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Summary. The main result concerns changing an arbitrary closed braid represent-
ative of a split or composite link to one which is obviously recognizable as being
split or composite. Exchange moves are introduced; they change the conjugacy
class of a closed braid without changing its link type or its braid index. A closed
braid representative of a composite (respectively split) link is composite (split) if
there is a 2-sphere which realizes the connected sum decomposition (splitting) and
meets the braid axis in 2 points. It is proved that exchange moves are the only
obstruction to representing composite or split links by composite or split closed
braids. A special version of these theorems holds for 3 and 4 braids, answering a
question of H. Morton. As an immediate Corollary, it follows that braid index is
additive (resp. additive minus 1) under disjoint union (resp. connected sum).

1. Introduction

This paper is part of a series of papers ([B-M, I, I, III, IV and V] in which the
authors study representations of oriented links in oriented S* by closed braids. The
long-term goal is to produce computable link type invariants by making use of one
of the known solutions to the conjugacy problem in the braid group (e.g. [G]). Any
such effort must deal with the various mechanisms which produce more than one
conjugacy class of braids in a braid group B, which represent the same link type.
Two such mechanisms are treated in this paper.

A link K is split if there is a 2-sphere X in $3-K which does not bound a 3-ball.
A closed braid representative K of a split link K is a split closed braid if the splitting
2-sphere X can be chosen to meet the braid axis A in exactly two points. The closed
4-braid a, in Fig. 1 is an example of a split closed 4-braid which represents the
disjoint union of two trefoil knots.

Since every link can be represented by a closed braid, it is obvious that every
split link can be represented by a split closed braid. For, if K is the disjoint union of

* Partially supported by NSF Grant # DMS-88-05672
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Fig. 1. Closed 4-braid representatives of the disjoint union of two trefoils

links K, and K,, choose an n,-braid representative K, of K, and an n,-braid
representative K, of K, and use them to construct the obvious (n, + n,)-braid
representative K by banding together their respective axes. There is, however, a
more subtle question, i.e. are there n-braid representatives of split links which are
not isotopic in the complement of the axis to split closed n-braids?

The answer is “yes”, and an example is given by the closed 4-braid «, in Fig. 1,
which also represents the disjoint union K of two trefoil knots. If a, were isotopic in
the complement of the axis to a split 4-braid representative of K, it would
necessarily be conjugate to a, because there is a unique closed 2-braid which
represents the trefoil, and so a unique split closed 4-braid which represents the
disjoint union of two trefoils. Let the symbol “i” (resp. “i~!”) denote an elementary
braid in which the i** strand crosses once over (under) the (i + 1)* strand. Then a,
and a, may be described by the braid words:

o, = 1333,
oy = 132723322

Now, there is a homomorphism ¢: B, — B, defined by ¢(1) = ¢(3) = 1, ¢(2) = 2.
If o, and a, were conjugate in B, then ¢(a,) would be conjugate to ¢(a,) in B;.
Using the solution to the conjugacy problem in B, which is given in [Mu] we
obtain unique representatives 1° for the conjugacy class of ¢(«;) and
421227212272 for the class of ¢(«,). Thus a, and «, are not conjugate in B,. By a
theorem of Morton [Mo, 3] this shows that the corresponding closed braids are
not isotopic in the complement of A. Infinitely many such examples can be
obtained by iterating the winding process which is shown in Fig. 1.

Remark. The example o in Fig. 1 is also a split closed 4-braid representative of K.
We give it to show that the intersection of the splitting 2-sphere with the plane of
projection need not be disjoint from the projected image of K.

Similar phenomena arise when we consider composite links. A link K is
composite if there is a 2-sphere Y in S which meets the link in 2 points and
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decomposes it into sublinks K; # K,, neither of which is an unknotted arc. A
closed braid representative K of K is a composite closed braid if the 2-sphere Y can
be chosen to meet the braid axis A in 2 points. An example is given in Fig. 2. One
may ask whether every closed n-braid representative of a composite link is
conjugate to a composite closed n-braid? That question has received some
attention in the literature. Morton showed that every closed 3-braid which repre-
sents a composite link is conjugate to an obviously composite 3-braid. In the same
paper he also gave an example of a closed 5-braid which represents a composite
link, but is not conjugate to a composite 5-braid. He was unable to decide whether
4-braids resemble 3 or 5-braids in this regard.

We will show in this paper how an arbitrary braid representative of a split (or
composite) link can be changed to a split (or composite) braid representative. To
state our contributions, we need the concept of an exchange move. In Fig. 3 the
labels n; on the strands are weights, indicating n; parallel strands. We allow any
type of braiding on the n, + n, (resp. n, + n;) strands in the boxes which are
labeled X (resp. Y). Assume that the braid axis A is the z axis, and that the arc
which is labeled n; lies in the x — y plane. Up to isotopy of S3, an exchange is
defined to be an isotopy of K which moves the arc which is labeled n, from a
position which is a little bit above (or below) the x — y plane to a position which is
a little bit below (or above) the x — y plane, keeping the rest of K invariant. An
exchange move takes n-braids to n-braids, but need not preserve conjugacy class
because the isotopy of K in S3 is in general not realizable in the complement of the
axis A. The first two results in this paper show that exchange moves are the only
obstruction to representing split (or composite) links by split (or composite) closed
braids:

The split braid theorem. Let K be a split link, and let K be an arbitrary closed n-braid
representative of K. Then there exists a split n-braid K* which represents K and a

Fig. 2. Composite closed braid representing the connected sum of two trefoils
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finite sequence of closed n-braids:
K=K,-»K, -K,-»... -K,=K"

such that each K, , | is obtained from K, by either isotopy in the complement of the axis
or an exchange.

The composite braid theorem. Let K be a composite link, and let K be an arbitrary
closed n-braid representative of K. Then there exists a composite n-braid K* which
represents K and a finite sequence of closed n-braids:

K=K,~»K,-K,—>..... -K,=K"

such that each K, , | is obtained from K; by either isotopy in the complement of the axis
or an exchange.

The theorem of Markov ([Ma] or [Bi] or [Be] or [Mo, 2]) shows that, since
the 4-braids a, and a, of Fig. 1 (or Morton’s two 5-braids) represent the same
oriented link type, they are related by a sequence of moves which involve first
increasing and then decreasing the string index. This process is known as stabiliz-
ation. Our theorems replace the stabilization process with a more direct process
which changes one conjugacy class to another, preserving string index. It is thus a
step in the proof of a version of “Markov’s theorem without stabilization”. A
subsequent paper in this series will prove such a theorem in full generality.

The braid index of a link K is the smallest integer n such that K can be
represented by an n-braid. As an immediate corollary of the Split and Composite
Braid Theorems we obtain:

The braid index theorem. Braid index is additive (respectively additive minus 1) under
disjoint union (respectively connected sum).

Our next result relates to special versions of the Split and Composite Braid
Theorems which hold when n = 3 and 4.

The 3 and 4-braid theorem. (i) Every 3-braid representative of a split link is conjugate
to a split 3-braid representative. However, there are examples of 4-braid representat-
ives of split links which are not conjugate to split 4-braids.
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(ii) Every 3-braid representative of a composite link is conjugate to a composite 3-
braid representative.

(iii) Let K be a 4-braid representative of a composite link K. If K cannot be
represented by a closed braid of braid index < 4, then K is conjugate to a composite
4-braid. However, if K can be represented by a closed braid of braid index < 4, then K
need not be conjugate to a composite 4-braid.

2. Proof of the split braid theorem

Our work begins with a split link K, and an arbitrary oriented closed braid
representative K of K. The braid axis is A. We are also given a 2-sphere X which
realizes the splitting of K. We orient K, and then orient A so that K is oriented in the
positive sense about A. We assign (arbitrarily) an orientation to X, so that at each
point of X there is a well-defined outward-drawn normal to X. The 2-sphere X will
in general be pierced by the braid axis A many times. Our goal is to modify K until
there is a 2-sphere X' which realizes the splitting and is pierced twice by A.

The principle tool in our work will be the study of the singular foliation of X
which is induced by the fibration H of the open solid cylinder R* — A by half-
planes {H,; te [0, 2n]}. The leaves of this foliation are the components of X N H,,
te [0, 2n]. The first step in the proof is to put X into a nice position relative to the
fibration, in order to partially standardize the foliation.

By standard general position arguments we may assume:

(i) The intersections of A with X are finite in number and transverse.

(ii) There is a solid torus neighborhood N(A) of A in §$3-K such that each
component of X N N(A) is a disc.
(iii) The foliation in each component of X n N(A) is the standard radial foliation.
(iv) All but finitely many H,’s meet X transversally, and those which do not (the
singular fibers) are each tangent to X at exactly one point in the interior of H,.
(v) The tangencies in (iv) are local maxima or minima or saddle points.

A singular leaf in the foliation of X will be one which contains a point of tangency.
All other leaves are non-singular. Note that it follows from (iv) and (v) that:

(a) Each non-singular leaf is either an arc with both endpoints on A = dH, or a
simple closed curve.

(b) A singular fiber Hy contains exactly one singular point p,.

(c) Each singular point p, is either a center or a saddle.

We now introduce a measure of the complexity of the pair (X, H). Let |[X N A| be
the number of points in X N A. Let |H- D| be the number of singular points in the
foliation of X. The complexity c(X, H) is the pair (|X n A|, |H-D|). We assign the
standard lexicographic ordering to this complexity function. We will say that
(X, H) is equivalent to (X', H) if there is an isotopy taking X to X' which takes
(XnH,,XnJH,) to (X'nH,, X' nJH,), for all te[0, 2n]. Notice that by our
definition of equivalence, every representative of an equivalence class has the same
complexity.

We investigate simple closed curves (SCC’s) in X n H. We say that a pair (X, H)
has SCC'’s if there exists a non-singular fiber H, such that a component of X n H, is
a SCC.
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Lemma 1. Assume that (X, H) satisfies (i}+(v) and has SCC’s. Then there exists a
splitting 2-sphere X' such that (X*, H) also satisfies (i)—(v), and in addition has no
SCC’s, moreover, c(X*, H) < ¢(X, H).

Proof of Lemma 1. Our proof, sketched below, is very similar to the argument given
in Lemma 2 of [B-M, 1]. The main difference is that our surface X is closed whereas
the surface D in the proof of Lemma 2 of [B-M, 1] had non-empty boundary
b =K.

If there is a SCC a(t) in X n H, for some non-singular H,, we proceed as in the
proof of Lemma 2 of [B-M, 1], following «(t) as it evolves in the fibration, until we
arrive at a simple closed curve «(0) which contains a singularity of the foliation.
Now a(68) lies on a singular fiber Hy, and bounds a disc 4 in H,. Notice that 4
cannot be punctured by K. For, the algebraic and geometric intersection numbers
of K with 4 coincide, because 4 is a subdisc of Hy and K is a closed braid with axis
0H,. There is also a second disc 4', in X, with d4 = 04’. Since K does not intersect
X, it also does not intersect 4’. Now, 4 U 4’ forms a 2-sphere S in S3, and the
algebraic intersection number of S with K is zero because S is a 2-sphere. Since the
geometric intersection number of 4 with K is equal to the algebraic intersection
number of K with S, it follows that K does not pierce 4.

If the interior of 4 has empty intersection with X, we surger X along 4. The
surgered surface X will be a pair of two 2-spheres, X (1) and X (2). At least one of
these will be a new splitting 2-sphere, say X (1), and as in the proof of Lemma 2 of
[B-M, 1] the new splitting 2-sphere will have complexity which is no more than
that of the original X. If both X" (1) and X" (2) are splitting 2-spheres, it won’t matter
which one we retain. If the interior of 4 meets X, we find an innermost subdisc § of
A whose boundary is a component of X n Hy and surger X along 6. Ultimately, we
will arrive at a splitting 2-sphere X’ which has the property that the induced
foliation has no simple closed curves, and ¢(X*, H) < ¢(X, H). O

By Lemma 1, each component of intersection of a non-singular H, with our 2-
sphere X is an arc with both of its endpoints on A = dH,. Such an arc divides H,
into two components, so it bounds two discs 4 and 4’ on H,. If either of these, say
4, is not pierced by the link K, we can push our 2-sphere X inward along a 3-space
neighborhood of 4 to remove two points of intersection of A with X. See Fig. 4. Of
course, this could add simple closed curves to the foliation of X, but the definition
of our complexity function was chosen so that even if it does, the complexity will be
reduced, because we will have reduced |A N X|. Moreover, even if SCC’s are added,
they can be removed with the aid of Lemma 1.

This motivates us to call a leaf § in H,n X essential if K pierces both
components of H, split along f. See Fig. 4 again. In view of the above remarks and
Lemma 1, we can replace assumption (v) by the stronger assumptions:

(v)* The tangencies in (iv) are saddle points.
(vi) If H, is non-singular, then each component of X N H, is essential.

We return to the main thread of the argument. The surface X is closed, so the braid
axis A must pierce X an even number of times, say 2u. If 2u = 2, our closed braid is
a split closed braid, and we are done, so assume 2u > 2. Thus each component of
intersection of X with a non-singular H, is an arc which joins two of the 2u points
where the braid axis A pierces the 2-sphere X. Recall that we assumed (see (iii)
above) that the foliation of X is radial near each point of A » X. From this and the
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fact that 2u > 2 it follows that there must be singularities in the foliation. Each
singularity is the result of a saddle-point type tangency of a singular fiber H, with
X. Figure 5 shows how the foliation looks in a neighborhood of a singular point.
There will be four singular leaves which go out from the singular point like the
spokes on a wheel, and end at points where the axis A pierces X.

Letpy, ..., p,, be the pointsof AnX. Let 6, . . ., 0, be the t-values at which
singularities occur. The singular leaves are then the leaves in {HynX;
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6=40,,...,0,} which contain the singular points. Their complement in X can
only be a union of regions Ry, ..., R, as in Fig. 6, each of which is foliated
without singularities. Choose a leaf e; from each R;. The union of all of these leaves,
{es, ..., e} gives a cell decomposition of X. The 2u points py, . . ., p,, where A
pierces X are the O-cells, the non-singular arcs {e, . . ., ¢} are the 1-cells, and the

2-cells each contain one singularity of the foliation. Every 2-cell has four vertices
and 4 edges (Fig. 5). We call our 2-cells tiles, and the foliated cell decomposition a
tiling of X.

The sign of a tile is defined as follows: each tile contains exactly one singularity
of the foliation, which occurs at a point of tangency between X and a fiber Hy of H.
At the point of tangency the normals to X and H, coincide. The sign of a tile is
positive or negative, according as the orientations on the normals to X and H, agree
or disagree. Notice that if (0 — ¢, 6 + ¢€) is a t-interval about 8 which does not
include any other singularities, then we can distinguish the two cases in the
following way: Choose any t€(6 — ¢, 0 + ¢) and label the sides of the arcs in H, n X
“4” or “—” according as they correspond to the positive or negative sides of the
oriented surface X. Then as t — 6 at a positive (resp. negative) singularity the
+ (resp. — ) sides of two arcs of H, n X will appear to coalesce, as in the left-to-
right (resp. right-to-left) sequence in Fig. 7.
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The valence of a vertex in the tiling is the number of tile edges which meet at
that vertex. The next few lemmas concern the existence of vertices of low valence in
the tiling. We will ultimately use these to recognize when our link admits a
complexity-reducing exchange move.

Lemma 2. The tiling of X always contains either a vertex of valence 2 or 3.

Proof of Lemma 2. Let V, E and F denote the number of 0, 1 and 2-cells in the tiling.
Then V—E + F =2, the Euler characteristic of X. Now, each 2-cell in the tiling has
four edges in its boundary, and each edge is an edge of exactly two 2-cells, so that
2F = E,and so 2V — E = 4. Now let V; be the number of vertices of valence i in the
tiling. Since there are no vertices of valence 1, wehave V=V, + Vy+ V, + ....
Since each edge has 2 vertices in its boundary, we also have that
2E=2V,+3V;+ 4V, + ....Thus

Wy Va=8+ V42V +3Vy + .. ..

The terms on both sides of this equation are non-negative. Thus there is always a
vertex of valence 2 or 3. O

Lemma 3. Either the tiling of X has a vertex of valence 2, or else there is an isotopy
of X to a new splitting 2-sphere X', such that the tiling of X' has a vertex of valence 2.
Moreover ¢(X’, H) < ¢(X, H).

Proof of Lemma 3. If the tiling of X already has a vertex of valence 2 there is
nothing to prove. If not, then by Lemma 2 the tiling has a vertex p of valence 3.
There are 3 tiles which meet at this vertex (see Fig. 8a) and two of them (call them T

Fig. 8. a Vertex p has valence 3; b flow Tu T’; ¢ proposed changes in tiling Tu T’
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and T") necessarily have the same sign. Let their singular points be s and s’. Label
the six vertices of Tu 7" 1,2, . . ., 6 in cyclic order, so that the vertex p = 2, as in
Fig. 8b. Assume the origin to have been chosen so that the singularity at s occurs
before the singularity at s’.

The future singularities have been indicated in Fig. 8b by two “joining arcs”,
labeled o, and «,. We now explain what these mean. See Fig. 9, which shows the
surface X and a fiber H, of H just before one of the saddle point tangencies. We see
two arcs, « = X and = H,. Together they bound a disc 4 in 3-space. These are our
Jjoining arcs. As H, is pushed up the arcs o« and § will shrink, vanishing at the instant
of tangency. Now, in our situation there will be two singularities (at s and s’), and so
there will be two pairs of joining arcs: «;, and «, on X (illustrated in Fig. 8b) and f,
and f, on H, (illustrated in Fig. 10a). The idea of our proof is to show that we can
deform X so that the two singularities are very close together both on X and in the
fibration (we will make this precise below), and then interchange the order in which
the singularities occur. The sequence of four pictures in Fig. 8c illustrate what we
intend to do, from the point of view of an observer who is looking at the changing
foliation of X during the deformation. After the deformation the tiling of TU T"
will have been changed so that the vertex p of valence 3 becomes a vertex of valence
2, also the tiling will be unchanged in X — T'u T'. We now show that these changes
are always possible.

The first thing we want to prove is that the six tile vertices 1,2, . . . , 6, which are
points on both X and A, must also have cyclicorder 1,2, . . ., 6 on A, as illustrated
in the Fig. 10a, which depicts a fiber of H before the two singularities. There is no
natural choice of a normal bundle on X, so we assign one arbitrarily so that A
(oriented either way) pierces X from the + side at the vertex 1. Note that this
determines how A pierces X at every other vertex, because if the flow viewed from
the + side of X is clockwise about any one vertex, then it is anticlockwise about
any vertex which is joined to the given one by a leaf in the foliation. So, proceeding
from vertex to vertex, the sense of the flow is determined everywhere. This, in turn,
determines whether the oriented axis A pierces X from the + side or the — side at
each vertex.

Let ij(¢) denote a leaf in the foliation which joins the vertices i and j. In the given
tiling of X (Fig. 8b) the first singularity is between 12(¢) and 56(t). This shows that 1

singular point
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Fig. 10

and 2 cannot separate 5 and 6 on A = 0H,. Thus the cyclic order of the four
vertices 1, 2, 5, 6 on the oriented curve A is 1256, 2165, 1265 or 2156. However, the
latter two are impossible because in the future surgery the sides of 12(¢) and 56(t)
which coalesce must have the same sign, and the sign is determined by our
condition on the pierce-points. The first two choices are equivalent up to sym-
metry, and determined by whether the surgery is to be “+” or “—”. We choose the
order 1256, dictating that the first surgery is to be a “+” surgery. Similar
considerations apply to the pairs 2, 5 and 3, 4 giving two possible cyclic orders for
the 6 points: 123456 and 125436. However, with the latter choice the two singulari-
ties will have opposite signs, so the order must be 123456 as illustrated in Fig.10a.

We now have enough information to determine how 7T'u T’ is embedded in 3-
space. Choose 6 cyclically ordered points on A and declare them to be the tile
vertices 1,2, . . ., 6. Then choose two fibers of H and declare them to be the fibers
H;, and H,, which are to contain the singularities s and s’ respectively. Then
choose points s and s’ in the fibers and declare them to be s and s’. Up to a
homeomorphism of 3-space and a reparametrization of the fibers these choices are
all arbitrary. Finally, join up s to the points 1, 2, 5, 6 by arcs in H,, which have that
cyclic order when H,, is viewed from the + side, and similarly join s’ to the points
2,3,4,5by arcs in Hy,, using that cyclic order when H,, is viewed from the + side.
Thus we have embedded the singular leaves through s and s” in 3-space. The next
thing to do is to adjoin little discs to the points 1, 2, . . . ,6. These discs are to be the
intersections of X with a neighborhood of A in 3-space. Since A pierces X from the
+ side (resp. — side) at 1, 3, 5 (resp. 2, 4, 6), we know how to embed these discs as
oriented surfaces. There is then a unique way to extend the embedding to a
neighborhood of the singular leaves in 3-space. Finally, let ¢ be an arc which joins s
to s’ in X, and let N be a foliated neighborhood of g, as in Fig. 8c. Then there is a
unique way to adjoin N to the part of Tu T already constructed. Finally, extend
the embedding to all of Tu T". The result is depicted in Fig. 11a. (We have removed
a tubular neighborhood of the axis A from 3-space, so the points 1,2, ...,6 are
replaced by circles, seen here as vertical arcs.) For comparison we have also shown
the embedding when the signs disagree, in Fig. 11b.

As noted earlier, we want to push s and s’ together on X and in the fibration and
then to interchange their order in the fibration. There is clearly no obstruction to
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]

Fig. 11. a Non-degenerate saddles at s and s’ signs at s and s’ agree; b non-degenerate saddles at s
and s’ signs at s and s’ do not agree

pushing s and s’ close together on X. We now investigate whether there are
obstructions in fibers of H. We first ask whether parallel sheets of X could interfere
with the project (as they clearly might if the signs at s and s’ disagree). Inspecting
Fig. 10a, one potential difficulty becomes clear. It is possible that there is another
leaf in the foliation of X, e.g. the leaf 3°4°(¢) illustrated in Fig. 10b, which is parallel
to the leaf 34(¢) and obstructs the change we wish to make. It is not hard to see that,
since we know that the singularity between 12(t) and 56(t) is possible, this is the
only obstruction which can occur. After the first singularity the picture will be as in
Fig. 10c. Now, since by hypothesis the singularity between 25(¢) and 34(t) is
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possible, there must in fact be a pair of leaves which are parallel to 34(t) in Fig. 10b,
i.e. 3°4°(¢t) and 3= 4"=(¢), and a singularity (indicated by the joining arc y) between
them which occurs before the singularity between 25(t) and 34(t). Now notice that
on the surface X the four tile vertices 3°, 3", 4°, 4" are disjoint from 7 and 7" (and so
not visible in Fig. 11a). Thus there is no obstruction to changing the fibration so
that the singularity between 3°4°(t) and 3=4"=(t) occurs before that between 12(t)
and 56(t), removing the obstruction.

Since K intersects every fiber of H, we must also show that K cannot obstruct
our proposed change in the order of the singularities. (Notice that K could be an
obstruction in the situation of Fig. 11b, because if we were to push s down we
would force K to be tangent to a fiber of H, so that it would no longer be a closed
braid). Refer now to the sequence of pictures in Fig. 12. The top one is a repeat of
Fig. 10a, with a little new data added. Initially, K will pierce one of the four regions
of H, split along the three arcs of H, n X. By symmetry it suffices to consider three
such choices. We have indicated these by a square black dot, a horizontal slash and
an X in the three regions. We follow the time-evolution of the dot. It can wander
anywhere within a region as t varies, but it cannot cross from one region to another
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because K does not intersect X. After each singularity, new regions open up to it.
We have shown the final position of the square black dot, if the left sequence is
used. We now see that we could have achieved the same end position if, instead, the
right route had been used. The same argument applies to the slash and to the X.
For every possible position it is possible to proceed either via the left or instead via
the right sequence. Thus K is not an obstruction to the change in order of the
singularities.

The proof is essentially complete, however we can improve our understanding
of the changes by showing precisely how to do the deformation of N =« Tu T". We
may regard N as the graph of the smooth function f(x, y) = y* — 3y(x? — 1). This
function has two non-degenerate saddle-type critical points of the same sign, one at
(x, y) = (1, 0) and the other at (x, y) = ( — 1, 0). Now, our function f(x, y) belongs
to a parametrized family of functions £, with £,(x, y) = y* — 3y(x? — ¢*)and f = f,.
If ¢ #+ 0, the function f(x, y) has a pair of critical points at (+ ¢, 0). Both critical
points are saddles because at (+ ¢, 0) the Hessian is — 36¢2 < 0. Deform X to a
new surface X' by letting the parameter ¢ pass to zero. This has the effect of pushing
s and s’ toward one-another, until at ¢ = 0 the two saddles coalesce to a monkey
saddle, which has a single degenerate critical point at (0, 0). The graph X’ of f, (x, y)
has three “hills” and three “valleys”. The singular leaves (i.e. the level sets f; *(0))
are three lines in the x — y plane through (0, 0), of slope 0, /3 and — /3. The
surface X’ has local 3-fold rotational symmetry about the origin. We can then
further deform X* by rotating it through, say — 7/,/3, allowing ¢ to increase again,
and then rotating it back again, ie. replace £, by g~! f g, where g is the rotation.
This has the effect of splitting the critical point into two new critical points along
the line of slope /3. O

Lemma 4. If the tiling contains a vertex of valence 2, then K admits an exchange.
Moreover, after the exchange the complexity can be reduced by removing two or more
of the points where the axis pierces X.

Proof of Lemma 4. There are two tiles which meet at our vertex of valence 2, and the
first step in the proof is to examine the signs of the singularities in these two tiles.
Let p be the vertex in the statement of the lemma, and let g and s be the singular
points of the two tiles which meet at p. Let p’ and p” be the other vertices of the two
tile edges which meet at p. The singular leaves through g and s occur at ¢, and ¢,
respectively. Portions of these singular leaves fit together to cut off a disc 6 on X,
and the region depicted in Fig. 13 is a neighborhood 4 of 6 on X, chosen so that 04
is everywhere transverse to the foliation. We have labeled leaves of the foliation as
occurring at times t =ty t,,. .., 3.

We now examine corresponding leaves as they would occur-on a sequence of
fibers of H. See the sequence of five pictures in Fig. 14, which are labeled
t3, tss ts, Lg, L to correspond to the labels in Fig. 13. The full cycle is obtained from
this one by adding to it the corresponding sequence of pictures run backwards. The
singularities which occur at ¢, and ts have opposite signs. (This is a direct
consequence of the fact that there are exactly two singular leaves among the leaves
which are incident at p). Thus the normal bundles to X and H agree (say) at s, and
disagree at g. This is the first fact which we need, in order to see how 4 is embedded
in 3-space.

The next thing to notice is that (from Fig. 5) the gradient flow on X is always
oriented in opposite senses around the two endpoints of ‘each leaf which joins two
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Fig. 15

points of A N X. This implies that 04 has algebraic rotation number 1 about the
axis A. Since 04 is everywhere transverse to the foliation, it then follows that 04 is a
1-braid, and also that the axis A pierces 4 from alternating sides at the 3 pierce-
points, say the positive side, the negative side, and then the positive side again at
p,p’ and p”.

We now have enough information to determine how 4 is embedded in 3-space.
See Fig. 15. The first step is to choose three points on the axis A and declare them
to be p', pand p”. Up to a homeomorphism of S3 which fixes A and each fiber it will
not matter where we place them. Next, we attach small discs transverse to the axis
with their centers at p’, p and p”. These discs are the intersections of our oriented
surface X with a neighborhood of the axis, and by the argument we have just given,
if the disc at p’ has its positive side up, then the discs at p and p” will have negative
and positive sides up, respectively.

The next step is to choose points on the fibers at ¢, and ¢5 and declare them to
be g and s. Up to a homeomorphism of S which preserves A and each fiber it will
not matter where we place them. Now, each singular point is the intersection of
four singular leaves of the foliation, which go out from the singular point like the
spokes on a wheel. Three of the leaves which meet at g and also at s terminate at
P, p, P’ so we can extend them (in their fibers) to p’, p and p”. The fact that the
singularities have opposite signs shows that if the cyclic order (looking down onto
the positive side of X) at g is p’, p, p”, then it must be p”, p, p’ at s. The fourth leaf at s
and also at s’ goes to the boundary of 4, which (as noted earlier is a little 1-braid
about A. Since the surface 4 is transverse to the foliation in the complement of the
singular leaves, there is now a unique way to complete the embedding of 4. In this
way we obtain Fig. 15.

We study the non-singular leaf b(t,) in Figs. 12 and 13. By hypothesis, every leaf
in the foliation is essential. This means that K itself is necessarily an obstruction to
their removal, as illustrated in Fig. 15. We propose to remove this obstruction by
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Fig. 17

an exchange, as illustrated in Fig. 16. After the exchange we will obtain a new tiling
with the same complexity, however in the new tiling the leaf b(¢) will be inessential.

The remaining problem is to show that we can actually realize this exchange so
that it takes braids to braids and leaves the tiling unchanged, except for reordering
of the p;’s. If we can do this, then our exchange move will enable us to reduce the
complexity. We need to create a region in 3-space in which we can make the
exchange move in a controlled fashion.

Each non-singular H, meets X in a unique arc b(t) which joins p to p’ or p” and
cobounds with a part of the axis A two discs in the fiber H,. If b(¢) joins p to p’ (resp.
p"), let y, be the disc which does not contain p” (resp. p’). We have sketched in one
such arc b(t) and shaded in the disc g, in Fig. 17. If we think of the subsurface 4 of
Fig. 15 as a boxing glove, the discs y, for t; <t < t5 will appear to be “outside” the
glove, whereas those for t5 < t < t; will be “inside” the glove. The disc J, which is
on the glove, is a limiting position for both families of discs. Thus the closure of the
union of all of the discs y,, te [0, 2n] will be two 3-balls B, and B,, which intersect
along a single arc in the disc § of Fig. 13, i.e. the arc which runs from g to s through
p. The shaded disc in Fig. 14 is in the boundary of B; U B,.
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We may assume that B; U B, intersects the link K in two unbraided weighted
arcs. This is clearly possible, since all braiding may be pushed out of B, UB,.
Notice that the surface X may meet B, and B, in some number of sheets which are
locally parallel to the embedded disc 4 which we depicted in Fig. 15. In particular,
X may meet a neighborhood N, of A in some number of radially foliated discs
between the discs at p’ and p”, as in Fig. 18.

Now we need to thicken B, U B, a little bit. With this in mind, reparametrize
the interval [0, 27] so that the singularities occur at t; = 0 and t5 = n. We can then
pair the discs y, and g, ., so that g, is in B, and g, , is in B,. See Fig. 19, which
depicts subsets of H, U H, , .. Now notice (see Fig. 13) that if H,, 0 < t < =, is non-
singular, then H, contains two leaves in the foliation of 4: the leaf b(t), which joins p
to p”, and also a small arc a(t) which runs out from p” to the boundary of 4.
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Similary, y, . is a union of b(t + n), which joins p to p’, and a small arc a(t + =)
which runs out to the boundary from p”. See Fig. 19. Let N(t) be a neighborhood of
U Uty 0af(t) va(t + n)in H,UH,, ., chosenso that N(t) nK = (4, U i, ,) 0K
and N(¢) n X is the union of (4, U p, . ) » X and (H, U H, . ;) N N,. Finally, choose
the neighborhoods N(z) so that they vary smoothly as ¢ is varied between 0 and =.
Let N be the closure of the union of all of the N(t), t € [0, n). Notice that N is not a
3-ball (it is a 3-ball with holes), because N(t) is not a disc for t-values close to t = 0.
Chosse ¢ > 0 so that N(t) is a disc for te[e, © — €].

We can now describe precisely the exchange move which was indicated earlier
in Fig. 16. See the top left picture in Fig. 20, which is intended to correspond to the
left picture in Fig. 19, at some te (e, = — ¢). The plane of the paper is divided by A
into two half-planes, and we will assume the left one to be H, and the right one to be
H,, .. We want to describe an isotopic deformation of X U K, and shall do so by the
series of pictures in Fig. 20, all of which correspond to the same fixed value of
tele,m—¢].

Choose a subdisc d of y,,, such that d K = (y,,,) K and also dnX

= (ty+,) " X — b(t + 7). Our isotopy is to be supported in N(t) and is to be the

identity on g, and on g, , , minus a neighborhood of d on g, , ,. The isotopy pushes
the disc d (and the points of K and X which meet it) across A and then down and
eventually into the cross hatched area below p” which was illustrated in the blow-
up in Fig. 19. The isotopy is to be defined on pairs of fibers, and is to be defined so
that it varies continuously as we vary t. At the end of the isotopy the link K is to
encircle the axis below p” instead of between p’ and p. Also, each sheet of X which
intersected A between p’ and p is to intersect A the same number of times below p”.
(One of the authors likes to think of this change as accomplished by “putting your
hand into your pocket and emptying it”.)

The only remaining problem is to ask what happens in the t-interval [0, ¢]? Let
u be the isotopy parameter. The first thing to notice that when u is in the interval
[.25,.75] the isotopy is supported in the left half-plane. We may then assume that
the deformed discs d,, ue[.25,.75], have empty intersection with H,UH,, . if
t¢ [e, m — ¢]. The second thing to notice is that when u € [0, .25] and ue [.75, 1] the
isotopy is supported in a neighborhood of the axis A. Since that neighborhood can
be chosen to be disjoint from a neighborhood of the singular points (see Fig. 14) it
follows that Fig. 20 actually tell us everything we need to describe the isotopy of
X u K completely.

At the end of the isotopy we may reposition X so that the tiling of X will be
exactly as it was before the change. The only change will be in the order of the
points of A n X on A. The interchange of order has an important consequence: one
or more essential b-arcs in the foliation of X will have been changed to inessential
b-arcs. We can therefore modify X by an additional isotopy to a new splitting
2-sphere X', reducing the complexity. The proof of Lemma 4 is complete.

We now complete the proof of the split braid theorem. We begin with a splitting
2-sphere X which has complexity ¢(X, H) = (2, 0). If the complexity is (2, 0) we are
done, so assume it is > (2, 0). This implies that |A N X| > 2, because if it were 2,
then by our general position hypotheses we would also have |H-X|=0. By
Lemmas 2 and 3, we can then conclude that there is a vertex of valence 2 in the
foliation of X. By Lemma 4 we conclude that after an exchange we may replace X
by a new splitting 2-sphere X’ with smaller complexity. After finitely many such
changes we will obtain a splitting 2-sphere X” which intersects A twice, and a split
n-braid representative K’ of our link K. O
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3. Proof of the composite braid theorem

J.S. Birman and W.W. Menasco
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We begin with a closed n-braid K which represents a composite link K. By the split
braid theorem, we know that if K is a split link, we may find splitting 2-spheres
which exhibit it as an obviously split closed braid. Thus we may work on one




Composite and split links 135

component at a time. Therefore we may assume that our representative K is non-
split.

The proof is almost identical with that of the split braid theorem, therefore we
will only discuss the points where they differ. We are given a 2-sphere Y (replacing
X) which decomposes K into a connected sum of non-trivial link types. The only
difference between the 2-sphere X of Sect.2 and our 2-sphere Y is that X was
disjoint from K, whereas K pierces Y twice. Our goal is to modify K and Y until we
achieve a 2-sphere Y’ which also realizes the connected sum decomposition and
which is pierced twice by the axis A.

The general position arguments given in Sect. 2 go through, but a complication
occurs in the proof of Lemma 1, when we try to remove SCC’s from the foliation of
Y. The possibility exists that K will pierce the discs which are to be used in the
surgeries. Suppose that ¢ is a SCC in H, n Y. Then ¢ bounds a disc é in H,, and also
divides Y into two discs J, and J,. Since K intersects Y twice, it either intersects d,
once and J, once, or (by choosing the notation appropriately) it intersects J, twice
and misses d,. Assume the latter. Then if we surger Y along d, as in the proof of
lemma 2, Y will be split into two 2-spheres Y, =dud, and Y, =duUd,, and Y,
must be inessential because it misses K. Thus we can replace Y by Y,, and proceed
as in the proof of Lemma 2. If, on the other hand, K meets both J, and §,, then
both 2-spheres Y, and Y, will intersect K twice, and at least one of them, say Y,,
must be essential. We can then discard Y ,, and proceed as in the proof of Lemma 2,
Thus we may assume that Y is foliated without SCC’s.

Our 2-sphere Y admits a tiling. Call a tile good if it is not pierced by K. Call a
vertex of valence 2 or 3 good if it is adjacent to a good tile. As in the proof of the
split braid theorem, we have to prove there is a vertex of valence 2 or 3 in the tiling,
but now we need a little more: we must be sure that the vertex of valence 2 or 3 is
good. The equation.

2V, + Va=84+ Vs + 2V + 3V, + ...

still holds. In this equality every entry is non-negative. Now, we can assume (after a
small isotopy of K) that the two points where K pierces Y are in the complement of
the set of singular leaves, i.e. in a region R like the one depicted in Fig. 6. Call R a
bad region if it is pierced by K. Now, a region R is adjacent to exactly two tile
vertices, and since there are at most 2 bad regions this means that there are at most
4 bad vertices. Thus, if V, + V3 = 5, we can always find a good vertex, so assume
V, + V5 < 4. This means that V, < 4. However, V, + (V, + V3) = 8. Therefore
the only case where we could fail to have a good vertex of valence 2 or 3 is in the
very special situation when 2V, = 8 and V3 = 0. This means that Y is a union of
exactly two tiles, also the complement of the set of singular leaves is a union of four
regions, and two of these are pierced by K.

We can now proceed, as in the proof of Lemma 4 above, to construct Y as an
embedded surface in S. Let py, p,, ps, P4 be the 4 points where A pierces Y, in their
natural cyclic order on A. Each of these vertices has valence 2, so there are 2 tiles
and 2 singular points in the foliation, say s and g. See the top pictures in Fig. 21.
Since all of our vertices are bad, we know that K must pierce a pair of opposite
regions, say R, and R;. By the first part of the proof of Lemma 4, we know that the
signs of s and q are opposite, so the clockwise cyclic order of the tile vertices will be
P1» P2 P3» P4 iD, say, the tile which contains s and p,, p3, p,, p; in the tile which
contains g, when viewed by an upright observer on the positive side of the tile. The
points s and q lie in distinct fibers, and the singular leaves will be a union of four




136 J.S. Birman and W.W. Menasco

arcs which go out from s(resp. q), in a single fiber, like the spokes in a wheel, ending
at the four cyclically ordered vertices, on A in a neighborhood U of the singular
leaves the 2-sphere Y will be transverse to each fiber, so there is a unique way to
extend the embedding of S to an embedding of U. With U in place, we can attach
the four non-singular regions R,, R,, R;, R,. The embedding of Y is then as in the
bottom picture of Fig. 21.

By hypothesis each arc in the foliation of Y is essential, so our link K must be an
obstruction to its removal. See Fig. 22. Thus K must encircle the axis n = 1 times
between p; and p, and also m > 1 times between p, and p,, inside Y. These strands
will in general be braided; we have indicated the braiding as occurring inside two
boxes, labeled 4 and B. Similarly, K must encircle the axis j = 1 times between p,
and p; and k = 1 times between p, and p,, outside Y, with braiding occurring in the
boxes which are labeled C and D. In addition, one strand of K pierces Y in the
region R, and another in the region R, to join up the part of K which is inside Y
with the part which is outside Y, as illustrated. Thus K is a connected sum of a link
which is represented as an (n + m)-braid and a link which is represented by a
(j + k)-braid.

It is now clear that we can slide the strands of K which pierce Y into, say,
Region 2. After such a slide we will have a good vertex of valence 2. A complexity-
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Fig. 22

reducing exchange move is applicable. The proof of the composite braid theorem is
complete. [

4. Proof of the 3 and 4-braid theorem

In this section we prove special versions of the split and composite braid theorems
which hold when the braid index is 3 or 4. See Sect. 1 above for the statement of the
theorems.

Two of the four cases have been settled elsewhere, vis: In [Mu] Murasugi
proved, in effect, that every closed 3-braid representative of a split link is conjugate
to a split 3-braid representative. The analogous situation for composite links was
settled by Morton in [Mo, 1]. A third case, that of split braids of braid index 4, has
not been treated elsewhere, however the examples which we gave earlier in Fig. 1
show that there are split links of braid index 4 which are not conjugate to split
closed braids. Thus the only case which requires proof is the case of composite
braids of braid index 4.

Remark. The reader will have no difficulty in supplying new proofs for the three
other cases, with the techniques which we will use to settle the fourth.
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We begin, as in the proof of the composite braid theorem, with a composite link
and a 2-sphere Y which realizes the connected sum decomposition. We assume, as
usual, that Y is in a nice position relative to H, so that Y has a tiling. Each tile has 4
vertices and 4 edges and 1 singularity in its foliation. The first step will be to
examine the components of H, nY as they occur in a sequence of non-singular
fibers at times t = a, b, c, . . . . See Fig. 23. Let « be a component of H, N Y. Then «
separates H,, and since « is essential (see Sect. 2) both components of H, split along
o must be pierced by K. On the other hand K is a closed 4-braid, so we know that K
pierces H, in exactly 4 points. This implies that « is parallel to one of the 4 arcs
types illustrated in Fig. 23.

We assume that there are ny, n,, n3, n, parallel arcs of each type, where each
n; 2 0. If we follow any one arc as we sweep through the fibration, we know it must
ultimately be modified by a surgery. However, arcs in the position of § and ¢ in
Fig. 24 cannot be surgered with one-another because such a surgery would create
an inessential arc. Similarly, arcs like « and p cannot be surgered with one-another,
because that too would create an inessential arc. Thus the only possibility is that
arcs in the position of « and  are surgered with one-another. This has the effect of
removing « and 7 from a pair of opposite groups and adding new arcs a’ and 7’ to
the other pair. This process must continue until there are no more arcs left in one of
the pairs, at which point the process must be reversed, because every arc must both
be modified by a surgery and also ultimately go back to its initial position.
However, this means that eventually o’ will be surgered again with t'. Thus, in fact,
if there were more than two arcs our surface Y would be disconnected. Hence there
are exactly two arcs in H, n'Y, and two singular fibers.

The tiling of Y thus contains exactly two tiles, each with four vertices of valence
two. This is precisely the situation which was described in the proof of the
Composite Braid Theorem in Sect. 3, so we can conclude that the picture is exactly
that in Fig. 22, with n = m = j = k = 1. Note that this implies immediately that our
link K is actually the connected sum of three, not just two links, each of which can
then only be a type (2, r;) torus link, for some r; = 1. Thus we have proved that if K
is the connected sum of a link of braid index 3 and a link of braid index 2, then K is
in fact conjugate to a composite 4-braid.

We go back to the case where K has three factors, and construct the 2-sphere
which realizes the second connected sum decomposition of K = K, # K, # K.
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Referring momentarily to Fig. 21, let ¢, be an arc on Y which joins the points s and
q in the interior of R,, and let ¢, be an arc which joins them in the interior of R;.
Then ¢ = ¢, U c, is a simple closed curve which divides Y into two discs, a disc Y,
which contains R, and a disc Y, which contains R,. (Thus p, and p, are in Y,,
while p, and p, are in Y,). We assume that we chose ¢, and c, so that the two
points where K pierces Y are in Y,. Then Y, is a disc with boundary ¢ which is
disjoint from K, and is pierced twice by A, at p, and at p,. Keeping the curve ¢ in
mind, we now pass to Fig. 22, where we see that there is another disc, Z which also
has boundary ¢, which is chosen so that the interior of Z lies “outside” the 3-ball
bounded by Y. In fact, we can choose Z so that it intersects K in two points, along
the strands which join the blocks labeled C and D, and so that Z n A is empty. Let
Y =Y,UZ. Then Y is also a 2-sphere which realizes the connected sum de-
composition of K, and Y’ n A =2 points. Thus, except for the very special case
when the block D consist of a single crossing, we see that K is an obviously
composite closed braid.

In the case where D contains a single crossing, our closed braid K has a trivial
loop. That is, K is a connected sum of type (2, r,) and type (2, r,) torus links, r; = 1,
and it is represented as a closed 4-braid. In this case there actually may be a non-
composite 4-braid which represents K. The proof is complete. O

References

[Be] Bennequin, D.: Entrelacements et equations de Pfaff. Asterisque 107-108, 87-161
(1983)

[Bi] Birman, J.S.: Braids, links and mapping class groups. Ann. Math. Stud. 82 (1974)

[B-M, I] Birman, J.S., Menasco, W.W.: Studying links via closed braidsI: A finiteness
theorem. Preprint

[B-M,II] Birman, J.S.,, Menasco, W.W.: Studying links via closed braids II: On a theorem of
Bennequin, Topology and its Applications (to appear)

[B-M, III] Birman, J.S., Menasco, W.W.: Studying links via closed braids III: Classifying links
which are closed 3-braids. Preprint

[B-M, V]  Birman, J.S,, Menasco, W.W.: Studying links via closed braids V: The unlink. Trans.

AMS.

[G] Garside, F.: The braid groups and other groups. Q. J. Math. Oxford 20 (No. 78),
235-254

[Ma] Markov, A.A.: Uber die freie aquivalenz der geschlossenen Zopfe. Rec. Soc. Math.

Moscou 43, 73-78 (1936)

[Mo, 1] Morton, H.R.: Closed braids which are not prime knots. Math. Proc. Camb. Philos.
Soc. 86, 421-426 (1979)

[Mo, 2] Morton, H.R.: Threading knot diagrams. Math. Proc. Camb. Philos. Soc. 99,
247-260 (1986)

[Mo, 3] Morton, H.R.: Infinitely many fibered knots with the same Alexander polynomial.
Topology 17, 101-104 (1978)

[Mu] Murasugi, K.: On closed 3-braids. Mem. AMS 151 (1976)







	Birman, Joan S.; Menasco, W.W.: Studying links via closed braids IV: composite links and split links.

