearly the case in our situation
because s, ;(K) is a knot type invariant. [J

Corollary 4.2 (i) For every i = 2 there exist knots with non-trivial Vassiliev invari-
ants of order i.
(ii)) The groups G;/G ;- have non-trivial rank l; = 1 for every i = 2.

Proof. (i) To prove the first assertion, let T be the positive trefoil knot. Its Jones
polynomial is # _; (T) =t + t> —t*. Setting t =e* and expanding e* in
a power series, we see that the coefficient of x' is (1 + 3 — 4%)/3! which is non-zero
for every i = 2.

(ii) To prove the second assertion, we will show that for every i = 2 there is an
[i]-configuration « such that w_;3 ;) +0, ie, w_;,;€G;\G;_;. Take
a = (i, i, ... ). This configuration is respected by a graph K‘ which is obtained from
a standard projection of a type (2, k)-torus knot by changing i crossings into double
points, where k =i (or i + 1) if i is odd (or even). We claim that

W_3’i(i,i, i) = }T}—E——I)T—



Knot polynomials and Vassiliev’s invariants 263

if i = 2. To see this, notice that a resolution of K which has j negative resolutions
and i — j positive resolutions is a type (2, k — 2j) torus knot. Using the formulas in
[J2] for the Jones polynomials of torus knots, we compute:

H K! . 1)J i i 2 k+1-2j
-3.(K') = - A S A
s K') = X )(J.) ( )
14+t 4+ t2)k-—Dr2 i /i o pBk+n/2 /i )
U (e (e
1+t o J 1+t 5 j
14t + t2) kD2 o k12 )
___( +t+ ) (1_t—1)1_ (l_t—j)l
1+ 1+t
(1 +t+ tz)t(—2i+k—1)/2 ) t(—6i+3k+l)/2 ' .
= t—1) — 1 t [21t__11.
111 (1) e U A DA

Passing to the limit, as above, we obtain:
. . . 33
w_s (i, ...1) = 57

This limit is non-zero for all i = 2. O

The astute reader will have noticed that in the proof of Theorem 4.1 we did not
need to restrict ourselves to the substitution t = e*. In fact:

Corollary 4.3 Ift = f(x) is any function with the property that f(x) and 1/f (x) have
convergent power series expansions in some neighborhood of x = 0, and ifin addition

limf(x) =1,

x—=0
then each coefficient u, ;(K) in the power series of expansion of #, ,(K) determined
by t = f(x) is a Vassiliev invariant of order i.

For example, if we had chosen t =1 —x,t™' =1+ x + x> + ... the proof
goes through unchanged. Let us denote by w, ;(+), i = 1 the Vassiliev invariant of
order i determined by the HOMFLY polynomial using the substitution t = 1 — x.
Thus:

Corollary 4.4 Suppose # , ,(K) is a polynomial (rather than a Laurent polynomial) in
t of degree k for a certain knot K. Then, w, ;(K) =0 for i> k. Moreover,
the coefficients of # , (K) are equal to the values of certain Vassiliev invariants of
order <k onK.

Proof. The first assertion is easy to see. The second assertion is because the
coefficients of #,,(K) are linear combinations of the coefficients in the new
polynomial which is obtained by replacing t by 1 — x. Since linear combinations of
Vassiliev invariants of order i are Vassiliev invariants of order i, the second
assertion follows. [J

Example 4.5 Earlier, we showed that certain actuality tables for a Vassiliev invari-
ant of order i = 4 could be chosen so that all invariants in the rows associated to
j =2 and 3 are zero. This implies that, for such a choice of the tables, the trefoil
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knot T has only two non-zero Vassiliev invariants, namely v,(T) and v3(T),
because (see the sample calculation at the end of §2) the computation of v;(T) for
i > 3 does not make use of data in the tables above row 3. This result is a little bit
stronger than the result obtained by substituting 1 — x for ¢ in the one-variable
Jones polynomial of the trefoil, which is t + > — t*, because on sending t to 1 — x
one obtains a polynomial in x of degree 4, not 3.

The proof of Corollary 4.2 raises a question. The HOMFLY polynomials are
indexed by the integers n. Define the dimension of the HOMFLY subspace of
G;/G;-, to be the number of linearly independent actuality tables of order i which
are obtained from the HOMFLY polynomial, as n varies over the integers
n = — 1. What is this dimension? Can we identify the subspace in the cases which
we know, ie. i =2, 3,47

Corollary 4.6 The HOMFLY subspaces of G, and G3/G, have dimension 1. The
HOMFLY subspace of G4/G5 has dimension 2.

Proof. We use (4.10) to compute the value of w, ;(K’) on the basis elements
calculated in the examples at the end of §3. For example, for i = 4 we need to
compute w, 4(K?,34) on immersions which respect the three [4]- configurations in
Figure 3.4 with names 3443, 3533 and 4444. There is a very simple rule for
determining |K;|, which we now describe. If we use the rule which was given in
Fig. 7 for choosing an immersion which respects a given [ j]-configuration, then if
a particular double point is resolved into a negative crossing (respectively zero
crossing), as in Fig. 19, we simply delete the corresponding arc (respectively replace
it by two parallel arcs). With this rule it is not difficult to compute the sum on the
right hand side of (4.10) over the 2* possible vectors . The results of the
computation are:

Wa222) =1—(n+1)2
Wo3232) =+ 1) —(n+1)°
W, s(3443) = 2(n + 1) — (1 + 1)*)
W,,a(3533) =(n+1)> —(n+1)*
Woa@4dd) =1+ @+ 1)% =30+ 1)*

Thus, the HOMFLY subspaces of G, and G3/G, have dimension 1. Since
w, 4(3443) = 2w, 4(3533), the vectors

(W, 4(3443), W, 4(3533), W, 4(4444))

span a 2-dimensional subspace in the 3-dimensional space G ,/G ; as n varies over
the integers n + — 1. Thus, the HOMFLY subspace of G,/G 5 is 2-dimensional, as
claimed. [J

In [V] Vassiliev proves that if K, and K_ are knots which are related by
a crossing switch, then their second order Vassiliev invariants satisfy the crossing-
change formula:

v2(K4) — v (K-) =4
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Fig. 19

where A is the linking number of the 2-component link K,. As an example, we
remarked at the end of §2 that the second order Vassiliev invariant of the trefoil
knot is 1, using the actuality table in Fig. 9. We could also have obtained this from
Vassiliev’s crossing-change formula. Now, we have just shown that, using the
axioms (4.1) and (4.2) for the HOMFLY polynomial, the invariant w, ,(K) lies in
a subgroup of the cyclic group G, which is generated by 1 — (n + 1) 2. This means
that the second order Vassiliev invariants in the HOMFLY case will satisfy the
crossing-change formula:

@.11) Wa2 (K 4) = wo oK) = [1 — (0 + 1)2]

Using what we learned from the proof of Theorem 4.1 we now generalize this result.
Recall that 5# _; ,(K) = J,(K) is the one-variable Jones polynomial of a knot.
It was proved in [J2] and also in [B-K] that J,(K) satisfies a crossing-change
formula which is analogous to (4.1) but which relates the Jones polynomial of three
knots, rather than two knots and a link. The modified crossing-change formula is:

(4.12) JKy) =tJ,(K-) + (> =371 (Ko,)

where J (K ,) is defined in Fig. 5. Let us use the substitution t = e*, to replace the
Laurent polynomial J,(K) by its power series J .«(K) = U(K) = Z u;(K)x‘. Thus
u;(K) = w_; ;(K). Vassiliev proved in [V] that his first order invariant v, (K) =0
for every knot K. (This is the analogue of Jones’ observation that the first order
derivative of the Jones polynomial of a knot, evaluated at 1, is 0.) Equating like
powers of x on both sides of the power series version of (4.12) we obtain:

Corollary 4.7 LetK ,,K _, K, be knots which have are defined by immersions which
agree everywhere except near a single crossing. Let A be the linking number of the
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2-component link K . Then for every i = 2 the following formula holds:

14+ (3BA) =(BL+1)
i!

w,Ky)—uKo)=u; - (K-) —u;—1(Ky) +

JK )+ u(K)[BA)' 7 —(BA+ 1)177]
@ =!

Notice that since u, (K) = 0 for every knot K, and since (from (4.10)) the “Jones
subspace” of the space G, of second order Vassiliev invariants coincides with G,,
Eq. (4.13) reduces to (4.11) with n = — 3 in the special case i =2 .

Our final result in this section relates to the Kauffman polynomial. The
Kauffman polynomial of an oriented link K, like the HOMFLY polynomial, is
a Laurent polynomial in two variables which is determined by a doubly-infinite
sequence of specializations Q, ,(K), ne{Z},n+ — 1. There is a crossing-change
formula which is the analogue of (4.1) and initial data which is the analogue of (4.2),
and we begin our discussion by describing them. We assume that K is defined by
a fixed diagram K. The symbol K denotes the diagram obtained from K by
forgetting the orientation. Choose a crossing peK,andlet K ,, denote the diagram
with this crossing dlstlngulshed Let K, denote the diagram obtained from
K,, by switching the crossing at p and let K, and K, denote the two possible
diagrams obtained from K,, by surgery at p. Let Ko and K - be the diagrams
obtained from K by addmg ‘curls” as in Fig. 20. Then it is proved in [K2] that
a doubly infinite sequence of regular isotopy invariants (see [K1]) of K which we
denote by the symbols Q, ((K) is determined by the crossing-change formula:

(414) Q_n,t(Kp+ ) = Q_n,t(lep_ ) + (t - t_l)[Q_n,t(IZpo) - Q—n,!(lzp« )]a

(4.13) + Z

the two curl formulas:

(4.15) 0n(Ko) = t""1(Q,,(K)),
(4.16) 0..(Kg) =t~""1(Q,,.(K))
and the initial data:

(4.17) 0,.(0) =1

Fig. 20
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Reintroducing orientations, and letting w(K) denote the writhe or algebraic
crossing number of the diagram K, the invariant Q,, ,(K) is defined by the formula:

(4.18) 0 (K) = ¢~ W0 g, (K).

Let a, b, ¢, d denote the writhes of K, , K, ,K, and K, . Here the orienta-
tion of K, is arbitrary. We need to understand how a, b, ¢ and d are related.
Clearly a = b + 2 = ¢ + 1, and this formula holds independently of the connect-
ivity of the diagram. To see how d is related to a, notice that if we delete the point
p from the diagram K, that diagram will fall apart into two oriented arcs which
we denote « and f, together with some number of other components which are
unaffected by the change. Whenever « and 8 belong to the same component of
K ,, or not, these two arcs lic on the same component of K, and we may denote
that component of K, by eithera U B! ora ™' U B, say the former. Let A be the
algebraic crossing number between f and its complimentary diagram. Then
a=d+ 24+ 1. Thus:

QnK,, )=t~ DeQ, (K,,)
=t~ g, (K, )+t =t )[0,.(K,) — 0..(K, )]}
— (eI GR
+ ([ _ t—l)[t‘(n+1)(0+1)Q—n'r(Kpo) _ t—(n+l)(d+21+1)Q_n't(K-p, ):]
=729, (K, )
+(t—t HE" "V, (K, ) -t~ "D (K, )]

We conclude that for each link diagram K and each crossing p the following
formula holds:

(4.19) "0, Ky, ) — 7"V, (K, )
= (t - t_l)[(Qn.l(l(po) - t_ZA("+1)Qn.t(Kp,l )]

Here 4 depends on the diagram, the choice of p, and the choice of orientation on
K,. . This is our analogue of the crossing-change formula (4.1) for the Kauffman
polynomial.

Theorem 4.8 Let K be a knot and let Q, ,(K) be its nth Kauffinan polynomial. Let
R, «(K) be obtained from 2, ,(K) by replacing the variable t by e*. Express R, .(K)
as a power series in X:

(4.20) R, ((K) = irn,i(K)xi.
i=0

Then r, o(K) =1 and each r, ;(K),i = 1 is a Vassiliev invariant of order i.

Proof. The proof is almost identical to the proof of Theorem 4.1. Equation (4.19)
plays the role of (4.1). Following the ideas used in the proof of Theorem 4.1, we
define the Kauffman polynomial of a flat vertex graph K4, ;, inductively. This
enables us to resolve the Kauffman polynomial of K4, ; into a sum of Kauffman
polynomials of related links. We can then replace every positive resolution by



268 J.S. Birman and X.-S. Lin

a sum of terms which come from negative, zero and infinity resolutions, by using
(4.19). The key point is that the terms on the left hand side of (4.19) have coefficents
which are + t*™*1 and that those on the right hand side are divisible by t — ¢ ~!.
This implies that in the power series expansions of the Kauffman polynomial of
K7, ; the coefficient of x’ in the analogue of (4.9) will vanish whenever i is less
than j. O

5 A numerical knot invariant which is not a Vassiliev invariant

We began these investigations, in §1, by reviewing the essential features in Vas-
siliev’s study in [V] of the space #" = .#\ZX of all knots, and its finite-dimensional
approximations I''\I'* n . We showed that the chief object under investigation,
the group Hs,_;(I'* N %), is naturally isomorphic to H*(IF'“\I'* n X), and that:

Ho(x) ;EEHO(F% \[4 A 2.

The invariants which came out of Vassiliev’s study are a certain set of invariants of
finite type in the groups Hs,_(I'* n X). They have been the principal object of
investigation in this paper. In view of the fact that H°(#") clearly classifies knots,
a natural question to ask about these invariants is:

Problem. Given any numerical invariant v: 4" — @, does there exist a sequence of
Vassiliev invariants {v;:#" - Q,i =2, 3,4... } such that

limv;(K) = v(K)

i—>w

for every Ke ™

This question was asked by Vassiliev in his discussion in §6 of [V] of his
stabilization conjecture. We are unable to answer this difficult question, but we have
a small contribution to make which will, perhaps, sharpen the question for the
reader by pinpointing, via as example, the essential features of Vassiliev’s approx-
imations.

Let U:K — Z be the numerical invariant which takes as its value the unknotting
number U(K) of Ke#". This number may be described, in Vassiliev’s setting, as the
minimum number of passages across X in a path joining K to the unknot O. We will
prove:

Theorem 5.1 The unknotting number U cannot be a Vassiliev invariant of order i for
any integer i = 2.

Proof. Given any knot invariant, e.g. U(K), we may always use axiom (2.4) of
Theorem 2.7 to extend it to a numerical invariant U(KY) of our special knotted
graphs, as in §2 above. The graph invariant so-obtained will of course be a linear
combination of unknotting numbers of 2/ associated knots, i.e.:

(5.1) UK') =3 (- D OUK;) |
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4m double points

Fig. 21

where

a. the sumis over all £ = (¢4, &5, ..., &;) whose entries are a sequence of j plus
and minus signs,

b. K; is the knot obtained from K/ by resolving the j crossings at
P1,P2, ---» D), replacing each p; by a crossing of sign ¢;, and

c. sign(&) is the number of negative resolutions in the vector &.

We may also use (2.4), (2.6) and (2.7) to construct a table of initial data for
a Vassiliev invariant of order i, however we don’t know whether axiom (2.5) is
satisfied. Therefore, to prove the theorem, it suffices to show that for each integer
i there is a graph K™ with m = m(i) > i double points, such that U(K™) = 0.

Choose any m = 4r # 0 and let K™ be the knotted graph which is depicted in
Fig. 21. Each resolution of K™ is a Whitehead double (with some number of twists)
of the unknot, and thus is non-trivial whenever the number of twists is non-zero.
The number of twists will be zero exactly when there are an equal number of
positive and negative signs in the vector &. Since the non-trivial knots in K; each
have unknotting number 1, the value of U(K*")) is thus determined by counting the
number of vectors of length j which have s positive signs and 4 — s negative signs
and adding up the numbers so-obtained, with appropriate signs. Using the fact that
the sign of  and — % have the same parity, we may pair the terms ¢ and — & in our
sum, to obtain:

52 UK*) - 2<1 - (‘Y) + (“;) - (“;) b=y 1>>

Since the terms in this sequence are strictly increasing in absolute value, and since
the number of terms is even, we conclude that UK*) < 0 for every r = 1.

Now choose any i > 0. Choose r so that 4r > i. Then UK*") % 0, and the
theorem is proved. OJ

Remark. Our proof of the negative result in Theorem 5.1 is in the same spirit as our
proof of the positive results in Theorems 4.1 and 4.7. Both proofs serve to highlight
the central features of our axiomatic interpretation of the results in [V]:

a. the naturality of (2.4), and
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b. the fact that if (2.5) is satisfied then a finite set of data suffices to determine
U(K), and
c. the very sharp restrictions which are placed by (2.5).

For these reasons, Stanford’s generalization of Vassiliev invariants to links and
graphs, which begins with an axiomatic characterization of a family of invariants
based on the axioms in this paper, are called invariants of finite type in [S].
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