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51. INTRODUCTION 

LET O4 BE an oriented 4-ball, and let -D4 denote its image under an orientation- 
reversing homeomorphism R of period 2.‘The boundary of D4 is the 3-sphere 2, which 
we will assume is decomposed into homeomorphic handlebodies d and 99 of genus n. 
Let P = RI&. Let A(n) be the group of all orientation-preserving homeomorphisms of 
&+zZ, and let A(n) denote the group of homeomorphisms of Bdd which arise by 
restricting maps in A(n) to Bdd = Bd%. Then, for each map 6 E A(n) we may define 
a simply-connected, oriented 4-manifold N(6) by identifying D4 with -(D4) along the 

) I portion of BdD4, according to the rule F&(x) = x, I E&i. If h = filBd&, r = PlBd.(a, 
then BdN(hc) is seen to be the oriented 3-manifold M(h) obtained by identifying 46, 
with -93 according to the rule rh(x) = x, xE Bd$3. That is, M(h) is defined by a 
Heegaard splitting $8 + rh - $B of genus n, determined by the Heegaard sewing h E 
A(n). 

Definition. A 3-manifold It4 will be said to be represented by a special Heegaard 
sewing if, for some integer n, there exists an element h E A(n) such that M = M(h). 

A system x = {x,, . . ., x.} of pairwise disjoint nonseparating simple closed curves 
on Bd9 is a complete system for Bd9? if Bd93 split open along x is a 2-cell. The 
system x is a complete system for 9? if each Xi bounds a disc in $8 and if 9l split open 
along those discs is a 3-cell. 

A special Heegaard sewing h is a special even sewing if there is a complete system 
x for 9 such that the algebraic intersection matrix W(h) = lllh(xi) fIXjld/ is symmetric 
and has even diagonal entries. 

THEOREM 1. Every closed, oriented 3-manifold may be represented as M(h) for 
some special even sewing h. 

Note that, in view of Theorem 1, the investigation of 3-manifolds via Heegaard 
splittings is altered from a problem involving the study of homeomorphisms of 
surfaces to a problem involving the study of homeomorphisms of handlebodies. 

Our special even Heegaard splittings are defined above in terms of group theoreti- 
cal restrictions on the sewing map h. Alternatively, we may characterize these 
splittings in terms of restrictions on a Heegaard diagram for M. In order to explain the 
latter point of view, we require some definitions. 

A Heegaard diagram for a 3-manifold is a triple (Bd58, x,y) where Bd93 is an 
abstract closed orientable surface and where x and y are two complete systems of 
curves for Bd9?. Note that each Heegaard splitting defines a multiplicity of Heegaard 
diagrams, obtained by choosing Bd93 to be a Heegaard surface in M and choosing x 
and y to be any two complete systems for the two sides of the splitting. Conversely, 
each Heegaard diagram determines a 3-manifold M and a Heegaard splitting of M. If 
(Bd93, x, y) is a Heegaard diagram for M and if (BdSB. x, z) is a Heegaard diagram for 
S3, then (Bd% x, y, z) will be referred to as an augmented Heegaard diagram. 

We now introduce two concepts which are analogous to the concepts of a special 
sewing and special even sewing. See [5] for further developments of this theme. 
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Definition. A Heegaard diagram (BdSB,x,y) is a special Heegaard diagram for M 
if there exists an augmented diagram (Bd9, x, y. z) such that the n x n matrix of 
geometric intersection numbers l/lyi nzi’jll is the identity matrix, and is special euen if 
the n x n matrix of algebraic intersection numbers W = lilyi nxjldl is symmetric and 
has even diagonal entries. 

To get a feeling for this concept, think of the x, y and z curves as being colored 
red, blue and green respectively. The curves of any one color are, of course, pairwise 
disjoint, however curves of distinct colors may intersect one another many times. If 
M has Heegaard genus no. then for each n 2 no there will be many red and blue 
systems which define M. The 3-sphere Z is likewise defined by many red and green 
systems for every genus n 2 1. We are asking that a blue system be chosen which 
satisfies the very restrictive property that, for some green system z = {z,, . . ., zn}, each 
blue curve yiq 1~ i I n, is located in the (n - l)-punctured torus Bd93 - 
21 u. - ’ U Zi-1 U Zi+l U ’ * + U z., and also yi crosses Zi exactly once. We ask, further, that 
for such a system each blue curve yi meet its red partner Xi an even number of times, and 
moreoverlyi f’txilO= Iyj nxiloforeach 1 I if j s n. These conditions sound so restrictive 
that one might wonder if such diagrams exist. To show that they do exist, we exhibit in 
Fig. la a special even diagram of genus 2 for the 3-sphere Z and in Fig. 2 a special even 
diagram of genus 8 for the PoincarC homology sphere P, i.e. spherical dodecahedral 
space. In Fig. lb we define a special even sewing s for M(s) = S. The sewing of Fig. lb 
may be used to construct the diagram of Fig. la, by defining y = s(x). We will prove: 

LEMMA 1. A 3-manifold M admits a special (even) Heegaard diagram if and only if 
it admits a special (even) Heegaard sewing. 

Fig. 

(0) x2 

1. (a) Special even (augmented) Heegaard diagram of genus 2 for Z. (b) Special e 
sewing s = t;:l;itC,; of genus 2 for M(s :) = I where 1, = Dehn twist about c. 

\ 
(b) 

Fig. 2. A special even Heegaard diagram of genus 8 for the Poincare homology sphere P. 

:ven 
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Lemma 1 and Theorem 1 then imply: 

159 

THEOREM 1'. Every closed, oriented 3-manifold may be represented by a special 
even Heegaard diagram. 

COROLLARY 1. If (Bd93, x,y) is a special even Heegaard diagram, and if M is a 
Zl2Z-homology sphere, then the Rohlin invariant p(M) is a mod-16 reduction of the 
signature of the symmetric matrix W = lilyi fIXj/dl. 

Remark. The symmetric matrix W in a special even Heegaard diagram represents 
an integral symmetric quadratic form of type II (see Ch. II, [lo]). A basic theorem in 
the theory of quadratic forms asserts that the signature of such a form is divisible by 8 
(Thm 5.1, [lo]). From this it follows that the signature of W is necessarily zero if the 
genus is less than 8. Thus, if p(M)#O, the minimum genus for a special even 
Heegaard diagram is 8. The Rohlin invariant of the Poincare homology sphere P is, by 
remarks on p. 65 of [7], non-zero, and since we have exhibited a special even diagram 
of genus 8 for P in Fig. 2, it follows that the manifold P has “special even genus” 
exactly 8. Since the Heegaard genus of P is known to be 2 (see p. 245, [ 13]), it follows 
that the special even Heegaard genus of a 3-manifold M is a new and meaningful 
topological invariant. 

Outline of the paper. 32 contains the proof of Lemma 1, Theorems 1 and l’, and 
Corollary 1. In 03, we apply the results of 82 to give a constructive procedure for 
enumerating all Z-homology 3-spheres M which have p(M) f 0 (or p(M) = 0). This 
procedure may be of interest in investigating the possible existence of index-8 
Z-homology spheres. 

$2. PROOFS OF LEMMA 1, THEOREMS 1 AND 1’ AND COROLLARY 1 

We begin by establishing notation. Recall that d and 9 are homeomorphic 
handlebodies, and that the 3-sphere I: is given as I UB. We choose canonical 
complete systems a for Sp and b for 9, where a, b C Bdd = BdB. These will be 
chosen so that the geometric intersection matrix #]ai n bj(I( is the identity matrix. We 
will write [ai] for the homotopy class of ai, and will assume that these curves have 

been chosen SO that fi [a;][bi][a;‘][b;‘] = 1. Let 
i=l 

Then 

H(n) = {h: Bd9l + Bd$SS]h preserves orientation}, 

A(n) = {h E H(n)Ih extends to a homeomorphism of a}, 

B(n) = {h E H(n)(h extends to a homeomorphism of S?}. 

A(n) nB(n) = {h E H(n)Jh extends to a homeomorphism of 2). 

Choose soE H(n) in such a way that the automorphism of ?r,(BdS$) which is induced 
by SO acts on the homotopy classes [ai], [bi] in the following manner: 

Then 

[ai]+[ai][bi][ai]-‘, [bi]+[ai]-‘, 1~ i 5 n. (1) 

A(n) = so(B(n))so-’ = so-‘(E(n))so. (2) 

Note that, with our sewing convention (introduced earlier), two Heegaard sewing 
maps h, h’E H(n) define equivalent Heegaard splittings of the manifolds M(h) and 
M(h’) if and only if 

h’= f2hfl for some f,, ftE B(n). (3) 

We remark that if h is isotopic to h’, then (3) is always satisfied. Note that if h is 
special, i.e., if h E A(n), and if f,, f2 E A(n) nB(n), then h’ in formula (3) will also be 
special. 
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Proof of Lemma 1. Suppose, first that M 3 M(h) for some special Heegaard 
sewing h E A(n). By equation (2), we have h = safso-’ for some fE B(n). Let 
g = hsO = saf. By equation (3), the Heegaard sewings g and so ,define equivalent 
Heegaard splittings, hence M(g) = M(so) = C, Thus, we may define an augmented 
Heegaard diagram (Bd% b, h(b), g(b)) for M(h). Note that 

]h(bi) ng(bj)] = ]bi oh-‘g(bj)]= Ibi nso(bj)j 

= lb; fl a;‘/ = S,, 

where 6, is the Kronecker symbol. Thus Illh(bi) fIg(bj is the identity matrix, hence 
the diagram (Bd% b, h(b)) is special. 

To establish the converse, suppose that (B&3, x, y) is a special Heegaard 
diagram for M. Then there exists a Heegaard diagram (Bd93, x, z) for I: such that the 
intersection matrix ]]]x; n zjl]J is the identity matrix. We may without loss of generality 
assume that x = b. Choose h, g E H(n) such that h(bi) = yiy g(bi) = zi, 1 5 i 5 n. Then 

Iyi ftzj] = Ih(bi)ng(bj)l =‘lbi nh-‘g(bj)l = 6;b 

Thus, the Heegaard sewing h-‘g determines a “very good” system of meridinal pairs, 
in the language of Waldhausen[lS], hence M(h-‘g) G 2. By the main result in [15], and 
eqn (3) above, we may then find fl,fiE B(n) such that h-‘g = fzsqfl, so that h = 
gf’-‘so-‘f2-‘. Since M(g) = Z, the same argument gives g = f4saf3, where f3, f4c B(n). 
Let h’ = fd-‘hfi. By eqn (3), we see that h and h’ are equivalent Heegaard splittings of 
M(h). By construction, h’ = saf3fl-‘so-‘. By eqn (2), it then follows that h’E A(n). 
Thus h’ is a special sewing. This completes the proof of Lemma 1. 

Proof of Theorem 1’ and Theorem 1’. In view of Lemma 1, it is adequate to 

establish Theorem 1’. Let L = h Li be a link in the oriented 3-sphere 2. The link will be 
i=l 

assumed to have associated with it a framing 1, i.e., an integer li will be associated 

with each component Li of L, SO that the framed link (L, I) = 5 (Li, Ii) defines a 

3-manifold A4 which is obtained by surgery on L. This surgery rn$ be described as 
follows: remove from 2 pairwise disjoint tubular neighborhoods Vieof the curves Li, 
and resew such Vi, identifying a meridian Zi in BdVi with a curve yi C Bd(8 - pi) C Z 

which links Li exactly li times. Note that the n X n intersection matrix lIlyi nzjlll in such 
a surgery is the identity matrix. By a well known result, every M may be obtained by 
framed surgery in some link in 2, hence we will assume that our manifold M is so 
defined. By a result due to Steve Kaplan[8] we may, further, assume that the framings 
Ii are all even integers. 

The idea of the proof will be to modify (‘L, I) to a new surgery representation 
(L*, I*) such that i* defines in a natural way the spine of a handlebody d* which is 
half of a Heegaard splitting of 2. The reader may find the example which is given in 
Fig. 3a-f helpful in following the steps in the construction. 

To begin, we locate a graph G in C which contains the link L as a subset, and 
which has the property that G has a regular neighborhood d such that 9 = Z-h = 
&, i.e., d is half of a Heegaard splitting of Z. This is clearly possible, because L may 
be altered to the trivial link of n components by changing a finite number of 
crossings, hence we may obtain G by adding s I-simplexes r&, 1 cc k s s, to L. In general, 
the genus of rS will be n + m, m 2 0. A typical case is illustrated in Figs. 3a,b, with n = 3, 
m =2. 

If m = 0 we proceed as follows. We may without loss of generality assume that 
each Vi is a subset of d, and also that each yi and each zi is a simple closed curve on 
Bdd. Let g = {yl, . . ., yn} and let z = {zl,. ., ., z,}. Let x = {x1,. . .,_I-.} be a standard 
system of curves in Bd& which are the boundaries of a complete system of meridinal 
discs in 54 = C -d. Clearly (Bd% x, y) is a Heegaard diagram for M, and (Bd93, x, z) is 
a Heegaard diagram for 8. The diagram (BdB, x, y) is a Heegaard diagram for 2. The 
diagram (Bd9, x, y) is special because ]]]y; n zjlll is the identity matrix. 
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Cd) 

Fig. 3. (a) The framed link (L, I). (b) The graph G. (c) The maximal tree Y. (d) The unique 
circuit R, C Y UT,. (e) The graph G*. (f) The portion of the handlebody d* which belongs to 

the circuits L,, R, and N, of the graph G*, with circuits y,, z,, y4, zq, yJ, z5. 

In the general case m > 0, it will be necessary to augment the link L (which is now 
regarded as a subset of the graph G) by the addition of 2m new circuits 
RI, N,, Rz, Nzr . . ., R,, N,,,. We now describe the choice of these circuits. We begin by 
deleting an open I-simplex ai from each component of L, choosing the ai’s so that 

n 

b (Li - ai) contains all of the points rk tl L. Delete all the ok. Now replace as many of 
i=I 

the rk as possible, so as to obtain a maximal tree Y C G. See Fig. 3c. We may assume 

that the I-simplexes Q were indexed in such a way that Y = G - b ai - r; 7k. Now, 
i=l k=I 

let Rk be the unique simple closed curve in Y u rk, k = 1, . . ., m. See Fig. 3d. 
Next, we augment the graph G by selecting m new curves N,, . . ., N,,, in 2, one 

curve Nk for each curve Rk. (The curves Nk are called “neutrahzing curves” in a 
similar construction which is used in 141) see also [S] and [9]. See Fig. 3e. The 
curves Nk are to be chosen to be pairwise disjoint and unknotted, also each Nk is 
assumed to bound a disc Ok in c which is pierced once by Tk C Rk but avoids all other 
curves R,(j# k) and Lie Choose, in each Dk, a small arc pk which binds Nk to &. Let 

G* be the augmented graph G* = G kt, (Nk Ljpk). 
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Note that G* has a regular neighborhood d* (see Fig. 3f) such that 9?* = Z - d* is 
a handlebody which is homeomorphic to d *. This is easy to see, because sB* may be 
obtained from d by adding m unknotted handles, one for each curve Nk, 1 I k 5 m. 
The genus of I* is n* = n + 2m. 

Our next task will be to define an augmented Heegaard diagram (Bd%?, x, y, z) for a 
manifold M* which, as we will see later, is homeomorphic to M. Choose a system of 
curves x = {x,, . . ., x,.} c BdSB* = Bd(T, - sb*) such that x bounds a complete system 
of meridian discs in 48* = 8 - h*. (Remark: at this stage in the construction we have 
no control over the system x, however later in the proof of “evenness” it will be 
necessary to reexamine things and select these curves with more care.) Choose curves 
2 = {z,, . . ., I.*} C Bdti* such that z bounds a complete system of meridian discs in 
d*. The curves z are to be chosen in a very particular way (cf. Fig. 3f): 

(i) If i = 1,. . ., n the curve z; is to bound a meridian disc Zi which is pierced once 
by G* at a point qT E cii. 

(ii) If i=n+2k_l,k=l,..., nt, the curve zi is to bound a meridian disc Zi which 
is pierced once by G* at a point in +. 

(iii) If i = n + 2k, k = 1,. . ., m, the curve zi is to bound a meridian disc Zi which is 
pierced once by G* at a point in Nk. 
By construction (Bd(Z - A*), x, z) is a Heegaard diagram for 2. 

To complete the construction, we select a curve system y = {y,, . . ., y,.} C Bd&*. 
The first n of the curves y,, . . ., y.9 will be chosen exactly as in the case m = 0, i.e. yi 
is a curve which lies in a tubular neighborhood of Li, also yi C Bd&*, also 
fk(yi, Li) = Ii. Similarly, the curves yn+zk, k = 1, . . ., m, will be chosen to lie in a tubular 
neighborhood of Nk, also yn+zk C Bdd*, also Ik(y,+2k, Nk) = 0. We now wish to SekCt 

the remaining curves Y”+~L_~, k = 1,. . ., m so that each yn+‘&._l lies in a tubular 
neighborhood of Rk, also yn+zk_i C Bdd*, also Ik(y,+2k_,, Rk) = 0, and also so that 
each such curve yn+&l is disjoint from each other curve yj, j# n + 2k - 1, j = 
1 PI* = n + 2m. To see that these conditions are possible, let Ci C I* be a small 
c$i$er with one of its bases the disc Z,, with its axis a subset of ui (if i = 1, . . ., n) or 
ofrk(ifi=n+2k-l,k=l,..., m)orofNkifi=n+2k,k+1 ,..., m),andwithits 
second base a meridian disc Z: which is parallel to Zi and close to Z;, also 

(BdCi - Z:nZi) C BdsB*. The closure of d* - z Ci is a 3-ball with boundary a 
i=l 

2-sphere S2 which contains the 2n * distinguished discs {Zi, Z:; i = 1,. . ., n*}. The 
curves yi which were already selected contain sub-arcs 9i c S2 which join the 
boundaries of these discs in pairs, with ji joining BdZi to BdZ:, i = 1,. . ., n, n + 2, n + 

4 ,*. -9 n + 2m = n*. The union of these arcs does not separate S2 - “; Zi UZ:, hence 
i=l 

we may join the boundaries of the remaining disc pairs by similar arcs $n+zk_I which 
are pairwise disjoint from one another and from the 9i which were already there. We 
now complete these arcs jn+zk_i to simple closed curves in BdsB* by joining the points 
jn+zk_i II Zn+Zk_l and jn+Zk_i nZ:+z,_, by an arc which lieS in BdCn+zk-i fl Bd&*, 
winding each y,,+2k_i around the axis of C n+zk-r as many times as required so that the 
linking number of yn+2k_1 with Rk is 0 for each k = 1,. . ., m. Since the cylinder Ci is 
disjoint from yj if 15 i# j 5 n*, the system of curves y = {yi, . . ., y,.} which have been 
selected will be pairwise disjoint. 

Now, (BdSB*,x*, y*) is a Heegaard diagram for a 3-manifold M*. It is a special 
diagram because we have an augmented diagram (Bd???*,x*,y*,z*) such that the 
n* X n* geometric intersection matrix lIlyi nzjlll is the identity matrix. This may be 
seen by noting that each meridian zj is located on the boundary of the cylinder Cj, and 
exactly one of the curves of y*, namely yj, meets that cylinder, also yj crosses the base 
curve Zj once. 

To prove that M* = M it will be necessary to construct a new surgery presentation 
for M*. Note that, by our choices, if i = 1,. . ., n, the curves yi and Li cobound an 
annulus Ai in d* which meets Bdd* = Bd$B* in yip Also, the curves yn+zk-I and & 
(k = 1,. . ., m) cobound an annulus An+2k_I in d* which meets Bd&* in yn+2k-1. After a 
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suitable isotopy, if necessary, we may assume that these annuli are chosen so that 
Ai flA,+zk_l = Li II Rk, 15 i 5 n, 1 d k I m. We now define new curves RZ so that each 
RF is arbitrarily close to but disjoint from Rk, also Rt C An+2k_l. Then M* is defined 

by the surgery presentation (L*, I*) = ii (Li, ri) kc, (Rt, 0) U (Nk, 0). (This may be seen 

by going back to the earlier proof for the case M = 0, and repeating it, with (L*, I*) 
replacing (L, I).) 

It remains to prove that M* is homeomorphic to M. This will be true if we can 
show that the framed link (L*, I*) is equivalent to the framed link (L, I) under a finite 
sequence of the moves which are defined in R. Kirby’s “Calculus for framed 
links”[9]. We refer the reader to [9] for the detailed description of those moves. 

By [9], we will not alter the homeomorphism type of M* if we replace any one 
component with its “band connected sum” with another component, and suitably 
adjust the framings. Choose any component RX, k = I,. . ., m. Figure 4 shows that any 

Fig. 4. 

crossing of R$ with a component of L* which is different from N,, or any crossing of 
RF with itself, can be altered by a band move. Note that Nk has framing 0 and also Nk 
does not link any component of L* except R z, hence by [9] the framings on the 
components will not be altered by these moves. Since Rt can be unknotted and unlinked 
from the rest of the curves (except N,J by altering a finite number of crossings, it follows 
that an equivalent surgery presentation is obtained by removing Rz and Nk from thelink 
and replacing them by a pair of unknotted, simply linked circles, each with framing 0, 
which are separated from the rest of the link by a 2-sphere. Since by [9] surgery on such a 
2-component link defines 8, any such pair may be deleted without altering the 
homeomorphism type of M*. We do this for each curve pair (Rk, Nk). After m such 
operations we have altered (L*, I*) to (L, I), hence M* is homeomorphic to M. Thus we 
have shown that every 3-manifold admits a special Heegaard diagram. Note that, in the 
surgery (L*, I*), all the framings are even integers, because by hypothesis each fl with 
i= 1 . . . . n is even and by construction each other ff is 0. However, the diagram 
associated to (L*, f*) may not be even. 

To complete the proof of Theorem 1’ we must establish that M admits a special 
n+2m 

even diagram. It will be convenient to relabel the components of L* as U Lip where 
i=l 

L n+2k_l = RL and Ln+2k = Nk, k = 1, . . ., m. Let M’=]]wii]] be the (n+2m)x(n+2m)’ 
matrix with entries: 

w;i = fk(Li, Li) if i# j or ft if i = j. 

By [9], the matrix W is a relation matrix for H,(M; Z). It is symmetric because 
fk(Li, Lj) = fk(Lj, Li) and its diagonal entries are even because the framings are all 
even. We also have a second relation matrix for H,(M; Z), namely the (n f 2m) x 
(n + 2m) matrix of intersection numbers w = ]]]y; nxj]d] which is determined by the 
Heegaard diagram (Bd(B - &*), x*, y*). From this it follows that there exist unimodular 
matrices R, S such that #’ = RWS. Let T = SIR’. Then l$‘T = R WR’. Since the 
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properties of having even diagonal entries and of being symmetric are preserved 
under congruence, we may conclude that @T is symmetric and has even diagonal 
entries for some unimodular matrix T = ]]t;j]]. 

Now, the curves x* bound a complete system of meridian discs for the handlebody 
9* = B - h*, hence they may be regarded as defining a basis [x*1 for the free abelian 
group H,(93*; Z). Let [xl*] = [x*]T. Then [x’*] is another such basis, and the trans- 
formation [x*1+ [xl*] is an automorphism of H,[93*; Z]. By Theorem 3.1 of [6] and 
Theorem N4 of [ 1 l] each such automorphism is geometrically induced. Hence, there 
exists a system x’* of curves in Bd(B*) which bound a complete system of meridian 
discs in s%* such that the intersection matrix ]]]yi nxj*]o]] is symmetric and has even 
diagonal entries. The Heegaard diagram (BdS*,x’*,y*) will then be a special even 
diagram with augmented diagram (Bd93, x’*, y*, z*). This completes the proof of 
Theorem 1’ and hence also of Theorem 1. 

Proof of Corollary 1. It was shown at the beginning of this paper that each special 
sewing h E A(n) defines a 4-manifold N(i). Let cp N: HdN(ii)) X HJN(i) + Z be the 
bilinear form of homology intersection numbers. In Lemma 5 of [2], it is proved that 
the symmetric matrix W(h) represents (PM, and is also a relation matrix for 
Hi(M(h);Z). If the sewing is even, it then follows that the manifold N(i) is 
parallelizable. Thus, each 3-manifold M(h) which is defined by a special even sewing 
h has associated with it a parallelizable 4-manifold N(h), with BdN(K)= M(h). If 
det W(h)= 1 (mod 2), so that M(h) is a Z/2Z-homology sphere, then the mod 16 
reduction of the signature of W(h) will be the Rohlin invariant (see [7, Ch. 71) p(M) 
of M(h). This proves Corollary 1. 

53. THE CONSTRUCTION OF INDEX 8 Z-HOMOLOGY SPHERES 

In this section, we will use Theorem 1 to give a simple constructive procedure for 
enumerating index 8 Z-homology spheres. An example of the construction will be 
given. 

Let the 3-sphere Z = ~4 U 93 be regarded as E’ U {a} where 9? is regarded as D* x I, 

with D* a disk with n holes which is a subset of E* (see Fig. 5). Choose standard 

Fig. 5. 

systems a and b for d and .9. If h E H(n) then h induces an automorphism h* of 
Z-Z,(Bda; Z) which may be identified with the symplectic matrix h, =,]]Aii]], where 

h*(ai)- 2 A;jai + Ai.j+nbj 
j=l 

h,(b;) - 2 Ai+n.jaj + Ai+n.j+nbj. 
j=l 

THEOREM 2. Let W = W(h) be any n X n symmetric unimodular matrix over Z 
which represents a symmetric bilinear form of even type and signature 8(mod 16). Then 
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there is an element h E A(n) such that h* = 
[W:h) ;]. 

For any such element the 

manifold M(h) is an index 8 Z-homology sphere. 

Proof. We first show that it is possible to choose an element h which satisfies the 
hypotheses of Theorem 2. Let c+ 1 : i* j 5 n be a simple closed curve on Bd9 which 
encircles the ith and the jth handles in the manner indicated in Fig. 5. Let cii = di, 
1 pi 5 n. Let c$ be a curve which is disjoint from and homologous to cib Let tii 
(respectively t:i) denote a Dehn twist about cii (respectively c:i). Since cii and ci 
bound discs in d, it is immediate that tii and t:i are in A(n). With our choice of 
conventions. we have 

1 0 
(tij)* = (t;j)* = ~~~ 1 

[ I 
where Tii is a matrix which has zeros everywhere except at the intersections of the ith 
and jth rows and columns, where the entry is 1 or -1, depending on the choice of 

conventions for the positive sense of the twist tii, 1 5 i,j I n. Then the matrix 
1 0 

[ 1 w I 
may be expressed as a product of powers of the matrices (tii)* (or (t:i)-), hence one 
may lift h, to the corresponding product of powers of the tij (or ti). Clearly this 
construction may be modified by composing h with any map in A(n) which induces 
the identity automorphism of H,(Bd9?; Z), thus there are many possibilities for h. 

By our earlier observations. the matrix W(h) is an homology relation matrix for 
M(h), which is then seen to be a Z-homology sphere, because det W = _+l. Since 
h E A(n) it may be extended to a map 6 E q(n), as defined in the introduction, and so 
we may construct a 4-manifold N(e) with BdN(&)= M(h), and W(h) represents QN. 

Since W(h) has even type and signature 8 (mod 16), it then follows that M(h) has 
index 8. 

Example. We will use the methods of Theorem 2 to produce an infinite sequence 
of index 8 Z-homology spheres. The information which is given in 86, Chap. II of [IO] 
allows us to produce for each even integer m, a 4m x4m symmetric unimodular 
integer matrix Vdrn having even diagonal entries, with the property that the signature 
of V4,,, is 4m. The lower right 3 x 3 corner of V,,,, is the matrix 

The remaining entries are -2’s along the main diagonal, +1’s along the two diagonals 
adjacent to the main diagonal, and zeros elsewhere. We will be interested in choosing 
m so that the signature of V.,,,, is B(mod 16), hence m = 2(mod 4). 

Let m be congruent to 2(mod 4). Define? 

hdm = t~~~~‘t~~-,,rm-lf;~-~.~m-~f~~-,,~m-, . . . t;:: 
t-4t-3t’-i t’ -1 

2.2 1.1 4m 2.4m-I Jm-4.4m-3 . . . ti.5ti.3 f4m-1,4mfdm-3.4m-2. . . t3.4f1.2. 

Then h4, E A(4m) and 

By Theorem 2 it then follows that M(h,,) is an index 8 Z-homology sphere which is 
defined by a Heegaard sewing of genus 4m, for each even integer m = 2(mod 4). 

Using the Van-Kampen theorem, one may now show by calculation that 7r,M(h4,,,) 
is a group with two generators x, y and defining relations x~“-~(x~) = y2m-‘(xy)-2m = 1. 
On adding the relation (xy)‘= 1 this presentation goes over to a presentation with 

tWe have used both t,; and t:, to simplify the computation of TT,(M(!I)). 



166 JOAN S. BlRMAN 

generators x, y and defining relations x4*-3 = y2m-’ = (xY)~ = 1. By [3], the group 
7r,(M(h4,,,)) is finite if and only if (1/4m - 3) + (1/2m - I)+ (l/2) > 1, i.e. m = 2. In the 
exceptional case m = 2 the substitution a = xyx, 6 =x-l exhibits P,(M(&)) as the 
group generated by a, b with defining relations a3 = b5 = tab)*. The manifold M(h8) is 
the PoincarC homology sphere P. The Heegaard diagram which is defined by the 
special sewing h8 is the diagram which was given earlier, in Fig. 2. 

Remark. New results of the author and Jerome Powell show that each M’ admits a 
special even Heegaard diagram which satisfies several additional restrictions beyond 
those considered here. These include 

(i) The associated diagram (Bd%x,z) for C may be assumed to be standard, i.e., 
IllXi il Zjlll = Id. 

(ii) The algebraic intersection matrix lIlyi f~ xildl coincides with the geometric 
intersection matrix I(Iyi fl Xjlll, hence, the latter is also symmetric. 
From (i) it follows that the construction in Theorem 2 gives all index 8 Z-homology 
sphere. These and other results be reported upon in a forthcoming manuscript. 
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