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Lifting and Projecting Homeomorphisms

By

Joaw S. Bigmax and Huer M, Hinpex

1. Introduction. Let X be a pathwise connected and locally pathwise connected
topological space, G the group of all self-homeomorphisms of X, and D the subgroup
of maps isotopic to the identity. The homeotopy group of X is defined to be the
group G/D. Let X be a p.c., L p. c. covering space of X, with projection p. The
relationship between the homeotopy groups of X and X is studied. It is shown
(Theorem 3) that under sufficiently strong restrictions on X, X and p the homeotopy
group of X is isomorphic to a factor group of the homeotopy group of X, with weaker
results as one weakens the restrictions on X and X.

The situation studied here first came to the authors’ attention in an earlier in-
vestigation [1]. The homeotopy groups of 2-manifolds play an important role in the
theory of Riemann surfaces, and also in the classification of 3-manifolds. It was
shown in [1] that one could gain considerable insight into the structure of the homeo-
topy groups of surfaces by utilizing the fact that any closed compact orientable
surface of genus g with (2g 4- 2) points removed can be regarded as a 2-sheeted
covering of a (2g - 2)-punctured sphere, and making use of the known properties
of the homeotopy group of the punctured sphere. The development of this relation-
ship suggested that other coverings of more general spaces might also be of interest,
thus motivating the present investigation. At the conclusion of this paper (Section 4)
a new application to surface topology is discussed briefly. A detailed workingout of
this application will be found in [2], which should appear concurrently with the
present work.

2. We begin by reviewing some well-known results about covering spaces. Let
29 € X, and suppose &g € p~1(xp). Then the covering space projection p: XX
induces a monomorphism p, from 7y (X, &) to 7 (X, xo). [See, for example, page
72 of [9].] For simplicity in notation, we will write 7 for 71 (X, &), 7 for 71 (X, zo),
and 7, for the subgroup p, 7z of .

Let ¢ € G, and let ¢ be the automorphism of z which is induced by ¢, cor-
responding to the choice of the path « joining xg to ¢(xo). The homeomorphism ¢
is said to lift to ¢ eq if @p = py for every point of X. It is well-known that ¢
lifts iff @' leaves the subgroup =, of = invariant, for some path «. [See, for example,
page 76 of [9]; in our case the map to be lifted is the product pp: X — X.]

A natural homomorphism H exists from the group G/D to the group Aut z/Inn s,
which is defined explicitely as follows: Let [¢] € G/D, and let ¢ represent [p]. Let
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[¢{] be the class of ¢'® in Aut zz/Inn 7, for any choice of «. Then H;[¢] = [¢{P].
It is easily verified that H; is well-defined and a homomorphism, and is independent
of the choice of the path o. In general, H; is neither 1-1 nor onto, but in a wide range

of cases of interest it is either or both. We will write H; for the corresponding homo-

morphism acting on é/.b

3. Our object is to develop a relationship between the groups CE/D~ and G/D. In
the most general case we can, at best, hope for a relationship between appropriate
subgroups, and with this in mind we define G; to be the subgroup of G consisting

of all those elements ¢ € G which lift to G. Let G, c G be the group of all those ele-
ments ¢ € G which preserve fibres with respect to p, i.e. which have the property
that for every #, # € X such that p(Z) = p(#): pe(@) = pg(E). If ¢ € G4, then ¢
projects to ¢ € G;, where ¢ is defined unambiguously by ¢ = pep1.
Since the groups G, and G; do not, in general, include the subgroups D and D,

we widen them to:

S={3e@ | ¢ is isotopic to some § &Gy},

S={pe@ | ¢ is isotopic to some pel;}.
We will also need:

T = {p e@ | @ is isotopic to a covering transformation}.
We can now state our main result:

Theorem 3. 3.1. If the covering (X, X, p) is regular, and if Hy and Hy are 1-1, and
if the centralizer of ww. in 7w is trivial then

(SID)(T/D) = SD.

3.2. If, in addition, 7, is invariant under all those automorphisms of = which are
induced by topological mappings, then

(8/D)(T D) = GID.

3.3. If, moreover, é/f) s generated by elements which can be represented by maps in

éx, then
(GID)[(T|D) = G|D.

The proof of Theorem 3 is via a sequence of Lemmas. We note that Theorem 2 is
a weak version of Theorem 3, under correspondingly weak restrictions on X and X.
It may, therefore, have some interest in itself.

Let iy, 94 denote inner automorphisms of 7, and 7 respectively satisfying the
relationship

(1) Pyl = g Py -

If ¢ is the projection of @, and if « is the projection of «, then since pp = gp, it
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follows that:
2) P ¥R = g9 ps -
(Remark: ¢ must be picked first, since if « is a curve from zg to @ (xo), the lift of «

beginning at & need not necessarily end at <p(x0) )
We now define a new homomorphism Ho: G/D — Aut zt./Inn =, by

(3 Ha[§] = (s $4P7]

where [py @4 p5 1] denotes the class of P (p(“‘) Py Lin Aut ./Inn 7. The isomorphism
py ! operates on 7, and maps it onto 7 which is then operated on by the auto-
morphism ¢ and projected back to 7,. Thus p, $@p;! is an automorphism of 7,.
The proof that Hy [¢] is independent of the choice of & and depends only on the
isotopy class of ¢ is straightforward, and we omit it.

It follows from the definitions that for any § € G
(4) Hs[3] P = PH;[]
(where P is the isomorphism Autz/Innz — Aut 7./Inn 7, induced by the isomor-
phism p,). ~

We would like to know conditions under which a homeomorphism ¢ of X is in §,
i.e. is isotopic to an element in G;. The analogous problem in the base space X is
to ask when a map ¢ €@ is in S, and the classical solution is that ¢ € 8 iff there
exists some path « from zg to @ (o) such that ¢® leaves n, invariant. The situation
in the covering space X is considerably more complicated, and our characterization
is less satisfying:

Theorem 1. Let ¢ € G, e Ga. Let & * /3 be any paths from &y to ¢ (Fo), P (Fo) respec-
tively. Let v, ﬁ be the pro]ectwns of v, B respectively. Then there is an element % € G,
with [#] € ker H 1, such that x @ is isotopic to P, iff there exists an inner automorphism

iy Of 7, such that:
Ps PR 05 = i4 (9P| 7).
Proof. To establish necessity, suppose # ¢ is isotopic to an element 9 & G- Let y
be a curve from o to # ¢ (£o). Since [2¢] = [¢], therefore the images of z¢ and of ¥
under H coincide, hence there exists some inner automorphism m, of 7, such that
Py (% ‘P)(y) = My Px 1/’25’20* = My ("/’(ﬁ)l 7e)

by (2). Since [#] € ker H,, there exists ]* € Inn 7 such that
G = s 7.

Therefore:
Fae P ?7(“)2”* = Mg ('P(ﬁ)l ;) where jy = Py iy P;l ’
Pe0PP5t = i imy (D 7o) = iy (P 7o)

Conversely, suppose that the condition in the theorem is satisfied for curves a, §, 8
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and an inner automorphism ty. Then:

Dse (p(a) — 7, (‘B)Iﬂc) — 7/* p*w(ﬁ)
using (2) so that

W =i
where 3, is defined by (1). Then

-1l = @gf)[(;gl:t)]—l = @gf) &;1((!7’"(“))") = (@ . (;_1)519”("’_1(“))_1)"3)
from the definitions of @, and 9. Thus [y - p~1] € ker H; and we are through.

We now turn our attention to the relationship between the groups §/D and 8/D.

In order to proceed further we assume from now on that (X, X, p) is a regular
covering (i.e. that s, is normal in x). Let 4, be the subgroup of Aut z consisting

of all automorphisms which leave the subgroup 7z, £ = invariant. Since the covering
is regular, 4, will include the subgroup of inner automorphisms of 7. We note that

(5) (Inn ﬂ)lnCQAclﬂc.

Inclusion follows from the fact that Inn 7z C A.. To see that the inclusion is normal,
choose any @ € (Inn ) | 7. and any b € A.| 7., where @ is the restriction of € Inn #
and b is the restriction of b & A.. Since Innz <14, C Autz, the automorphism
(bab~1) e Inn 7. Since the covering is regular, (bab—1)|n, is an automorphism of 7,

and clearly coincides with 5@b-1.
Using (5), we now define a homomorphism R (for restriction):

(6) R: A;/Innz — (A¢| 7o) /((Inn 7) | 7).
Next we note that:
(7) Innz, C (Innz)| 7. C 4e|7e

because every inner automorphism of z, extends to an inner antomorphism of 7.
The inclusion is normal because Inn 7z, <JAut 7, and A.|z, C Aut .. Therefore we
can define a canonical homomorphism:

(8) o: (Ae|7e)Inn e — (A¢| 72e) [(Inn 7) | 7).
We assert:
Lemma 1. RH;(S/D) = o H5(5/D).

Proof. Since every element of §/D can be represented by the lift of an element
¢ € G;, and every element of S/D can be represented by the prOJectlon of an element

» € Gy, we must prove that RH;[g] = oHs [@], for every ¢ € G,, where pel; is
the projection of g. Using definition (3):

Hs[§) = pe ¥ p5' mod Inn 7.
Using equation (2) we obtain:

H, [p] = ¢@|n. mod Inn 7, .
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Therefore from [8]:
o‘Hv[qo] =¢® |7, mod((Innnx)| ).

On the other hand:
Hilg] = ¢ mod Inn

and since R is just restriction to m., the proof is complete.
To improve Lemma 1, we would like to characterize ker ¢ and ker R:

Lemma 2. Let [¢] ¢ »§/13 Then I~12 [@] € ker o iff there exists an element
pe Gy Nker Hy,

such that 6917: 18 1sotopic to a covering transformation. (If H 1 is 1-1, this implies that
Hs[¢] € ker ¢ iff ¢ is isotopic to a covering transformation.)

Proof. From the definitions, it follows that Hp [@] € ker ¢ iff

Py (pgf)p* e (Inn z)| 7, .
Since the covering (X, X, p) is regular the elements of (Inn 7)| 7. can all be in-
duced by covering transformations. Hence H3[g] € ker ¢ iff there exists a cover-

ing transformation T and a curve B such that:
25 P05 = p TPpst  (mod Inn 7).

But now we consult equation (4). Since py is 1-1, it follows from equation (4) that
1/) cker H o iff 1/; eker H 1, which completes the proof of Lemma 2.

Lemma 3. Let ¢ € G;. Then Hy[g] eker R iff @ has a lift p such that § € ker Hy.

Proof. It follows from our definitions that Hj{¢] € ker R iff ¢{®| 7, € (Inn z) | 7,
If ¢ e ker H 1 then as in the proof of Lemma 2, ¢ € ker H, > therefore

P | 7, = py 35(75) Pyt
belongs to Inn 7. C (Inn 7) | 7z,.

Conversely if ¢(°‘) 7c € (Inn )| 72, then there is a curve § such that 9|z, = 1.
Let @ be a lift of p. By composing with a covering transformation if necessary we
may assume @ (&) = ;6( 1) where aé( ) = Zo. Then p, &@’p;l =1 implies
H, [¢] = 1 which implies that ¢ €ker H,.

As a consequence of Lemma 1, 2, 3 we obtain:

Theorem 2. Let I be the subgroup of G; defined by
I={peG;|peD for some lift ¢ of p}.
Let J be the mapping classes tn S[D represented by elements of I. Then if Hyis1-1:
(S/D)(TD) == (SID) .
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Proof. (i) From Lemma 2 we have that if H; is 1-1, then T = ker(aI;g).

(ii) From Lemma 3 we have that if H; is 1-1, then J = ker RH;. Using (i) and
(ii) in Lemma 1, we then obtain Theorem 2.

Finally, we are ready to prove Theorem 3. It suffices to show that with the ad-
ditional assumption that the centralizer of s, in s is trivial, that J is trivial. If
[¢] € J then there is a ¢ such that p, ¢Pps! = ¢\@ |7, = iy |7, where iy is con-
jugation by an element of 7.. Thus i3 !¢{®| 7, = 1|n.. Let a be any automorphism
of r whose restriction to 7. is the identity. Let y e 7, and let € x. Then §y -1 = §
where f € 7, because 7, is normal. Now

a@@a(y)a@)r=a(f); ad)ya(d)l=p=0yo1.

Thus dLla(d)y = pd6~1a(d), so that 5~1a(d) belongs to the centralizer of m.. But
then a(0) = ¢, and a = 1. Letting a = i;1¢® we get ¢{® = i, on all of . Since
Hj is 1-1 it follows that [@] = 1. Thus part 3.1 of Theorem 3 is true. The statements
of Parts 3.2 and 3.3 follow immediately.

4. Applications. Let Ny, be a closed, compact non-orientable 2-manifold of genus
g+ 1=3, and let O, be an orientable double cover of Ny.;. Generators for the
homeotopy groups of Ng.; and O, were determined by Lickorish [4, 5, 6, 7, 8] and
Chillingworth [3], but the methods they used for the non-orientable case were
distinct from those used to treat the orientable surfaces. Now, it is easily verified
that the triplet (Og, Ngi1, p) satisfies the conditions of Theorem 3.1 [see 2]. It
should, then, be possible to determine generators and also defining relations for the
homeotopy groups of Ng.1, whenever the corresponding information is available for
O4. A companion paper to the present one, reference [2], contains a detailed working
out of these ideas, which proved to shed considerable light on the structure of the
homeotopy groups of Ngyq.
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