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Abstract 

Birman, J.S. and W.W. Menasco, Studying links via closed braids II: On a theorem of Bennequin, 
Topology and its Applications 40 (1991) 71-82. 

Links which are closed 3-braids admit very special types of spanning surfaces of maximal Euler 
characteristic. These surfaces are de&bed naturally by words in cyclically symmetric elementary 
braids which generate the group B3. 
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This paper is the second in a series of papers [2-61 in which the authors have 
been studying the closed braid representations of links. In this paper we will prove 
that links which have 3-braid representatives admit very special types of spanning 
surfaces. Here is one way to describe them. Let 69 be an oriented link type of braid 
index n, in oriented 3-space, and let L be a representative of 9. Let F be a (not 
necessarily connected) oriented spanning surface for L, oriented so that the induced 
orientation on L is the given one. Then F is a Bennequ&r surface if: 

(i) F has maximal Euler characteristic among all such surfaces. 
(ii) L= aF is a closed n-braid with braid axis A, reiative to some choice of a 

fibration H = {Ho : 8 E [0,21~]} of the open solid torus S3 - A by meridian discs. 
That is, L meets each Ho transversally in exactly n points. 

(iii) F has a decomposition as a union of n discs, each of which is pierced once 
by the braid axis A, joined up by half-twisted bands. Also, the singular foliation of 
F which is induced by its intersections with fibers of H has the properties (see Fig. 
1): 

(a) each disc is foliated ra 
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foliated disc 

Portion of embedded 
surface in 3-space 

Fig. 1. 

(b) each band has a single saddle-point tangency with a fiber of H. 
A Bennequin surface and its boundary can be described simultaneously by a single 
cyclic word W(L) in elementary braids which are associated to the half-twisted 
bands. Notice that our elementary braids are a little bit different from the usual set 
of generators of the braid group, in which the strings are lined up in a row and one 
uses an elementary braid for each crossing between an adjacent pair of strings. For 
braids which have braid index 3 the new generators are particularly simple: call 
them a,, u2, u3, where ai joins the ith disc to the (i + 1)st (mod 3). They yield a 
natural braid projection on the surface of a cylinder, and also yield a cyclically 
symmetric presentation of the 3-strand braid group B3. The fact that F is a surface 
of maximum Euler characteristic shows that the cyclic word W(L) is a shortest 
word in a,, u2, u3. 

Bennequin’s theorem. Every link of braid index ~3 is the boundary of u Bennequin 
surface. 

The theorem which we have just stated is a reinterpretation of Proposition 4 of 
[l]. The main result in this paper will be to give a detailed proof of Bennequin’s 
theorem, which supplements the proof in [l]. 

There are several reasons why we feel that it is appropriate to take a new look 
at Bennequin’s theorem and its proof at this time. The first is that we need to use 
it in [4] and the proof in [l] has what appears to us to be a gap at. a key point, 
which will be explained below. Also, Theorem 1 has been assumed by Xu in [9], 
who has solved the problem of finding, by constructive methods, all Bennequin 
surfaces which represent a given link type of biaid i-dex 3. Her work was motivated 
by an early version of 143 but actually rested more precisely on the theorem we will 
prove here. oreover, the rather simple description we have given of 
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surfaces in terms of discs and bands is natural and useful, however in [I] the surfaces 
in question were described simply as ones which did not have“poches”. Thus one 
knew that a certain comp!ication did not occur, but lacked a description of the 

resulting structure which did occur. (See Lemma 3 below.) And, finally, the version 

of Theorem 1 which we will state and prove below is a little bit stronger than the 
preliminary version we just gave. The stronger version was necessary in order to fill 
in the gap in the proof in [l]. 

To state our version of Bennequin’s theorem, we need to describe a special type 
of spanning surface which was also introduced in [l] and has received some attention 
(e.g. see [l, 2, 7, 81). Let 9 be an oriented link in oriented 3-space and let L be a 
representative of 9. Let F be a (not necessarily connected) spanning surface for L, 

oriented so that the induced orentation on L is the given one. Then F is a rkov 
surface if F satisfies properties (i) and (ii) in the definition of a Bennequin surface 
(however note that n is no longer necessarily the braid index of JZ’), and if property 
(iii) is replaced by: 

(iii)’ There is a singular foliation on F, induced by its intersections with fibers 
of H, such that: 

(a)’ there is a neighborhood on F of each point of A n F which is foliated radially; 
(b)’ there are only finitely many singular fibers of H, and each has a single 

saddle-point tangency with F; 

(c)’ each nonsingular component c of intersection of F with a fiber W, of H is 
an arc. 
Every Bennequin surface is a Markov surface, but there are arkov surfaces which 
are not Bennequin surfaces. For example, Fig. 2 
which can occur in a Markov surface but not in a 

shows a type of local behavior 
Bennequin surface. 

By Theorem 4 of [ 11, or alternativ 
of maximal Euler characteristic can 
the modification may be ass 
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Let c be a component of Fn HB, where we adopt the convention that I$, is 
nonsingular unless it is specifically said to be singular. Thus, by (iii)’ above c is an 
arc, which then necessarily has its endpoints on Lu A. It is proved in Lemma 1 of 
[4] that c cannot have both of its endpoints on L. This follows easily from the fact 
that L is a closed braid. We say that c is an a-arc, if one point of ac is on L and 
the other on A and a b-arc if both points of ac are on A. A b-arc is essential if both 
components of He split along it are pierced by L. 

eorem 1 (cf. [ 1, Proposition 41). (i) Every link of braid index ~3 bounds a 
Bennequin surface. 

(ii) Assume that 2? is prime and nonsplit and has braid index 3. Let L be any 
3-braid representative of 2. Let A be the braid axis and H a$bration of the open solid 
torus S3 - A by meridian discs. Let F be a rkov surface fir L, relative to$bers of 
H. Assume that all b-arcs of intersections of F with fibers of H are essential. Then F 
is a connected Bennequin surface. 

The beginning of our proof of Theorem 1 is Bennequin’s proof of Proposition 4 
of [ 11. The point of departure occurs at lines 14-17, p. 114 of [1] (and at the point 
where we refer to figures after 4 in this paper) where Bennequin fails to investigate 
the end game. If one pursues his argument and investigates the remaining case, one 
discovers (as we will below) that in fact the surfaces in question are not Bennequin 
surfaces, i.e. they have essential b-arcs, which are Bennequin’s “poches”. However, 
on further investigation one sees that the boundaries of these surfaces represent 
composite link types, and composite links bound other surfaces which are Bennequin 
surfaces. Thus the statement of Proposition 4 of [1] is correct, but the proof has a 

gap* 

Proof of Theorem 1. The first part of our proof is a straightforward check that the 
theorem is true for the cases which are excluded by the hypotheses of (ii). The only 
link of braid index 1 is the unknot, and it bounds a disc, which is trivially a Bennequin 
surface. The links of braid index 2 are the 2-component unlink, and the torus links 
of type (2, p), p Z 0, 1. For each of these the Seifert surface obtained from a 2-braid 
projection is a Bennequin surface. The split links of braid index 3 are the three- 
component unlink and the disjoint union of a type (2, p) torus link with the unknot, 
and again there is an obvious Bennequin surface . Finally, there are the composite 
links of braid index 3, each of which is the connected sum of torus links of type 
(2, p) and (2, q). One obtains Bennequin surfaces for these by connect summing 
the Bennequin surfaces for the summands. Thus we may assume we are in the 
situation of (ii). 

We have a closed 3-braid L which represents a nonsplit prime link of braid index 
arkov surface F with aF = L. We asst.-me that all b-arcs in F n W, are 

essential. We will show (see Lemma 2 below) that F b-arcs do not occur then F is 
a Bennequin surface, Our task will then be to prove that b-arcs cannot occur under 
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the hypotheses of the theorem. This is the situation which is illustrated in the 
sequence of pictures in Fig. 3. The fibers I& are depicted as discs with boundary 
A. The link k pierces each He three times, transversally. The surface F meets Ho 
in three arcs, each 
have well-defined 
and - sides of F. 
intersections with 

having one endpoint on A and the other on L. The arcs in F n He 
sides, which we have labeled + and - to correspond to the + 
The axis A = aH, is oriented, and by our conventions all three 
F are from the - side to the + side. As Ho is pushed through 

the fibration H we will encounter a sequence of singular fibers, one of which is 
illustrated in the third picture in Fig. 3. After the singularity the two arcs which are 
“surgered” split apart in a new way. Note that the surgery is defined by a “joining 
arc”, indicated as a dotted arc in the first picture. The joining arc necessarily identifies 
sides of F which have the same parity, because F is orientable. During the complete 
cycle 0 E [0,2~] we expect r such surgeries, where r is the number of bands in the 
disc-band decomposition of F. 

We ask how this picture changes when b-arcs are present. A nonsingular fiber Ho 
always contains three a-arcs. Each b-arc which is present divides Ho, and the 
assumption that all of the b-arcs are essential implies that there is at least one a-arc 
on each side of the split-apart fiber. The leftmost diagram in Fig. 4 therefore shows 
the maximum set of b-arcs which can occur. The symbol “ wi,’ is used to denote 
*Sj 2 0 parallel WCS, i = '1 2,3. The signs on the a-arcs are determined by the choice , 

of the orientation on A, but the b-arcs could be labeled either way. There are three 
types of surgery: 

type aa: a surgery between two a-arcs, 
type ab: a surgery between an a-arc and a b-arc, 
type bb: a surgery between two b-arcs. 
The set {F n He : 8 E [0,2~]} determines a foliation of F. The fact that the foliation 

is radial near each of the points where A pierces F implies, immediately: (**) Euery 
leaf in the foliation is eventually surgered. Checking the various possibilities for 

Fig. 3. A sequence of fibers of H showing an k~~r;rtry at 8 = 8,. 
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w2= w3 =o 

Fig. 4. 

surgeries we see immediately that if all three wi’s are nonzero then every possible 
surgery will produce an inessential b-arc. Thus at least one of the wi’s must be 0. 

Assume that w3 = 0. Then there are two possibilities. 
Case 1. Exactly one of w, , w2, w, is nonzero, say wl. See the middle picture in 

Fig. 4. Then there can either be a unique type aa surgery, after which we will still 
be in Case 1, or a unique ab surgery, which will bring us to Case 2. These two 
possible surgeries are indicated by dotted joining arcs. 

Case 2. Two of the Wj’s, say w1 and w2 are nonzero. See the right picture in Fig. 
4. There are two possible surgeries, both of type ab, which do not produce inessential 
b-arcs. The first decreases w1 by 1 and increases w2 by 1. The second decreases w2 
by 1 and increases w1 by 1. Thus if we are in the situation of Case 2, a surgery 
either keeps us in Case 2 or brings us back to Case 1. 

By condition (**) each of the arcs a,, a2 and a3 in Figs. 2 and 3 must experience 
a surgery as we proceed through the fibration. Even more, the arcs in F n H8 must 
return to their initial positions after a variation of 21rr in the angle 8. Moreover, the 
surface F is oriented, so all surgeries must preserve orientations. Assume that initially 
k = w1 # 0, w2 = 0, w3 = 0, as in the middle picture in Fig. 4. Suppose that initially, 
there are k parallel b-arcs which separate one of the a-arcs from the other two. The 
first thing that can happen is p 3 0 surgeries of type aa. Then there can be k surger!es 
of type ab, the net effect of which is to move the entire group of parallel b-arcs. 
After that, a new sequence of p’ unique surgeries of type aa is possible. Then there 
can be k’a k surgeries of type ab which move the group of parallel strands back 
to their initial position, whence the cycle repeats itself (in geiieral with different p, 

k, p’, k’) t times. 
In the next lemma we will prove that the cycle of surgeries which we just described 

determines F as an embedded surface. We will then be able to complete the proof 
of Theorem 1 by exhibiting an embedded surface F’ which realizes the cycle of 
fibers in Fig. 5. We will see that in the case when t . ~1 the surface F’ does not have 
maximal Euler characteristic, while in the case t = 1 the link L is composite. Thus 
both cases violate the hypotheses of Theorem 8. _- 
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fh 1 positive 
aa-singularities 

k? 1 negative 
ab-singularities 

p’r 1 negative 
aa-singularities 

kz 1 positive 
ab-singularities 

THIS ENTIRE CYCLE CAN BE REPEATED tz 1 TIMES, WITH kr 1 

Fig. 5. 

The sign of a singularity is + or -, according as the outward drawn normal to 
points in the direction of increasing or decreasing 8 at the singular point. cycle 

of fibers is the cyclical1 rdered array of singular fibers, with the components of 
F A W, shown on each in the cycle. 

The cycle of jibers determines F as an embedded surface. 

Suppose that the singularities 
addle-point tangent 
, 8 = 8i, contains a u 

the point of tangency. Fig 
The points we have labele 
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aa singularity ab singularity 

Fig. 6. Singular set, viewed on H,. 

We pass to 3-space, choosing r fibers and declaring them to be the singular fibers. 
We then choose an interior point on each singular fiber and declare it to be the 
singular point, also k points on A which we declare to be pl,. . . , pk. Up to 
homeomorphisms of S3 which fix A setwise it wiil not matter how we make these 
choices. We can then join up the singular points and the pi’s as required to form 
the singular leaves which end at the pi’s, i.e. on A. The remaining singular leaves 
which end at the s’s, on L, can be chosen as arbitrary arcs which end at arbitrary 
points qi in the interior of I&, subject only to the restriction that the cyclic order 
on HO of the four arcs which meet at the singularity be correct when viewed from 
the side of He which faces in the direction of increasing 8. 

We now extend the embedding of the singular leaves to an embedding of a 
neighborhood N on E The two pictures in Fig. 7 show such neighborhoods in the 
case of aa and ab singularities. They are foliated by the arcs of F n HO. Since F is 
transverse to the fibers of H everywhere except along the singular leaves, the only 

‘k 

m 

Pi *------ 

e 

i+l 

band in the disc-band decomposition 

Fig. 7. 
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problem about how to extend the embedding to N is whether the outward drawn 
normal to F points in the direction of increasing or decreasing @, i.e. whether the 
singularity is positive or negative, and that information is contained in the cycle of 
fibers. 

The complement of the union of all N’s on F is a set of discs which are foliated 
without singularities. This means that they are everywhere transverse to the fibers 
of H. Thus we can extend the embedding to all of F. This completes the proof of 
Lemma 2. Cl 

We return to the situation which was under discussion just before the statement 
of Lemma 2. We had shown that our spanning surface F necessarily determined a 
cycle of fibers which consisted of t 3 1 rather special subcycles. The ith subcycle 
consisted of pi singularities of type aa, followed by k singularities of type ab, then 
pi singularities of type aa, then k of type ab. A typical subcycle was illustrated in 
Fig. 5. The subcycle begins in # 1 with a nonsingular fiber (as in the midd!e picture 
in Fig. 4) with three a-arcs and one b-arc (we assume k = 1). Pictures #2, 3 and 4 
in the sequence, which may be repeated p times, illustrate the situation just before, 
during and after an aa-singularity. The sign is shown as +, but either + or - could 
occur. Pictures #5, 6 and 7 show a negative ab-singularity. (If ka 1 the “finger” 
which is formed by the bb-arc in #5 would be replaced by k nested fingers.) #8, 
9 and 10 show an aa-singularity, which may be repeated p’ times. The sign is shown 
as +, but it could be f, Pictures #11, 12 and 1 show a positive ab-singularity, 
completing the cycle (if t = 1). 

To construct F’ we begin with the case k = 1. See Fig. 8. Choose five points on 
the axis A, labeled 1, 2, 3, 4, 5 to correspond to the points on the boundaries of 
the He’s in Fig. 5. Construct horizontal discs D,, D3 and Ds which are pierced by 
A at their centers, at 1, 3 and 5 respectively, all with their positive sides facing up, 
and a 2-sphere which is pierced by A at points 2 and 4, and which encloses &, 
with its negative side facing “out”. The discs at 1 and 5 are then to be joined up 
by half-twisted bands, which occur in t groups, the ith group having pi bands. 
(Figure 8 shows one of kese bands.) The &sphere is also joined to D5, by a tube. 
(If t > 1 there will be t tubes.) We need additional bands, more difficult to visualize. 
The additional bands are to be p’ ha%-twisted bands which join the discs Q and 
Q, running from & to Ds inside the tube. (We have shown part of one of the 
bands.) The band from Q passes through the tube, emerging from the underside 

of Ds, and is folded over before it is attached to I&, as indicated in the detail. 
(Compare Fig. 5, #8.) More generally, there will be t tubes, with the ith tube 
containing a group of pi bands. 

A careful comparison of Fig. 8 with the cycle in Fig. 5 should serve to convince 
the reader that F’ realizes the given cycle of fibers (in the case k = 1). We now 
observe that in fact there is a simp 
the same boundary-obtai 
tubes, filling in the hole in 



80 J.S. Birman, W. W. Menasco 

Construction of the surface F' 

Fig. 8. 

Detail: Attaching a 

band to 0, 

to remove the self-intersections which would be created otherwise. Even more, if 
t > 1 this new surface F will have higher Euler characteristic than did F’, contradict- 
ing our hypothesis about F’, because removing the tubes raises the Euler characteris- 
tic. This shows that the case t > 1, k = 1, cannot occur. 

We now consider the construction of F’ in the case t 3 1, k > 1. See Fig. 9, which 
represents the case k = 2 and is to be compared with Fig. 5, #8. There will be three 
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discs as before, only now they are numbered DI, D2+k, D3+2k. The middle disc lies 
inside k concentric spheres, which are joined up, one at a time, by k (nested) tubes 

to &+zk l There are p’ bands joining D 2+k to D3+2k, one of which is shown in Fig. 
9. These bands run through t e innermost tube, approach D3+2k from the - side, 
and then spiral about k times before they are attached. As before, there is a simpler 
surface with the same boundary. It is the Bennequin surface obtained by removing 
the k spheres and their attaching tubes, and unwinding the bands. As before, if 
t > 1 it has higher Euler characteristic than did F’, contrary to hypothesis. The case 
t = 1, with arbitrary p, S p’, remains. The tubes can be cut off as before to produce 
a Bennequin surface, however, we encounter a new difficulty because the Euler 
characteristic of the Bennequin surface will be the same as that of F’. However, in 
this case our link is seen to be the connected sum of type (2, p) and type (2, p’) 
torus links, because there are only two blocks of bands, a block of p bands joining 
one disc pair and a block of p’bands joining the other. This contradicts the hypothesis 
that L is prime. 

The only thing which remains to conclude the proof of Theorem 1 is that F has 
a disc-band decomposition relative to (A, If). 

Lemma 3. A Markov surface F for a closed n-braid which is foliated without b-arcs 

(or which has no poches, in the language of [l]) has a natural decomposition as a 

union of n horizontal discs joined up by half-twisted bands, one for each aa-singularity 
in the cycle. 

We prove the result for 3-braids, but it is clearly true in a more general 
setting. By hypothesis there are no b-arcs in the foliation of F. Therefore the axis 
A pierces F in exactly three points, pl, p2 and p3, where subscripts are understood 
to be defined mod 3. We label these points to correspond to their cyclic order on 
A and study one of the singularities in the foliation of F. It was shown earlier (see 
the top pictures in Fig. 7) that two singular leaves, which we will refer to as the 
a-leaf and the p-leaf pass through the singularity, where &K is on the axis A and 
a/3 is on the link L. Thus Q! joins some pi to pi+l. Let ri be the number of type a 
singular leaves which join pi to pi+l, so that r = rl + r2+ r,. These ri leaves 
natural cyclic order which is determined by the polar angle function, so we can 
label them ai( k), k = I, 2, . . . , ri. Let Pi(k) denote the corresponding P-leaf. The 
collection of all of the p-leaves is thus {Pi(k): k = 1,2,. . . , ri and i = 1,2,3}. 

We focus on one such Pi(k). See the bottom picture in Fig. 7. Let bi( k) = 
pi(k) x [ -1, l] be a product neighborhood of pi(k) on F, the singular leaf being 
identified with pi(k) x (0). Assume the bi( k) are chosen to be pairwise disjoint. 
bi( k)‘s are the bands in our disc-band decomposition of ,&. Their complement en 

F is a union of three discs, the ith disc being a neighbor 

bi( k) is attached to Di along pi(k) x (- 1) and to Di+ 

two edges of the band are on L. 
by ri_l bands. The boundary o 
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1 G k G ri ; the band edges bi-I( m) x {l}, 1 s m s ri-1, and the segments on L which 
run between them. This gives our standard disc-band decomposition of F. 

Let ai denote the elementary braid which corresponds to the half-twisted band 
bi( k). Since the union of all of the bands is a cyclically ordered set we can associate 
to L a cyclically ordered word W in the symbols a;, a2 and a3 and their inverses. 
Two of these symbols, say a1 and a2, will be the str=~?ard elementary braids which 
generate B3. The third symbol a3 will be a conjugate of a2 by a,. This word defines 
our standard Bennequin surface F of maximal Euler characteristic with boundary 
L, and also determines L, as a closed 3-braid. This completes the proof of Lemma 
3, and so also of Theorem 1. Cl 
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