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Lifting and Projecting Homeomorphisms 

By 

JOAN S. BII~MAN and Hvo~ M. HILDE~" 

1. Introduction. Let X be a pathwise connected and locally pathwise connected 
topological space, G the group of all self-homeomorphisms of X, and D the sub~oup  
of maps isotopic to the identity. The homeotopy group of X is defined to be the 
group G/D. Let  2 be a p. c., I. p. c. covering space of X, with projection p. The 
relationship between the homeotopy groups of 2 and X is studied. I t  is shown 
(Theorem 3) tha t  under sufficiently strong restrictions on 2 ,  X and p the homeotopy 
group of X is isomorphic to a factor group of the homeotopy group of ~ ,  with weaker 
results as one weakens the restrictions on l~ and X. 

The situation studied here first came to the authors '  at tention in an earlier in- 
vestigation [1]. The homeotopy ~ o u p s  of 2-manifolds play an important  role in the 
theory of Riemann surfaces, and also in the classification of 3-manifolds. I t  was 
sho~m in [1] tha t  one could gain considerable insight into the structure of the homeo- 
topy groups of surfaces by  utilizing the fact that  any  closed compact orientable 
surface of genus ff with .(2g + 2) points removed can be regarded as a 2-sheeted 
covering of a (2ff + 2)-punctured sphere, and making use of the known properties 
of the homeotopy group of the punctured sphere. The development of this relation- 
ship suggested tha t  other coverings of more general spaces might also be of interest, 
thus motivating the present investigation. At the conclusion of this paper (Section 4) 
a new application to surface topology is discussed briefly. A detailed workingout of 
this application will be found in [2], which should appear concurrently with the 
present work. 

2. We begin by reviewing some well-known results about covering spaces. Let  
Xo ff X, and suppose 2o ~ p-l(x0). Then the covering space projection p: fi2-+ X 
induces a monomorphism p .  from : r l (2 ,  2o) to g l (X ,  x0). [See, for example, page 
72 of [9].] For simplicity in notation, we will write ~ for ~rl (X, 20), ~ for :rl(X, xo), 
and xc for the subgroup p. ~ of ~. 

Let ~ ~ G, and let ~v(~ ) be the automorphism of g which is induced by ~v, cor- 
responding to the choice of the path  ~ joining x0 to 9 (x0). The homeomorphism 

is said to lift to ~ ~ G if ~vp = p ~  for every point of i~. I t  is well-known tha t  
lifts iff ~(~) leaves the subgroup ~c of,~ invariant, for some path ~. [See, for example, 
page 76 of [9]; in our case the map to be lifted is the product ~vp: 2~-+ X.] 

A natural homomorphism H1 exists from the group G/D to the group Aut ~ / I rm ~, 
which is defined explicitely as follows: Let  [~] e G/D, and let ~ represent [q~]. Let  
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[~(.~)] be the class of ~ )  in Aut g / Inn  g, for any choice of ~. Then H1 [~] = [ ~ ) ] .  
I t  is easily verified that. H1 is well-defined and a homomorphism, and is independent 
of the choice of the path  :r In  general, H1 is neither 1-1 nor onto, but in a wide range 

of cases of interest it is either or both. We will w r i t e / t l  for the corresponding homo- 

morphism acting on G/D. 

3. Our object is to develop a relationship between the groups G/D and G/D. In 
the most  general case we can, at  best, hope for a relationship between appropriate 
subgroups, and with this in mind we define G~ to be the subgroup of G consisting 

of all those elements ~ e G which lift to G. Let Gz C G be the group of all those ele- 

ments ~ e G which preserve fibres with respect to p, i.e. which have the property 

that. for every ~, ~ ' ~  ~ such tha t  p(~) ---- p(~'):  p~(~)  : p ~  (~'). I f  ~ ~ Gx, then 
projects to ~ e G~, where ~ is defined unambiguously by ~ ---- p~p-1. 

Since the gTOUpS Gx and G~ do not, in general, include the subgroups D and D, 
we widen them to: 

~- {~ e G ~ is isotopic to some ~ e Gx}, 

S =  { ~ e G  ~ is isotopic to some yJeG~}. 

We will also need: 

---- {(~ ~ G ~ is isotopic to a covering transformation}. 

We can now state our main result: 

Theorem 3. 3.1. I] the covering (X, X, p) is regular, and i/H1 and TI1 are 1-1, and 
i/the centralizer o/ac in 7t is trivial then 

( lb)l( lb) .-, SlD 

3.2. I], in addition, ~c is invariant under all those automorphisms o/ ,'~ which are 
induced by topological mappings, then 

(S/D)/(T/D) _~ G/D. 

3.3. I[, moreover, G/D is generated by elements which can be represented by maps in 

Gx, then 
(G/D)/(T/D) _~ G/D. 

The proof of Theorem 3 is via a sequence of Lemmas.  We note that  Theorem 2 is 
a weak version of Theorem 3, under correspondingly weak restrictions on ~ and X. 
I t  may,  therefore, have some interest in itself. 

Let  i . ,  i .  denote inner automorphisms of gc and ~ respectively satisfying the 
relationship 

T 
(1) p ,  ~, ---- i ,  p , .  

I f  ~ is the projection of ~. and if ~ is the projection of ~, then since p~ ---- q~p, it 
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follows that :  

(2) p ,  = 

(Remark: ~ must be picked first, since ff g is a curve from x0 to ~ (x0), the lift of :r 
beginning at 20 need not necessarily end at ~(20).) 

We now define a new homomorphism H2 : G/D --> Aut ,'zc/Inn ~c by 

(3) h 2  = [p, p-l] 

~(;) - 1 �9 Aut .nc/Inu The isomorphism where [p,  ~ ,  p~-*] denotes the class of p ,  ~ ,  p ,  m ~c. 
p~-* operates on go, and maps it onto ~ which is then operated on by the auto- 

morphism ~(~)and projected back to no. Thus p .  ~(~)p;* is an automorphism of no- 

The proof that  ~/2 [~] is independent of the choice of ~ and depends only on the 
isotopy class of ~ is straightforward, and we omit it. 

I t  follows from the definitions that  for any ~ ~ G: 

(4) 5 2  P = 

(where P is the isomorphism Aut ~/Inn ~ --> Aut ~r zc induced by the isomor- 
phism p, ) .  

~Te would like to know conditions under which a homeomorphism ~ of J~ is in S, 

i.e. is isotopic to an element in Gx. The analogous problem in the base space X is 
to ask when a map ~ e G is in S, and the classical solution is tha t  ~ e S iff there 
e.xists some path g from x0 to ~ (x0) such that  ~ )  leaves gc invariant. The situation 
in the covering space X is considerably more complicated, and our characterization 
is less satisfying: 

Theorem 1. Let ~ e G, ~ e Gx. Let ~, fl be any paths ]rom X,o to ~ (x0), ~ (x0) resTec- 
tivel.y. Let ~o, fl be the pro~eetions o /~ ,  "fl respectively. Then there is an element ~ ~ G, 
with [~] e ker/-I1, such that ; ~ is isotopic to ~, i]] there exists an inner automorphism 
i .  of ~c such that: 

P r o o f .  To establish necessity, suppose ~. ~ is isotopic to an element ~ ~ Gx- Let  
be a curve from ~0 to ~ (~0)- Since [ ~ ]  = [~], therefore the images of ~ and of 

unde r / t2  coincide, hence there exists some inner automorphism m. of xc such that  

by (2). Since [~] e ke r / t z ,  there exists j ,  e Inn ~ such that  

= >. 

Therefore: 

Conversely, suppose that  the condition in the theorem is satisfied for curves ~,/~, fl 
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and an inner automorphism i , .  Then: 

using (2) so that  

where i ,  is defined by  (1). Then 

i . 1  = ~515( .~ ] -~  = ~) ~.,((z-,(~))-,) = (~ .  ~-~)(.(~z-,(~))-,). ~) 
from the definitions of ~ ,  and ~ , .  Thus [~ .  c~-l] ~ ker/~1 and we are through. 

We now turn our at tention to the relationship between the groups S/ /)  and S/D. 
In  order to proceed further we assume from now on tha t  (L~, X, p) is a regxllar 
covering (i. e. tha t  gc is normal in ~). Let Ac be the subgroup of Aut ~ consisting 
of all automorphisms which leave the subgroup ~c C ~ invariant.  Since the covering 
is regular, A c will include the subgroup of inner automorphisms of ,~. We note tha t  

(5) (Inn ~)I =~<A~ I=~. 

Inclusion follows from the fact tha t  Inn  ,~ __CAc. To see tha t  the inclusion is normal, 
choose any  d e (Inn g)] gc and any 6 e Acl ~c, where 5 is the restriction of a e Inn  g 
and b is the restriction of beAc.  Since Inn  g ~Ac  C A u t g ,  the automorphism 
(bab -1) e Inn  ~. Since the covering is regular, (bab -1) I go is an automorphism of ~c 
and clearly coincides with b Sb -1. 

Using (5), we now define a homomorphism /~ (for restriction): 

(6) B:  At~Inn = -+ (Ac [ =c)/((Inn =)] ,~c)- 

Next  we note tha t :  

(7) Inn =~ =c (Inn :01 =~__c A~] ~ 

because every inner automorphism of ~c extends to an inner automorphism of g. 
The inclusion is nolanal because Inn  ~c <lAut gc and Ac],'zc C Aut ~c. Therefore we 
can define a canonical homomorphism: 

(8) a: (Ac ] ~o)/Inn ~, -+ (Ac I ~,)/((Inn,~)l =*)- 

We assert: 

Lemma 1. RH1 (S/D) = a[I2 (t/D). 

P r o o f .  Since every element of S//~ can be represented by the lift of  an element 
9 e G~, and every element of S/D can be represented by  the projection of an element 

e G~, we must  prove that  R H I [ 9 ]  = aH2[~],  for every ~ e G~, where ~ e G~ is 
the projection of (~. Using definition (3): 

/ t2[~] = P,  ~(~Sp,1 m o d l n n ~ c .  

Using equation (2) we obtain: 

H2 [~] = 9(,~) [ ~c mod Inn  ~zc. 
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Therefore from [8]: 

On the other hand: 

HI[~] = ~(,~) rood Inn 

and since R is just restriction to ~c, the proof is complete. 
To improve Lemma 1, we would like to characterize ker a and ker R: 

Lemma 2. Let [~] �9 S//). Then t/2 [9] �9 ker a if/ there exists an element 

�9 Gz (~ k e r / t l ,  

such that ~ is isotopic to a covering transformation. ( I f / t l  is 1-1, this implies that  
H2 [~'] �9 ker a iff ~ is isotopic to a covering transformation.) 

Proof .  From the definitions, it follows that  Hef t ]  �9 ker a iff 

Since the covering (~, X, p) is regular the elements of (Inn ~)[~,  can all be in- 

duced by covering transformations. I-Ienee /~2 [~] �9 ker a iff there exists a cover- 
ing transformation ~ and a curve/~ such that:  

p ,  ~o(,~)p~ x = p ,  r(,~)p$~ 1 (mod Inn ~c)- 

But now we consult equation (4). Since p ,  is 1-1, it follows from equation (4) that  

�9 her H2 iff V e ke r / t l ,  which completes the proof of Lemma 2. 

Lemma 3. Let q) �9 G~. Then H1 [~] �9 ker R i f / 9  has a lift ~ such that ~ �9 ker/ /1.  

Proof .  I t  follows from our definitions that  H1 [~] �9 ker R if[ 9(,=) I ~c �9 (Inn x) [xr 

I f  ~ �9 her/~1 then as in the proof of Lemma 2, ~ �9 ker He therefore 

belongs to Inn ~c C (Inn z) I ~c. 
Conversely, if ~ ) I ~ c  �9 (Inn z) l ~ ,  then there is a curve 6 such that  V(~) [ ~c = 1. 

Let ~ be a lift of ~. By composing ~dth a covering transformation if necessary we 
may assume ~(2o)=~d(1)  where ~6 (0 )=20 .  Then p . ~ % ) p , l =  1 implies 

H.~ [~] = 1 which implies that  9 �9 ker H1- 
As a consequence of Lemma l, 2, 3 we obtain: 

Theorem 2. Let I be the subgroup of G~ defined by 

i - -  �9 �9 D /o r  some l i l t  ~o of q~}. 

Let J be the mapping classes in, S/D represented by elements o/ I. Then if I t l  is 1-1: 

(S/D)I(T/D) "- (S/D)/J 
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P r o o f .  (i) From Lemma 2 we have tha t  i f / t l  is 1-1, then T ~- ker(a / t2) .  

(ii) F rom Lemma 3 we have tha t  if  H I  is 1-1, then  J = ker RH1. Using (i) and 
(ii) in Lemma 1, we then obtain Theorem 2. 

Finally, we are ready  to  prove Theorem 3. I t  suffices to show tha t  with the ad- 
ditional assumpt ion tha t  the centralizer of  ~c in ,'~ is trivial, t ha t  J is trivial. I f  

[V] ~ J then there is a ~ such tha t  p .  V($~)p~ -1 : ~($~)1~c ---- i .  [~c where i .  is con- 
jugat ion by  an  element of  ,~c- Thus i~c f (~ ) l :~c  = l [ ~ c .  Let  a be any  au tomorphism 
of g whose restriction to ~c is the identity.  Let  7 e~c  and let 6 e g .  Then by5  -1 ----- fl 
where f l e  zc because gc is normal.  Now 

a ( ~ ) a ( y ) a ( ~ ) - I  = a(fl); a ( ~ ) y a ( 5 )  -1 -~ fl = 5 7 ~  -1 . 

Thus 6 -1a (6 )7 - - - -75-Za(5 ) ,  so tha t  5-1a(5)  belongs to  the centralizer of  ~c- Bu t  
then a(6) ---- ~, and a ---- 1. Let t ing a : i~-1~(, a) we get ~(.~) ---- i .  on all of  g. Since 
Hz is 1-1 it follows tha t  [~] = 1. Thus pa r t  3.1 of  Theorem 3 is true. The s ta tements  
of  Par t s  3.2 and 3.3 follow immediately.  

4. Applications. Let  Np+I be a closed, compact  non-orientable 2-manifold of  genus 
g ~ 1 ~ 3, and let Og be an  orientable double cover of  Ng+l. Generators for the 
homeotopy  gToups of Na+l and 09 were determined by  Lickorish [4, 5, 6, 7, 8] and 
Chillingworth [3], but  the methods they  used for the non-orientable case were 
distinct f rom those used to  t rea t  the orientable surfaces, l~ow, it is easily verified 
tha t  the tr iplet  (Og, Ng+l,  p) satisfies the conditions of  Theorem 3.1 [see 2]. I t  
should, then,  be possible to  determine generators  and  also defining relations for the 
homeotopy  groups of Ng+l,  whenever the corresponding information is available for 
Og. A companion paper to the present one, reference [2], contains a detailed working 
ou t  of  these ideas, which proved to shed considerable light on the structure of  the 
homeotopy  groups  of  Ng+l. 
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