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Algorithmic solutions to the conjugacy problem in the braid groups Bn,
n=2, 3, 4, ... were given in earlier work. This note concerns the computation of
two integer class invariants, known as ‘‘inf’’ and ‘‘sup.’’ A key issue in both algo-
rithms is the number m of times one must ‘‘cycle’’ (resp. ‘‘decycle’’) in order to
either increase inf (resp. decrease sup) or to be sure that it is already maximal (resp.
minimal) for the class. Our main result is to prove that m is bounded above by
((n2−n)/2)−1 in the situation stated by E. A. Elrifai and H. R. Morton (1994,
Quart. J. Math. Oxford 45, 479–497) and by n−2 in the situation stated by authors
(1998, Adv. Math. 139, 322–353). It follows immediately that the computation of inf
and sup is polynomial in both word length and braid index, in both algorithms. The
integers inf and sup determine (but are not determined by) the shortest geodesic
length for elements in a conjugacy class, and so we also obtain a polynomial-time
algorithm for computing this length. © 2001 Elsevier Science

1. INTRODUCTION

The conjugacy problem in the n-string braid group Bn is the following
decision problem:



Given two braids a, a − ¥ Bn, determine, in a finite number of
steps, whether a=ca −c−1 for some c ¥ Bn.

In the late sixties Garside [4] solved the (word and) conjugacy problems in
Bn. His solution to both problems was exponential in both word length and
braid index. Subsequently, the efficiency of his algorithm was improved by
Thurston [7] and Elrifai and Morton [3] to give a solution to the word
problem which is polynomial in both word length and braid index.
All three papers [3, 4, 7] work with the following well-known presenta-

tion of Bn, which we will call the old presentation:

generators: s1, ..., sn−1

relations: sisj=sjsi, |i− j| > 1

sisjsi=sjsisj, |i− j|=1.

There is also a parallel and slightly more efficient solution to the word and
conjugacy problems in [1], due to the authors of this paper. It uses a
different presentation which we call the new presentation:

generators: ats, n \ t > s \ 1

relations: atsarq=arqats, (t−r)(t−q)(s−r)(s−q) > 0

atsasr=atrats=asratr, n \ t > s > r \ 1.

The generator ats has the following geometric interpretation (see Fig. 1 of
[1]): the tth braid strand crosses over the sth braid strand, passing in front
of strands s+1, s+2, ..., t −1. The new generators include the old ones,
under the identification a(t+1) t=st.
The terms old and new are due to Krammer, who used the new presenta-

tion in [6]. Both the old and new solutions to the word problem are poly-
nomial in word length and braid index, but the best estimates obtained for
the complexity of the solution to the conjugacy problem (see [1]) were
rough exponential bounds. It was clear that better answers could not be
obtained without more detailed information about the combinatorics, using
either the old or new presentation.
Let |W| denote the letter length of W, as a word in the given set of

generators of Bn. The main result in this note is an algorithm which is
polynomial in both |W| and n for computing two key integer invariants of
the conjugacy class [W] of W. The invariants in question are known as the
infimum and supremum (or more informally inf and sup), using either pre-
sentation. See Section 2 below for precise definitions. We will also be able
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to compute the geodesic length (defined in Sections 2, 4 below) for the
conjugacy class in polynomial time.
The reason we are able to do this requires some explanation. The

method for finding inf (resp. sup) in both [1, 3] rests on a procedure which
is known as cycling (resp. decycling). While cycling and decycling are
clearly finite processes, it had not been known how many times one must
iterate them to either increase inf(WŒ) (resp. decrease sup(WŒ)) for a word
WŒ ¥ [W] or to guarantee that a maximum (resp. minimum) value, denoted
by inf([W]) (resp. sup([W])), for the conjugacy class has already been
achieved. For the old presentation it had been claimed in [7] that the
bound is 1; however, an example was given in [3] for which 2 cyclings were
needed to increase the infimum. Up to now, there were no published results
which gave bounds, except for a very crude estimate in [1]. Our main
result in this note is to find upper and lower bounds for the number of
times one must cycle (resp. decycle), using either presentation, in order to
replace a given word W with W − ¥ [W], where inf(W −) > inf(W) (resp.
sup(W −) < sup(W)), or be sure that W realizes inf([W]) (resp. sup([W])).
For the new presentation we will prove that our upper bound is the best
possible one.
Here is an outline of this paper. In Section 2 we review the background

and state our results in a precise way. See Theorem 1, Corollary 2 and
Corollary 3. In Section 3, we prove these three results. In Section 4, we give
examples which prove that the bound in Corollary 2 is sharp for the new
presentation, with somewhat weaker results for the old. In Section 5 we
discuss the open problem of whether the solutions which we know to the
conjugacy problem are polynomial in word length and braid index, and
state several conjectures relating to that matter and also to the ‘‘shortest
word problem’’ in Bn, defined in that section.

2. STATEMENT OF RESULTS

In this section we state our results precisely. To do so we need to review
what has already been done. Since almost all the machinery is identical in
the two theories, it will be convenient to introduce unified notation, so that
we may review both theories at the same time. The symbol W will be used
to indicate a word in the generators of Bn, using either presentation. The
element and conjugacy class which W represents will be denoted {W} and
[W]. The letter length of W is |W|.

2.1. Note that the relations in the old and new presentations are
equivalences between positive words with same word-length. So the word-
length is easy to compute for positive words. Let B+n be the semigroup
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defined by the same generators and relations in the given presentation. The
natural map B+n Q Bn is injective. [1, 4].
2.2. There is a fundamental braid D. In the old presentation, D has

length (n2−n)/2 and is the half-twist

D=(s1 · · ·sn−1)(s1 · · ·sn−2) · · · (s1s2) s1.

In the new presentation it has length n−1 and it is the (1/n)-twist

d=an(n−1)a(n−1)(n−2) · · · a32a21.

The fundamental braid admits many many braid transformations, in both
the old and the new presentations, and so can be written in many ways as a
positive word in the braid generators. As a result of this flexibility, it has
two important properties:

(i) For any generator a, there exist A, B ¥ B+n such that:D=aA=Ba;
(ii) For each generator a we have aD=Dy(a) and also Da=

y−1(a) D, where y is the automorphism of Bn which is defined by
y(si)=sn−i for the old presentation and y(ats)=a(t+1)(s+1) for the new
presentation.

(iii) y({D})={D}.

2.3. There are partial orderings \ and [ in Bn. For two words V and
W in Bn we say that V \ W (resp. W [ V) if V=PW (resp. V=WP) for
some P ¥ B+n . Note that W is a positive word if and only if W \ e. We
denote V < W (resp. V > W) if V [ W (resp. V \ W) and V ] W. In general
V \ W is not equivalent to W [ V, although if either W or V is a power of
D the two ordering conditions are equivalent because powers of D
commute with elements of Bn up to powers of the index-shift auto-
morphism y. Note that y preserves the partial ordering.
2.4. The symbol Q denotes the set of all initial subwords of D, and

Qa=Q0{e, D}. The cardinality |Qold | is n!, whereas the cardinality |Qnew | is
the nth Catalan number. Note that |d| < |D|, also |Qnew | < |Qold |. These are
the main reasons why it is sometimes easier to work with the new presen-
tation than the old.
2.5. The geodesic length lQ({W}) was introduced and investigated by

Ruth Charney in [2]. It is the smallest integer k such that there is a word
q1q2 · · · qk representing {W}, with each qi ¥ Q 2 Q−1. Define the geodesic
length of the conjugacy class lQ([W]) to be the shortest such representa-
tion for words in the conjugacy class [W].
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2.6. For each positive word P, there is a decomposition, called the left-
greedy decomposition, P=A0P0 for A0 ¥ Q and P0 \ e, where A0 has
maximal length among all such decompositions, i.e. if P=A −0P

−

0, where
A −0 ¥ Q and P −0 ¥ B+n , then A −0 [ A0. The term ‘‘greedy’’ suggests that A0 has
absorbed as many letters from P0 as it can without leaving Q. The canoni-
cal factor A0 is called the maximal head of P. If P=A0P0=A −0P

−

0 in left
greedy form, then {A0}={A −0} and {P0}={P −0}. (Remark: The term
left-canonical decomposition was used in [1, 3]; however, in recent years
left-greedy decomposition has become the term of choice for the same
concept in the literature, hence we now change our notation.)
2.7. Any word W in the generators admits a unique normal form which

solves the word problem in Bn. The normal form is

W=DuA1A2 · · ·Ak, u ¥ Z, Ai ¥ Qa,

where for each 1 [ i [ k−1, the product AiAi+1 is a left-greedy decomposi-
tion. The integer u (resp. u+k) is called the infimum of W (resp. supremum
of W) and denoted by inf(W) (resp. sup(W)).
2.8. To solve the conjugacy problem, we need to study the maximum

and minimum values of inf and sup for the conjugacy class rather than for
the word class. We consider the following two operations c and d, called
cycling and decycling, respectively. For a given braid in normal form
W=DuA1A2 · · ·Ak, we define

c(W)=DuA2A3 · · ·Aky−u(A1)

d(W)=Duyu(Ak) A1 · · ·Ak−1.

In general the braids on the right hand side will not be in normal form, and
must be rearranged into normal form before the operation can be repeated.

2.9. Theorem (see [1, 3]). (1) If W is conjugate to V and if inf(V) >
inf(W), then repeated cycling will produce ca(W) with inf(ca(W)) > inf W.

(2) If W is conjugate to V with sup(V) < sup(W), then repeated
decycling will produce da(W) with sup(da(W)) < sup(W).

(3) The maximum value of inf and the minimum value of sup can be
achieved simultaneously.

2.10. The super summit set SSS([W]) [1, 3] is the set of all conjugates
of W which have the maximal infimum and the minimal supremum in the
conjugacy class [W]. It is a proper subset of the summit set SS([W]) which
was introduced in by Garside in [4].
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2.11. Theorem (see [1, 3, 7]). Let W, WŒ be any two words in SSS([W])
=SSS([WŒ]). Then there is a sequence

W=W0 Q W1 Q · · · Q Wk=WŒ

such that each intermediate braid Wi ¥ SSS([W]) and each Wi+1 is a conju-
gate of Wi by a single member of Q.

2.12. By the theorems in Section 2.9 and Section 2.11 one can compute
SSS([W]) as follows:

• Obtain an element WŒ in the super summit set by iterating cyclings
and decyclings, starting with any given word W.

• Compute the whole super summit set from WŒ as follows: Compute
AWŒA−1 for all A ¥ Q and collect the braids in the super summit set.
Repeat the same process with each newly obtained element, until no new
elements are obtained.

Therefore there is a finite time algorithm to generate SSS(W). This
algorithm solves the conjugacy problem in Bn. The integers inf([W]) and
sup([W]) are the same for all members of SSS(W) and so are partial
invariants of the conjugacy class [W].
In this article, we obtain an upper bound for the necessary number of

cyclings and decyclings in the theorem in Section 2.9 above, for both the
old presentation and the new presentation. We denote the word length of
W by |W|. Our main result is:

Theorem 1. Let W ¥ Bn. If inf(W) is not maximal for [W], then
inf(c |D|−1(W)) > inf(W). If sup(W) is not minimal for [W], then
sup(d |D|−1(W)) < sup(W).

As immediate applications, we have:

Corollary 2. Given any braid word W ¥ Bn, there is an algorithm which
is polynomial in both word length and braid index for the computation of
inf[W] and sup[W]. Using the new presentation the complexity of the
algorithm is O(|W|2 n2).

Corollary 3. There is an algorithm which is polynomial in both word
length and braid index for the computation of the geodesic length lQ([W]) of
the conjugacy class of W, using either presentation. Using the new presenta-
tion the complexity is O(|W|2 n2).
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3. PROOF OF THEOREM 1 AND COROLLARIES 2 AND 3

Proof of Theorem 1. We focus on cycling because the proof and the
difficulties are essentially identical for decycling.
Here is the plan of the proof. We begin with a word W=DuP which is in

normal form, so that u=inf(W) and P > e. By hypothesis inf([W]) > u, so
there exists an integer m such that u=inf(W)=inf(c(W))=· · ·=
inf(cm(W)), but inf(cm+1(W)) > u. Each instance of cycling can be realized
by conjugation of W by an element in Qa, so we know there are
A −1, A −2, ..., A −m ¥ Qa 2 (Qa)−1 such that after conjugating W, successively,
by A −1, A −2, ..., A −m we obtain WŒ=RŒDuP(RŒ)−1 with inf(WŒ)=u+1. (See
Lemma 4 below.) Write RŒ in normal form. (See Lemmas 8 and 9.) Our
plan is to show that the sequence of lengths of the canonical factors
H −

m, ..., H −

0 for RŒ satisfies |H −

m | < |H −

m−1 | < · · · < |H −

0 |. Since each H −

i ¥ Qa,
we have e < |H −

i | < |D|. This places a limit on the length of the chain, i.e.,
m+1 [ |D|−1 or m [ |D|−2, as claimed.
We used the symbols RŒ, A −i, H −

j in the description above, but in the
actual proof we will use symbols R, Ai, Hj which differ a little bit from
RŒ, A −i, H −

j because we wish to focus on the changes in the positive part P of
W, rather than on changes in DuP:

Lemma 4. Choose any W ¥ Bn. Let W=DuP, where u=inf(W). Then
inf([W]) > inf(W) if and only if there exists a positive word R such that
RPy−u(R−1) \ D.

Proof. By hypothesis inf([W]) > inf(W), so there exists X ¥ Bn with
inf(XWX−1) > inf(W). Let X=DvY, Y \ e, where v=inf(X). Then:

(DvY)(DuP)(Y−1D−v) \ Du+1,

which implies (via part (ii) of (3) above) that:

(yu(Y))(P)(Y−1) \ D.

Set R=yu(Y), so that Y=y−u(R). Then R \ e and

(R)(P)(y−u(R−1)) \ D,

as claimed. L

We will need to understand the structure of the positive word R in
Lemma 4, and to learn how the normal form of R is related to that of W
and its images under repeated cycling. Once we understand all these issues,
we will be able to extract information from R about repeated cycling.

BRAID CONJUGACY 47



We begin our work with several preparatory lemmas (i.e., Lemmas 5, 6,
and 7):

Lemma 5. Suppose that P \ e and that RP \ D for some R \ e. Let
P=A0P0 be in left-greedy form. Then RA0 \ D.

Proof. See Proposition 3.9 (IV) of [1] for the new presentation and
Proposition 2.10 of [3] for the old presentation. L

Lemma 6. If W ¥ Bn and A ¥ Q, then inf(W) [ inf(WA) [ inf(W)+1.

Proof. Since W [ WA [ WD and inf(WD)=inf(W)+1 the assertion
follows. L

For each A ¥ Q, let Ā denote the unique member of Q which satisfies
ĀA=D.

Lemma 7. Let Z=BaBa−1 · · ·B1 be the normal form for Z \ e. Then
Z−1Da \ e and the normal form for Z−1Da is

y(B̄1) y2(B̄2) · · · ya(B̄a).

Proof. Observe that D=B̄iBi implies that D=y i(B̄i) y i(Bi) for every
i=1, ..., a. Therefore:

Z−1Da=B−11 B−12 · · ·B−1a Da

=(Dy(B−11 ))(Dy2(B−12 )) · · · (Dya(B−1a ))

=(y(B̄1) y(B1) y(B
−1
1 ))(y2(B̄2) y2(B2) y2(B

−1
2 ))

· · · (ya(B̄a) ya(Ba) ya(B
−1
a ))

=y(B̄1) y2(B̄2) · · · ya(B̄a)

because

y(Bi) y(B
−1
i )=y(BiB

−1
i )=y(e)=e.

Then y(B̄1) y2(B̄2) · · · ya(B̄a) is indeed the left-greedy form as proved in
Proposition 3.11 of [1] for the new presentation and in the proof of
Proposition 4.5 of [3] for the old presentation. L

We continue the proof of Theorem 1. By Section 2.8 and Lemma 6 there
exists a nonnegative integer m such that inf(c(W))=inf(c2(W))=· · ·=
inf(cm(W)) but inf(cm+1(W))=inf(W)+1. To prove Theorem 1, we must
show that m+1 is bounded above by |D|−1. Let W=DuP, where P \ e
and u=inf(W). By Lemma 4 we know that inf([W]) > inf(W) if and only
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if there exists a positive word R such that RPy−u(R−1) \ D. Assume that
among all such words we have chosen R so that |R| is minimal. Our first
observation is:

Lemma 8. inf(R)=0.

Proof. If not, then R=DRŒ for some RŒ \ e and

RŒPy−u(RŒ)−1=D−1RPy−u(R)−1 D=y(RPy−u(R)−1) \ D,

which contradicts the minimality of |R|. L

We now need notation for the maximal heads of iterated cyclings of W.
The maximal head and the remaining tail of c i(W) are denoted by A(i) and
P(i), respectively so that c i(W)=DuA(i)P(i). Since c i+1(W)=DuP(i)y−u(A(i)),
the left-greedy decomposition of P(i)y−u(A(i)) will be A(i+1)P(i+1). Since
inf(cm+1(W)) > inf(W), we have A(m+1)=D.

Lemma 9. The positive word R of minimal length whose existence is
guaranteed by Lemma 4 is related to the maximal heads of iterated cyclings
of W as

R=y−m(Ā(m)) · · · y−1(Ā(1)) Ā(0) ,

where Ā(m) is the member of Q such that Ā(m)A(m)=D.

Proof. Our starting point is

RPy−u(R−1) \ D,

which implies that RP \ D. Since P=A(0)P(0) is left-greedy, Lemma 5 then
implies that RA(0) \ D and so R=R1Ā(0) for some positive word R1. Now

RPy−u(R−1)=(R1Ā(0))(A(0)P(0))(y−u(Ā
−1
(0)) y

−u(R−11 ))

=R1DP(0)y−u(A(0)) D−1y−u(R−11 )

=R1y−1(A(1)P(1)) y−u(R
−1
1 ).

Since RA(0)P(0)y−u(R−1) \ D, we conclude that

R1y−1(A(1)P(1)) y−u(R
−1
1 ) \ D.
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Iterating the construction, we obtain R1=R2y−1(Ā(1)) for some positive
word R2, also R2=R3y−2(Ā(2)), ..., Rm=Rm+1y−m(Ā(m)). Putting all of these
together we learn that

R=Rm+1y−m(Ā(m)) · · · y−1(Ā(1))Ā(0)

for some positive word Rm+1. Let S=y−m(Ā(m)) · · · y−1(Ā(1))Ā(0), so that
R=Rm+1S. A straightforward calculation shows that

y−(m+1)(SPy−u(S−1))=A(m+1)P(m+1).

Since inf(cm+1(W))=inf(W)+1, we have

1=inf(y−(m+1)(SPy−u(S−1)))=inf(SPy−u(S−1)).

By the minimality of |R|, we must have R=S. Lemma 9 is proved. L

The expression given for R in the statement of Lemma 9 is in general not
in normal form. In fact, y i+1(Ā(i+1)) y i(Ā(i)) is not left-greedy for all
0 [ i < m. For if it was, then A(i)A(i+1) would be left-greedy for some
0 [ i < m and so the maximal head of P(i)y−u(A(i)A(i+1)) would equal the
maximal head of P(i)y−u(A(i))=A(i+1)P(i+1), which is A(i+1) by definition.
Since P(i)y−u(A(i)A(i+1))=A(i+1)P(i+1)y−u(A(i+1))=A(i+1)A(i+2)P(i+2) , it follows
that A(i+1) is also the the maximal head of A(i+1)A(i+2) , so it would follow
that A(i+1)A(i+2) is left-greedy. Iterating this argument, we conclude that
A(m)A(m+1) is left-greedy and so A(m+1) cannot be D, which contradicts the
assumption that A(m+1)=D.
For 0 [ k [ m, let Hk be the maximal head of y−m(Ā(m)) · · · y−k(Ā(k)). We

now study the maximal head H0 of R=y−m(Ā(m)) · · · y−1(Ā(1))Ā(0), and
related canonical factors H1, ..., Hm.

Lemma 10. We have the following strict inclusions of the words Hk:

e < Hm < Hm−1 < · · · < H1 < H0 < D.

Proof. Our first observation is that inf(R)=0 (see Lemma 8). Since H0
is the maximal head of R, it follows that

H0 < D.

Our second observation is that by hypothesis inf(cm(W))=u and cm(W)=
DuA(m)P(m) is left-greedy, so that A(m) < D, which implies that e < Ā(m) and
so

e < Hm.
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Our third observation is that by the definition of Hk we must have

Hm [ Hm−1 [ · · · [ H1 [ H0.

Therefore the only thing that we need to prove is that Hk+1 ] Hk for
k=0, 1, ..., m−1.
We first prove the assertion for k=0. Assume that H1=H0. We will

show that this leads to a contradiction to the minimality of |R|.
We are given that

R=y−m(Ā(m)) · · · y−1(Ā(1))Ā(0)=BaBa−1 · · ·B1,

where the decomposition on the left comes from Lemma 9 and the one on
the right is the normal form for R. By Lemma 7 the normal form for R−1Da

is y(B̄1) y2(B̄2) · · · ya(B̄a).
By hypothesis H1=H0=Ba, so

y−m(Ā(m)) · · · y−1(Ā(1))=BaR1

for some R1 \ e. Since BaR1Ā(0)=R=BaBa−1 · · ·B1, it follows that Ba−1 · · ·
B1=R1Ā(0) and so

Ba−1 · · ·B1P=(R1Ā(0))(A(0)P(0))=R1DP(0) \ D.

Let ai be the infimum of Ba−1 · · ·B1Py−u(y(B̄1) y2(B̄2) · · · y i(B̄i)). Then

(i) a0 \ 1 by the above discussion,
(ii) ai [ ai+1 [ ai+1 by Lemma 5,
(iii) if ai=ai+1, then ai=ai+1=·· ·=aa since y i(B̄i) y i+1(B̄i+1) · · ·

ya(B̄a) is in normal form, and
(iv) aa \ a since

aa=inf (Ba−1 · · ·B1Py−u(y(B̄1) y2(B̄2) · · · ya(B̄a)))

=inf (B−1a RPy−u(R) Da)

\ (−1)+inf(RPy−u(R))+a=a.

If aa−1 [ a−1, then by (i) and (ii), ai=ai+1 for some i [ a−2 and so
ai=ai+1=·· ·=aa [ i+1 [ a−1 by (iii). It is impossible since aa \ a by
(iv). So aa−1 \ a, that is,

(Ba−1 · · ·B1) Py−u(y(B̄1) y2(B̄2) · · · ya−1(B̄a−1)) \ Da.

Since y(B̄1) y2(B̄2) · · · ya−1(B̄a−1)=(Ba−1 · · ·B1)−1 Da−1, we have

(Ba−1 · · ·B1) Py−u(Ba−1 · · ·B1)−1 \ D.
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So Ba−1 · · ·B1 can play the role of R=BaBa−1 · · ·B1, which contradicts the
minimality of |R|. Retracing our steps we conclude that the assumption
H1=H0 is impossible, so H1 < H0 < D.
It remains to attack the cases k > 0. The method is identical to the

case k=0. Set V=ck(W)=DuA(k)P(k) and let V play the role of W=
DuA(0)P(0). L

The proof of Theorem 1 is almost complete. We have learned that
e < Hm < Hm−1 < · · · < H1 < H0 < D. This implies that

0 < |Hm | < |Hm−1 | < · · · < |H1 | < |H0 | < |D|.

Thus the length m+1 of the chain must be smaller than |D|, that is,
m+1 [ |D|−1. The proof of Theorem 1 is complete. L

Proof of Corollary 2. The proof follows directly from Theorem 1 and
the estimates in [1]. In Theorem 4.4 of [1] it is shown that for the new
presentation there is an algorithm rewriting a word into its left greedy form
that is a O(|W|2 n) solution to the word problem. The initial preparation of
our algorithm puts a given word W into its left greedy form and takes
O(|W|2 n). Notice that the number of factors is proportional to |W| in the
worst case. In order to compute inf we need to cycle at most n−2 times.
After each cycling the new word so-obtained must be put into left greedy
form but this time it takes only O(|W| n) by Corollary 3.14 of [1]. Thus
the test to determine whether inf is maximal takes O(|W| n2). If it is not,
the entire process must be repeated, but the number of such repeats; i.e.,
the total increase of inf, is clearly bounded by the number of factors so the
entire calculation is O(|W|2 n2). We note that if W is a positive word, the
total increase of inf is the maximum number of powers of d formed cycli-
cally from W but this number is clearly bounded by |W|/(n−1), so the
entire calculation is O(|W|2 n). The discussion for the old presentation is
similar and is left to the reader. L

Proof of Corollary 3. Let W=DuA1A2 · · ·Ak be a word which is in
normal form and which realizes the maximum value u of inf and the
minimum value k of sup for the word class {W}. The geodesic length
lQ({W}) of {W} is computed in [2] (or see [8]) as follows:

(i) If u \ 0 then W is a positive word of geodesic length lQ({W})
=u+k.

(ii) If −k [ u < 0, then we may use the fact that for every Xi ¥ Q
there exists Yi ¥ Q with XiYi=D. From this it follows that D−1Xi=Y−1i .
Using the additional fact that if y is the index shift automorphism of
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Section 2.2, then y(Q)=Q, it follows that we may eliminate all of the
powers of D and replace u of the factors A1, A2, ...Au ¥ Q with appropriate
elements of Q−1, thereby achieving a shorter word. So in this case
lQ({W})=k.

(iii) If u < −k then every factor A1, A2, ..., Au ¥ Q is replaced by an
appropriate element of Q−1. After all of these reductions the new word will
be entirely negative. Its geodesic length is lQ({W})=−u.

(iv) The three cases may be combined into a single formula: lQ({W})
=max(k+u, −u, k).

The above considerations relate to the length of a word class {W}.
However, observe that the normal form for elements in the conjugacy class
[W] is identical to that for the word class, moreover if Y, Z are in the
super summit set of [W] then inf(Y)=inf(Z) and sup(Y)=sup(Z). Since
the complexity of computing lQ([W]) is identical to the complexity of
computing inf([W]) and sup([W]), the assertion then follows from
Corollary 2. L

4. ARE THE CYCLING-DECYCLING BOUNDS SHARP?

Note that the bound we obtained for the number of cyclings and
decyclings in Theorem 1 is n−2 for the new presentation and (n−2)
(n+1)/2 for the old presentation. In this section we investigate whether
these bounds are sharp.
We first give an example of an n-braid written in the new generators

for which n−2 cyclings are required to increase the infimum. This shows
that the bound given in Theorem 1 is sharp for the new presentation. To
simplify notation, use [t, t−1, ..., s] instead of at(t−1)a(t−1)(t−2) · · · a(s+1) s.
Consider the example W=([2, 1][5, 4, 3])([3, 2]) in normal form. Then

c(W)=([3, 2])([2, 1][5, 4, 3])=([3, 2, 1][5, 4])([4, 3])

c2(W)=([4, 3])([3, 2, 1][5, 4])=([4, 3, 2, 1])([5, 4])

c3(W)=([5, 4])([4, 3, 2, 1])=[5, 4, 3, 2, 1]=d.

So inf(W)=inf(c(W))=inf(c2(W))=0 but inf(c3(W))=1. More generally, if

W=[2, 1][n, n−1, ..., 3, 2]=([2, 1][n, n−1, ..., 3])([3, 2]),
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FIG. 1. Examples.

then inf(W)=inf(cn−3(W))=0 but inf(cn−2(W))=1. See Fig. 1a for a
sketch of the braid W in the case n=7.
In the old presentation, the example in [3] shows that inf(W)=

inf(c(W))=0 but inf(c2(W))=1. There are plenty of examples for which
more than 2 cyclings are required to increase the infimum. Let (a1, ..., an)
denote the permutation braid corresponding to the permutation p on
{1, ..., n} defined by p(i)=ai, Consider the following example, with
W ¥ B2k+1,

W=(2k+1, 2k, ..., 3z
2k−1

, 1, 2)( 1, 2, ..., kz
k

, k+2, ..., 2k+1z
k

, k+1).

Then inf(W)=inf(c2k−1(W))=0 but inf(c2k(W))=1. See Fig. 1b for a
sketch of this example in the case n=7.
For another example let W ¥ B2k+1 be such that

W=(2k+1, ..., k+3z
k−1

, k+1, k+2, k, k−1, ..., 1z
k

)

(3, 4, ..., k+1z
k−1

, 1, k+2, ..., 2kz
k−1

, 2, 2k+1).

See Fig. 1c. Then 4k−5 cyclings are needed to increase the infimum. So if n
is odd, there is an example for which 2n−7 cyclings are needed. Therefore
the lower bound for the old presentation is at least linear in n.
We do not know an exact bound that works for every n-braid written in

the old generators. It is easy to see that the upper bound in B3 is 1, that is,
if inf(W)=inf(c(W)) for W ¥ B3, then the infimum is already maximized.
In an exhaustive search, we learned that the upper bound for B4, using the
old presentation, is 2 for positive words whose normal form contains up to
5 canonical factors.
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5. COMPLEXITY ISSUES AND THE CONJUGACY PROBLEM

In this section we consider implications of the work in the preceding
sections for the complexity of the conjugacy problem in Bn. We restrict our
attention to the new presentation.

5.1. The Special Cases n=3 and 4. Before discussing the problem, it
will be helpful to review what is known about the cases n=3 and 4, since
well-chosen examples always help one to arrive at a better understanding of
a problem. In the manuscript [8] Xu introduced the new presentation for
B3 and used it to solve the word and conjugacy problems in B3 and to
study the letter lengths of shortest words in a word and conjugacy class in
B3, using the new presentation. Her main result in this regard was that
words of shortest ‘‘geodesic length’’ (she doesn’t use the term geodesic
length, which was introduced after she completed her work) are, without
further work, also words of shortest letter length in the new generators. She
also found growth functions for B3, both for word classes and conjugacy
classes, proved that they were rational, and computed the rational func-
tions which described them. Her algorithm for the conjugacy problem was
clearly polynomial in |W|.
In [5] the word and conjugacy problems were solved in B4, using the

new presentation and following the methods of [8]. The authors also
solved the shortest word problem in conjugacy classes. In a forthcoming
paper the second and third author of this paper will prove that the
algorithm for the conjugacy problem in [5] is polynomial in |W|.

5.2. The Conjugacy Problem. In Section 2.10 above, the super summit
set SSS([W]) of the conjugacy class of W ¥ Bn is defined. It is a finite set
and it can be computed in a systematic manner in a finite number of steps
from any braid word W which realizes inf([W]) and sup([W]). The
theorem which is quoted in Section 2.11 above asserts that W is conjugate
to V in Bn if and only if inf([W])=inf([V]), sup([W])=sup([V]) and
SSS([W])=SSS([V]).
The super summit set has a fairly transparent structure when n=3, the

main reason being that words in Qa=Q0{d, e} all have length 1. In B4 the
situation is a little bit more complicated, but still within reach. Let
W=duA1A2 · · ·Ak be in the super summit set of [W] and be in normal
form, and let A=A1A2 · · ·Ak be the ‘‘positive part’’ of W. Notice that d has
letter length 3 and the A −js are elements of Qa, and so have letter length 1
or 2. Let k1 (resp. k2) be the number of factors in A which have length 1
(resp. 2). Let e be the exponent sum of W. Clearly e is a class invariant.
Since k=k1+k2 and since e=3u+k1+2k2 it follows that k1 and k2
are determined by the triplet (u=inf, k=sup, e). This makes the SSS
somewhat easier to understand in the case n=4 than in the general case.
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In the general case the super summit set SSS([W]) splits into orbits
under cycling and decycling. Clearly the number of such orbits and their
sizes are class invariants, but unfortunately we have examples to show that
they are not complete invariants. The orbits are complicated by the fact
that Qa contains elements of letter length 1, 2, ..., n−2, and the number ki
of elements of letter length i of a member of SSS([W]) is no longer con-
trolled by (u, k, e). We don’t know whether k1, ..., kn−2 are orbit invariants,
and if they can vary from one orbit to another. Also, while it is known that
one can pass from any orbit to any other orbit by conjugating by an
appropriate product of elements of Q, it is difficult to understand which
products do the job. While the super summit set is a great improvement
over the summit set of [4], it is still too big to make it possible to study
many examples. For all these reasons the complexity of the conjugacy
problem remains open at this time. Nevertheless, based on what we know,
we conjecture:

Conjecture 11. There is an algorithmic solution to the conjugacy
problem in Bn, using the combinatorial approach which is described in this
paper, which is polynomial in word length |W| for each fixed braid index n.
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