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Abstract

These notes supplement my planned talk on Feb 19, 2004, at the First East Asian
School of Knots and Related Topics, Seoul, South Korea. I will review aspects of the
interconnections between braids, knots and contact structures on R3. I will discuss
my recent work with William Menasco [7] and [8], where we prove that there are dis-
tinct transversal knot types in R3 having the same topological knot type and the same
Bennequin invariant.

A knot in oriented R3 is the image X of an oriented circle S1 under a smooth embedding
e : S1 → R3. Viewing S3 as R3 ∪∞, we also can think of X as being a knot in S3. The
knot type X of X is its equivalence class under smooth isotopy of the pair (X, S3).

Let A be the z axis in R3, with standard cylindrical coordinates (ρ, θ, z) and let H be
the collection of all half-planes Hθ through A. The pair (A,H) defines the standard braid
structure on R3. See the left sketch in Figure 1. Using the same cylindrical coordinates,
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Figure 1: (i) The standard braid structure in R3; (ii)The standard polar contact structure
on R3

let α be the 1-form α = ρ2dθ + dz. The kernel ξ of α defines a contact structure on R3.
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The associated plane field is sketched on the right in Figure 1. The family of 2-planes
that define ξ twist anticlockwise as one moves along the x axis from 0 to ∞. The family
is invariant under rotation of 3-space about the z axis and under translation of 3-space
along rays parallel to the z axis. The plane field has the property that α ∧ dα is nowhere
zero, which means that it is totally non-integrable, i.e. there is no surface in R3 which is
everywhere tangent to the 2-planes of ξ in any neighborhood of any point in R3. Intuitively,
the twisting prevents tangencies between surfaces and the collection of 2-planes. It is generic
in the sense that, if p is a point in any contact 3-manifold M3, then in every neighborhood
of p in M3 the contact structure is locally like the one we depicted in Figure 1. Globally, in
R3 the total twist angle must be an odd multiple of π for the contact structure to extend to
S3, and we distinguish the two cases by the symbols ξπ and ξ>π. The former (for reasons
that will become clear shortly) is known as the standard (polar) contact structure and all
of the latter are ‘overtwisted’ contact structures.

Let K be a knot (for simplicity we restrict to knots here, but everything works equally
well for links) which is parametrized by cylindrical coordinates (ρ(t), θ(t), z(t)), where t ∈
[0, 2π]. Then K is a closed braid if ρ(t) > 0 and dθ/dt > 0 for all t. On the other hand, K is
a Legendrian (resp. transversal) knot if it is everywhere (resp. nowhere) tangent to the 2-
planes of ξ. In the Legendrian case this means that on K we have dθ/dt = (−1/ρ2)(dz/dt).
In the transversal case we require that dθ/dt > (−1/ρ2)(dz/dt) at every point of K(t). It
was proved by Alexander in 1925 that every knot could be changed to a closed braid. Sixty
years after Alexander proved his theorem, Bennequin adapted Alexander’s proof to the
setting of transversal knots in [4]:, where he showed that every transversal knot is isotopic,
through transversal knots, to a closed braid.

Closed braid representations of X are not unique, and Markov’s well-known theorem [5]
asserts that any two are related by a finite sequence of elementary moves. One of the moves
is braid isotopy , by which we mean an isotopy of the pair (X, R3 \ A) which preserves
the condition that X is transverse to the fibers of H. The other two moves are mutually
inverse, and are illustrated in Figure 2. Both take closed braids to closed braids. We call
them destabilization and stabilization, where the former decreases braid index by one and
the latter increases it by one. The weights, e.g. w, that are attached to some of the strands
denote that many ‘parallel’ strands, where parallel means in the framing defined by the
given projection. The braid inside the box which is labeled P is an arbitrary (w +1)-braid.
Later, it will be necessary to distinguish between positive and negative destabilizations, so
we illustrate both now. The term ‘templates’, mentioned in the caption for Figure 2, will
be explained shortly.

Theorem 1 (Markov (MT) [18]): Let X+, X− be closed braid representatives of the
same oriented link type X in oriented 3-space. Then there exists a sequence of closed braid
representatives of X :

X+ = X1 → X2 → · · · → Xr = X−

such that, up to braid isotopy, each Xi+1 is obtained from Xi by a single stabilization or
destabilization.

It is easy to find examples of subsequences Xj → · · · → Xj+k of (1) in Theorem 1 such
that b(Xj) = b(Xj+k), but Xj and Xj+k are not braid isotopic.
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Figure 2: The two destabilization templates

Seventy years after Markov’s theorem was announced (a proof was not published until
many years later, although at least 5 essentially different proofs exist today), Orevkov and
Shevchishin proved a version of the MT which holds in the transversal setting:

Theorem 2 (Orevkov and Shevchishin [20]): Let TX+, TX− be closed braid represen-
tatives of the same oriented link type X in oriented 3-space. Then there exists a sequence
of closed braid representatives of T X :

TX+ = TX1 → TX2 → · · · → TXr = TX1

such that, up to braid isotopy, each TXi+1 is obtained from TXi by a single positive stabi-
lization or destabilization.

Is the Transverse Markov Theorem really different from the Markov Theorem? Are there
transversal knots which are isotopic as topological knots but are not transversally isotopic?
To answer this question we take a small detour and review the contributions of Bennequin
in [4].

Why did topologists begin to think about contact structures, and analysts begin to
think about knots? While we might wish that analysts suddenly became overwhelmed
with the beauty of knots, there was a more specific and focussed reason. At the time
that Bennequin did his foundational work in [4] it was not known whether a 3-manifold
could support more than one isotopy class of contact structures. Bennequin answered this
question in the affirmative, in the case of contact structures on R3 or S3 which were known
to be homotopic to the standard one. His tool for answering it was highly original, and it
had to do with braids and knots. Let TK be a transversal knot. Let T K be its transversal
knot type, i.e. its knot type under transversal isotopies, and let [T K]top be its topological
knot type. Choose a representative TK of T K, which (by Bennequin’s transversal version
of Alexander’s theorem) is always possible. Choose a Seifert surface F of minimal genus,
with TK = ∂F . Bennequin studied the foliation of F which is induced by the intersections
of F with the plane field determined by ξπ. Let n(TK) be the braid index and let e(TK)
be the algebraic crossing number of a projection of TK onto the plane z = 0. Both can be
determined from the foliation. Bennequin found an invariant of T K, given by the formula
β(T K) = e(TK) − n(TK). Of course if he had known Theorem 2 the proof that β(T K)
is an invariant of T X would have been trivial, but he did not have that tool. He then
showed a little bit more: he showed that β(T K) is bounded above by the negative of the
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Euler characteristic of F in ξπ. He then showed that this bound fails in one of the contact
structures ξ>π. In this way he proved that the contact structures ξ>π cannot be isotopic
to ξπ. To knot theorists, his proof should seem intuitively natural, because the invariant
β(T K) is a self-linking number of a representative TX ∈ T X (the sense of push-off being
determined by ξ), and the more twisting there is the higher this number can be. For an
explanation of the self-linking, and lots more about Legendrian and transversal knots we
refer the reader to John Etnyre’s excellent review article [13]. The basic idea is that TX
bounds a Seifert surface, and this Seifert surface is foliated by the plane field associated
to ξ. Call this foliation the characteristic foliation. Near the boundary, the characteristic
foliation is transverse to the boundary. The Bennequin invariant is the linking number of
TX, TX ′, where TX ′ is is a copy of TX, obtained by pushing TX off itself onto F , using
the direction determine by the characteristic foliation of F .

Bennequin’s paper was truly important. Shortly after it was written Eliashberg showed
in [11] that the phenomenon of an infinite sequence of contact structures related to a single
one of minimal twist angle occured generically in every 3-manifold, and introduced the term
‘tight’ and ‘overtwisted’ to distinguish the two cases. Here too, there is a reason that will
seem natural to topologists. In 2003 Giroux proved [16] that every contact structure on
every closed, orientable 3-manifold M3 can be obtained in the following way: Represent
M3 as a branched covering space of S3, branched over a knot or link, and lift the standard
and overtwisted contact structures on S3 to M3.

Returning to knot theory, the invariant β(T X ) allows us to answer a fundamental ques-
tion: is the equivalence relation on knots that is defined by transversal isotopy really dif-
ferent from the equivalence relation defined by topological isotopy?

Theorem 3 (Bennequin [4]): There are infinitely many distinct transversal knot types
associated to each topological knot type.

Proof: Choose a transversal knot type T K and a closed braid representative TX0. Sta-
bilizing the closed braid TX0 once negatively, we obtain the transverse closed braid TX1,
with e(TX1) = e(TX0) − 1 and n(TX1) = n(TX0) + 1, so that β(TX1) = β(TX0) − 2.
Iterating, we obtain transverse closed braids TX2, TX3, . . ., defining transverse knot types
T X1, T X2, T X3, · · ·, and no two have the same Bennequin invariant. Since stabilization
does not change the topological knot type, the assertion follows. ‖

This brings us to the research that is the main goal of this review article. It is an
outstanding open problem to find computable invariants of T X which are not determined
by [T X ]top and β(T X ). A hint that the problem might turn out to be quite subtle was in the
paper [15] by Fuchs and Tabachnikov, who proved that while ragbags filled with polynomial
and finite type invariants of transversal knot types T X exist, based upon the work of V.I.
Arnold in [2], they are all determined by [T X ]top and β(T X ). Thus, the seemingly new
invariants that many people had discovered by using Arnold’s ideas were just a fancy way
of encoding [T X ]top and β(T X ).

This leads naturally to a question: Are there computable invariants of transversal knots
which are not determined by [T X ]top and β(T X )? A similar question arises in the setting of
Legendrian knots. Each Legendrian knot LX determines a topological knot type [LX ]top,
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and just as in the transverse case it is an invariant of the Legendrian knot type. There
are also two numerical invariants of LX : the Thurston-Bennequin invariant tb(LX ) (a self-
linking number) and the Maslov index M(LX ) (a rotation number). So until a few years
ago the same question existed in the Legendrian setting. But the Legendrian case has been
settled.

Theorem 4 (Chekanov [10]): There exist distinct Legendian knot types which have the
same topological knot type[LX ]top, and also the same Thurston-Bennequin invariant tb(LX )
and Maslov index M(LX ).

The analogous result for transversal knots proved to be quite difficult, so to begin
to understand whether something could be done via braid theory Birman and Wrinkle
asked an easier question: are there are transversal knot types which are determined by
their topological knot type and Bennequin number? This question lead to a definition in
[9]: a transversal knot type T X is transversally simple if it is determined by [T X ]top and
β(T X ). We asked: are there transversally simple knots? The manuscript [9] gives a purely
topological (in fact braid-theoretic) criterion which enables one to answer the question
affirmatively, adding one more piece of evidence that topology and analysis walk hand in
hand. To explain what we did, note that there is no loss in generality in working in the
setting of closed braids. It will be convenient to introduce a new move that takes closed braid
to closed braids, the exchange move. See Figure 3. It is easy to prove that the exchange
move can be realized as a transversal isotopy between transversal closed braids, so that
while (by Theorem 2) it must be a consequence of braid isotopy and positive stabilizations
and destabilizations, there is no harm in adding the exchange move to the bag of tools
that one has in simplifying transversal closed braid representatives of transversal knots.
A topological knot or link type X is said to be exchange reducible if an arbitrary closed
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Figure 3: The exchange move template

braid representative X of X can be changed to an arbitrary representative of minimum
braid index by braid isotopy, positive and negative destabilizations and exchange moves.
We have:

Theorem 5 (Birman and Wrinkle [9]): If a knot type X is exchange-reducible, then
any transversal knot type T X which has [T X ]top = X is transversally simple.

This theorem was used to give a new proof of a theorem of Eliashberg [12], which asserts
that the unlink is transversally simple, and also (with the help of [19]) to prove the then-new
result that most iterated torus knots are transversally simple.

5



The rest of this review will be directed at explain the main result of [8], joint work of
the author and W. Menasco:

Theorem 6 (Birman and Menasco [8]): There exist transversal knot types which are
not transversally simple. Explicitly, the transverse closed 3-braids TX+ = σ5

1σ
4
2σ

6
1σ

−1
2 and

TX− = σ5
1σ

−1
2 σ6

1σ
4
2 determine transverse knot types T X+, T X− with (T X+)top = (T X−)top

and β(T X+) = β(T X−), but T X+ 6= T X−.

We remark that the proof of Theorem 6 does not use a computable invariant, rather it is
very indirect. The problem of finding new computable invariants of transversal knot types
remains open at this writing.

Before we can describe the proof of Theorem 6, we need to explain the Markov Theorem
Without Stabilization (MTWS), established by the author and Menasco in [7]. As in the
case of Theorems 1 and 5, the moves that are needed for the MTWS will be described in
terms of pairs of ‘block-strand diagrams’ which we call ‘templates’. Examples of block-
strand diagrams were given in Figures 2 and 3. Their important feature is that after an
assignment of a braided tangle to each block, the block strand diagram becomes a closed
braid. Our block strand diagrams come in pairs. A pair of block-strand diagrams are called
a template, and the templates define the ‘moves’ of the theorem. Here the important feature
is that the two block-strand diagrams in a template represent the same knot or link, for
every braiding assignment to the blocks.

The exchange move looks very harmless, but unfortunately it leads to Markov towers
which produce infinitely many closed braid representatives of a knot or link, which (for
almost all braiding assignments to the blocks P and Q) can be shown to be in distinct braid
isotopy (or conjugacy) classes . See Figure 4. The phenomenon which is exhibited in Figure
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Figure 4: The exchange move can lead to infinitely many distinct conjugacy classes of
n-braids representing the same oriented link type

4 complicates the statement of the Markov Theorem Without Stabilization (MTWS), which
is our next result:

Theorem 7 (Birman and Menasco [7]): Let B be the collection of all braid isotopy
classes of closed braid representatives of oriented knot and link types in oriented 3-space.
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Among these, consider the subcollection B(X ) of representatives of a fixed link type X .
Among these, let Bmin(X ) be the subcollection of representatives whose braid index is equal
to the braid index of X . Choose any X+ ∈ B(X ) and any X− ∈ Bmin(X ). Then there is a
complexity function which is associated to X+, X−, and for each braid index m a finite set
T (m) of templates is introduced, each template determining a move which is non-increasing
on braid index, such that the following hold: First, there is are initial sequences which
modify X− → X ′

− and X+ → X ′
+:

X− = X1
− → · · · → Xp

− = X ′
−, X+ = X1

+ → . . . → Xq
+ = X ′

+

Each passage Xj
− → Xj+1

− is strictly complexity reducing and is realized by an exchange
move, so that b(Xj

−) = b(Xj+1
− ). These moves ‘unwind’ X−, if it is wound up as in the

top right sketch in Figure 4. Each passage Xj
+ → Xj+1

+ is strictly complexity-reducing
and is realized by either an exchange move or a destabilization, so that b(Xj

+) ≥ b(Xj+1
+ ).

Replacing X+ with X ′
+ and X− with X ′

−, there is an additional sequence which modifies
X ′

+, keeping X ′
− fixed:

X ′
+ = Xq → · · · → Xr = X ′

−

Each passage Xj → Xj+1 in this sequence is also strictly complexity-reducing. It is realized
by an exchange move, destabilization, or one of the moves defined by a template T in
the finite set T (m), where m = b(X+). The inequality b(Xj) ≥ b(Xj+1) holds for each
j = q, . . . , r − 1 and so also for each j = 1, . . . , r − 1.

Figure shows two more examples of the templates of the MTWS, namely the two flype
templates. Many examples of more complicated templates are given in the manuscript
[7]. In these more general templates the Markov towers are quite complicated, and so the
isotopy that takes the left diagram to the right one is often not obvious.

A A
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R

P

Q

R +
+

A A

P

Q

R

P

Q

R
-

-
A A

Figure 5: The two flype templates differ in the sense of the half-twist that realizes the
isotopy. We call the left (resp. right) one positive (resp. negative).

The proof of Theorem 7 may be described very briefly as follows. We are given two
closed braids, X+ and X−, and an isotopy that takes X+ to X−. The trace of the isotopy
sweeps out an annulus, but in general it is not embedded. The proof begins by showing
that the given isotopy can be split into two parts, over which we have some control. An
intermediate link X0 which represents the same link type X as X+ and X− is constructed,
such that the trace of the isotopy from X+ to X0 is an embedded annulus A+. Also the
trace of the isotopy from X0 to X− is a second embedded annulus A−. The union of these
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two embedded annuli T A = A+ ∪ A− is an immersed annulus, but its self-intersection
set is controlled, and is a finite number of clasp arcs. The main tool in the proof of
Theorem 7 is the study of the foliation of the immersed annulus T A, which is induced by
its intersections with the half-planes of the braid structure that was illustrated earlier in the
left sketch of Figure 1 We remarked earlier that as one moves away from the braid axis the
braid foliations of a surface bounded by a knot or link resemble, in key ways, the foliation
induced by the standard contact structure. Therefore it should seem natural to the reader
that the MTWS plays a key role in the proof of Theorem 6, which we discuss next. This is
yet another instance of the main theme of this little review: the close connections between
the mathematics of braids and the mathematics of contact structures.

Sketch of the proof of Theorem 6 [8] First we show that the examples satisfy the condi-
tions of the theorem. The topological knot types defined by the closed 3-braids σ5

1σ
4
2σ

6
1σ

−1
2

and σ5
1σ

−1
2 σ6

1σ
4
2 coincide because they are carried by the block strand diagrams for the neg-

ative flype template of Figure . The Bennequin invariant can be computed as the exponent
sum of the braid word (14 in both cases) minus the braid index (3 in both cases). So our
examples have the required properties.

The hard part is the establishment of a special version of Theorem 7 which is applicable
to the situation that we face. Its special features are as follows:

(1) Both X+ and X− have braid index 3. Since it is well known that exchange moves can
be replaced by braid isotopy for 3-braids, the first two sequences in Theorem 7 are vacuous,
i.e. X± = X ′

±.

(2) With the restrictions in (1) above, it is proved in [8] that if X− and X+ are transversal
closed braids TX+ and TX−, then the isotopy that takes TX+ to TX− may be assumed
to be transversal.

(3) Because of the special assumption, the templates that are needed, in the topological
setting, can be enumerated explicitly: they are the positive and negative destabilization
and flype templates. No others are needed. [17]

Suppose that a transversal isotopy exists from the transverse closed braid TX+ to the
transverse closed braid TX−. Then (2) above tells us that there is a 3-braid template that
carries the braids σ5

1σ
4
2σ

6
1σ

−1
2 and σ5

1σ
−1
2 σ6

1σ
4
2. This is the first key fact that we use from

Theorem 7. Instead of having to consider all possible transversal isotopies from TX+ to
TX−, we only need to consider ones that relate the left and right block-strand diagrams in
one of the four 3-braid templates. By (3) above, the braids in question are carried by either
one of the two destabilization templates or one of the two flype templates. If it was one of
the destabilization templates, then the knots in question could be represented by 2 or 1-
braids, i.e. they would be type (2, n) torus knots or the unknot, however an easy argument
shows that the knots in Theorem 6 are neither type (2, n) torus knots or the unknot. The
positive flype templates are ruled out in different way: We know that, topologically, our
closed braids admit a negative flype, so if they are also carried by the positive flype template
they admit flypes of both signs. But the manuscript [17] gives conditions under which a
closed 3-braid admits flypes of both signs, and the examples were chosen explicitly to rule
out that possibility.
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We are reduced to isotopies that are supported by the negative flype template. We
know that the obvious isotopy is not transversal, but maybe there is some other isotopy
which is transversal. Here we use a key fact about the definition of a template (and this
is a second very strong aspect of the MTWS). If such a transversal isotopy exists, then it
exists for every knot or link defined by a fixed choice of braiding assignments to the blocks.
Choose the braiding assignments σ3

1, σ
4
2, σ

−5
1 to the blocks P,R, Q. This braiding assignment

gives a 2-component link L1 t L2 which has two distinct isotopy classes of closed 3-braid
representatives. If L1 is the component associated to the left strand entering the block P ,
then β(L1) = −1 and β(L2) = −3 before the flype, but after the flype the representative
will be σ3

1σ
−1
2 σ−5

1 σ4
2, with β(L1) = −3 and β(L2) = −1. However, by Eliashberg’s isotopy

extension theorem (Proposition 2.1.2 of [12]) a transversal isotopy of a knot/link extends
to an ambient transversal isotopy of the 3-sphere. Any transversal isotopy of L1 tL2 must
preserve the β-invariants of the components. It follows that no such transversal isotopy
exists, a contradiction of our assumption that TX+ and TX− are transversally isotopic. ‖

Remark: Other examples of a similar nature were discovered by Etnyre and Honda [14]
after the proof of Theorem 6 was posted on the arXiv. Their methods are very different
from the proof that we just described (being based on contact theory techniques rather than
topological techniques), but are equally indirect. They do not produce explicit examples,
rather they present a bag of pairs of transverse knots and prove that at least one pair in
the bag exists with the properties given by Theorem 6.
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