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1 Some linear representations.

This paper attempts a brief survey of what is currently known about an aspect
of the linear representation theory of Artin’s braid group. We shall freely use
standard notation from the theory of braid groups, see [16], [1] or other papers
in this volume.

A few years ago a survey such as this would have been short. Only one really
interesting linear representation was known, the so-called Burau representation,
see [1]. What ”interesting” should mean is open to interpretation, but it seems
reasonable to focus on those representations which have infinite image in a non-
trivial way. As an example of what we wish to exclude, recall that a theorem of
Baumslag implies that braid groups are residually finite and so have many linear
representations with finite image. Moreover, any linear representation p may be
adjusted by defining p*(c) = p(0).t*(®) where o : B, —Z is the abelianisation
map and ¢ is an indeterminate. This representation has infinite image, but could
hardly be regarded as more interesting than the finite image representation. This
is not to say that the finite representations of the braid group are uninteresting,
(indeed they are probably very interesting), but rather that the investigation of
finite representations is not a direction which we wish to pursue here.

The Burau representation admits many definitions, each in its own way giving
some insight. The definition which is usually regarded as classical comes via free
differential calculus. Fix the generators z1, .....z,, for a free group of rank n, and
define a derivation on the group ring C[F},] as follows. On the elements of the
free group we define the derivation inductively by:
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(ii) a(%‘:") =0;; + mj.%(—;‘? where w € F,.
We extend the derivation to the whole group ring by linearity. Then we may

define the matrix corresponding to the n-braid o by:

3(0(%‘)))
8xi

Here a is the abelianisation map of the previous paragraph extended to the group
ring by linearity. This is a special case of a construction due to Magnus, see [1].
One finds that this representation is actually reducible and splits into an irre-
ducible representation of dimension n — 1 and a one dimensional representation
which is trivial. The n — 1 dimensional representation is what is usually referred
to as the reduced Burau representation, we shall denote it by S7.

An alternative description of these representations comes from the consid-
eration of covering spaces. If we set D,, to be the n-punctured disc, choosing
the basepoint on the boundary, we may form the fundamental group m (D)
and identify this in the obvious way with F,,. There is a homomorphism 7 :
m1(Dy) —Z defined by sending each of the generators to the generator ¢ of Z.
This homomorphism defines a covering p : D,, — D,,. We consider the homology
group Hy(D,) as a module over A =Z[t,t~'] where it becomes finitely generated
and free of rank n — 1. As is well known, there is a description of the braid group
as orientation preserving homeomorphisms of D,, where two such homeomor-
phisms are regarded as equivalent if they are isotopic relative to the boundary.
Given this description, we see that the group B, acts as on D,, and hence on
the group Hi(D,). One computes easily that this action is via module homo-
morphisms and we obtain a representation of the braid group into GL(n — 1, A);
this is the reduced Burau representation.

For later use we also observe that one may also obtain the unreduced rep-
resentation by consideration of relative homology groups. This is done in the
following way. Let po be the basepoint in D,, and let py denote the full preimage
of this point in D,,. Then the (unreduced) Burau representation arises as the

action of the braid group on Hy (D, po); this is a A-module which is free of rank
n. The natural sequence Hy(D,) — Hy(Dyn,p0) — Hi(po) gives the splitting of
Burau into trivial and unreduced parts. This point of view is clearly reminiscent
of the covering space description of the Alexander polynomial of a knot or link.
The fact that there is a concrete connection is between the Burau representation
and the Alexander polynomial is well established: If « is a braid whose closure in
the 3-sphere is the knot &, then apart from a normalisation factor, the Alexander
polynomial of & is given by det(8! (a) — Id).

A good mathematical idea usually has many different interpretations, and yet
another way of looking at the Burau representation is given in [13]. As is well
known, the braid group B, is a subgroup of Aut(F,). Starting with this fact,
let R = R(F,, SU(2,C)) be the representation variety of F,, topologized by the
compact open topology. Fix once and for all some generating set x;, z2,...,2,
for F,,. Using this basis we see that since F, is free any representation determines
an n-tuple of matrices and any n-tuple of matrices determines a representation.
Since the group SU(2,C) is homeomorphic to the 3-sphere S, we may thus

Bn(0) = (a



identify the representation space R with with R = §%x §3 x...x 83. The action
of an element of B,, as an automorphism of F,, then induces a diffeomorphism of
R, and the natural map B,, — Dif f(R) is an injective group homomorphism. It
turns out that there is a circle of fixed points. Parametrizing the circle by 2™,
one finds that the induced action on the tangent space to R at a fixed point
gives a linear representation of B,,, and since there is a one-parameter family of
fixed points one obtains in this way a representation of B,, which contains the
Burau representation.

A whole new family of representations was discovered by Jones in [9]. The
construction given is much more mysterious and comes from the theory of Hecke
algebras. (See [3]). One considers the C-algebra with a 1 which is generated by
J1,-----, gn—1 and has relators:

(i) 9i9i+19i = gi419i9i+1 1 <i<n -1
(i) gigj = gj9i i —j| > 1
(iil) g7 = (¢ —1)gs + ¢

Denote this algebra H,(q); one way to view this algebra is as a deformation
of the complex group algebra of the symmetric group ¥,,, which occurs in this
setting as H,,(1). We can summarise most of the salient propeties in the following
theorem, the first proof of which is essentially due to Tits [3]:

Theorem 1.1 (i) The algebra H,(q) has complex dimension = n! for generic
q.

(i1) For q sufficiently close to 1, Hy,(q) is semisimple.

(11i) The simple H,(q) modules are in one to one correspondence with Young
diagrams and their decomposition rules and dimensions are the same as for %,.

We may define the Jones representation of B, by mapping o; — ¢; and then
using the left regular representation. The theorem implies that the Jones repre-
sentation is completely reducible and that the irreducible subrepresentations cor-
respond to the Young diagrams for the representations of the symmetric group,
¥,. It is convenient to use the terminology of Young diagrams, so we recall
this briefly: The ordinary irreducible representations of the symmetric group X,
are parametrised by sequences of integers ny > na > .... > nyi with ¥n; = n.
Such a sequence is a Young diagram and will be annotated (n1, ....,ny) with the
convention that m? is the sequence consisting of b consecutive appearances of m.
Having (arbitrarily) decided which of (1™) and (n) is the trivial representation
and which corresponds to the signature homomorphism, then the diagram de-
termines the representation. The only property we will use is the restriction rule
which describes how the representation of ¥,, with Young diagram ) breaks up
when considered as a representation of ¥,, 1; here the rule is the most natural
one for which one might hope. Consider all possible Young diagrams obtained
from ) by decreasing one of the n;’s by 1; this describes, with multiplicities,
the representation of ¥,,_;. In principle this gives an inductive description of
the representation corresponding to any Young diagram (given the convention
above) although it is not very practical and direct methods exist.



The Jones representation is a generalization of the Burau representation in
the sense that one of its irreducible summands is reduced Burau; we shall choose
things so that it corresponds to Young diagram (n — 1, 1). There are two simple
ways to pick out summands which generalise the Burau summand. One is to
consider the exterior powers. This is classical and is essentially what controls
the Alexander module. The other collection of summands is all those of the
shape (n — m,m) where m < n/2. This is the Temperley-Lieb algebra and
is the source of the original one-variable Jones polynomial, which appears as a
normalised weighted trace function on this algebra. The two-variable polynomial
is constructed as a certain trace on the whole Jones representation.

In [2] this process is actually reversed, and starting from the Kauffman poly-
nomial of a knot, an algebra C, (I, m) is constructed which yields another family
of braid group representations, this time with two parameters. The algebra
C.(l,m) has dimension 1.3.5......(2n — 1), is semisimple and has quotients iso-
morphic to H,(q).

The representations of B,, in H,(g) and C,(l,m) are but two special cases of
finite-dimensional matrix representations of B,, which support a “Markov trace”,
and so give rise to polynomial invariants of knots and links. The description of
the trace functions and the associated link invariants goes beyond the scope of
this review, however it seems appropriate to describe the “method of R-matrices”
which constructs them all. Let E be the ring of Laurent polynomials over the
integers in a single variable /g, let m > 1 be an integer, and let V be a free
E-module of rank m. For each n > 1 let V®" denote the n-fold tensor product
V®g...®g V. Choose a basis vi,...,v, for V, and choose a corresponding
basis {vi; ® ... ®v;, };1 < i1,...,0, < m} for V®". An E-linear isomorphism f
of V®" may then be represented by an m™-dimensional matrix (f7!7/") over E,
where the i;’s (resp. ji's) are row (resp. column) indices.

The family of representations of B, which we wish to describe have a very
special form. They are completely determined by the choice of the integer m and
an E-linear isomorphism R : V®2 — V®?2 (the so-called R-matriz) with matrix
[Rﬂﬂ;] as above. Let Iy denote the identity map on the vector space V. The

representation p(R) : B,, =& GL,»(E) which we seek is defined by
p(R):U,'—>Iv®...®fv®R®Iv®...®Iv

where R acts on the it* and (i + 1)t copies of V in V®". Thus, if we know how
R acts on V®2 we know p(R) for every natural number n.

What properties must R satisfy for p(R) to be a representation? The first
thing to notice is that if [¢ — j| > 2, the non-trivial parts of p(o;) and p(o;) will
not interfere with one-another, so the first braid relation o;0; = o;0; if |i —j| > 2
is satisfied by construction, independently of the choice of R. As for the second
braid relation 0;0;110; = 0;4110;0:41, it is clear that we only need to look at the
actions of R® Iy and Iy ® R on V®3. If

Rey)(Iyv ®R)(R®Iy) = (Iv @ R)(R® Iyv)(Iy @ R)

then the second braid relation, and therefore both braid relations, will be satis-
fied. This equation is the clue to the construction. It is known as the quantum



Yang-Bazter (QYB) equation. It may be thought of as a combinatorial restric-
tion on the entries in the matrix R. It turns out that the theory of quantum
groups has lead to an effective classification of solutions to the QYB equation,
and so to the construction of all possible R-matrix representations of B,,. For
more on this subject, and for explicit examples, see [21] and [8].

2 Linearity and Effectiveness.

Given that linear representations exist, a natural question is whether the group
B,, is actually a linear group that is to say, can it be faithfully represented as
a group of matrices. The work of several authors, notably McCarthy [18] and
Ivanov [7] has shown that many properties which a linear group must have are
shared by braid groups. It is also known that if a faithful representation exists,
there is an irreducible faithful representation. (See [5] or [12])

For n = 2,3 it is known that the groups B,, are linear, the first case being
a triviality and the second case proved by Magnus and Peluso in [17], where it
is shown that the Burau representation is faithful for n = 3. To date all other
cases of this question remain open. The case n = 4 is especially intriguing as
it was shown in [5] that the linearity of B, is equivalent to the linearity of the
group Aut(F3). Even more, Formanek and Processi have proved in ([6] that this
is the only possible case when Aut(F,) could be linear. Structurally this group
is simpler than the other braid groups and this means that special reductions
are possible in this case. For example, By contains a normal subgroup which
is free of rank 2, and so it follows from [12] that a linear representation of By
is faithful if and only if the image of this free group is free of rank 2. This is
a generalisation of the famous pair of matrices contained in [1] the freeness of
which is shown to give a necessary and sufficient condition for the faithfulness
of the Burau representation of By.

One can be less ambitious and ask: “When is the Burau representation faith-
ful” and until 1990, this remained open despite work by many authors. Almost
all cases are now covered by:

Theorem 2.1 ([19] & [15]) The Burau representation is not faithful for n > 6.

The is the combination of two results, the inital breakthrough of [19], where a
slightly different point of view of the covering space description of the Burau
representation was employed to show that S}, is not faithful for n > 10, together
with a sharpening of this result in [15], which was used to show that S is
not faithful for n > 6. The cases n = 4,5 remain unresolved. This is despite
the fact that [15] gives a criterion which is necessary and sufficient to determine
faithfulness. We briefly describe the method and then recast the idea in a manner
so that it can be generalised. Let {; be the arc shown in Figure 1.
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Then we define a map

/Wj :Hl(-D‘-n;ﬁO) - A

by requiring that if o represents some homology class in Hy(D,,, o), we set

/aw,- =Yt (o, t*¢))

kez

where (a, t*¢;) is the algebraic intersection number of the arcs in D,,. With suit-
able conventions we may extend [ w; to D,, and one can compute the action of
the Burau matrix of a braid by consideration of these integrals. Roughly speak-
ing, fa w; can be considered as an obstruction to isotoping the arc o off the arc
&;. The results of 2.1 are formulated in a way which gives elements in the kernel
of the Burau representation if there are simple arcs for which certain of these
obstructions vanish. The disadvantage with this method is that as it stands it is
uniquely suited to the geometric description given for the Burau representation
and to provide insight into representations such as the Jones representation it is
necessary to have some more geometric description of them.

We now describe a construction which generalises the above and produces
new representations of the braid group. It uses an idea which occurs both in
the work of Magnus and in the work of Lawrence [11]: given a representation
of the free group F), and certain compatibility conditions one may construct a
representation of B,,. The idea seems to be general enough to construct all the
summands in the Temperley-Lieb algebra. Conjecturally it could construct all
linear representations of the groups B,, but this remains open. It is studied



in detail in [14]. In order to describe the idea behind the construction of [14]
we recall the notion of homology or cohomology of a space with coefficients in
a flat vector bundle. Suppose that X is a manifold and that we are given a
representation p : m(X) — GL(V). This enables us to define a flat vector
bundle E,: Let X be the universal covering of X. The group m;(X) acts on
X x V by g.(&,v) = (9.%,p(g)-v). Then E, is the quotient of X x V by this
action. We now form the cohomology groups of 1-forms with coefficients in
E,, denoting these by H'(X;p) or H}(X; p) for compactly supported cochains.
Relative versions also exist, but we shall omit discussion here. In order to get
an action of the braid groups, recall that we have a natural inclusion of B,, as a
subgroup of Aut(F,,) so that there is a canonical way of forming a split extension
F,,>< B,,. It turns out that in order to get an action on the twisted cohomology
group what is required is exactly a representation of this split extension:

Theorem 2.2 Given a representation p : F,>< B, = GL(V) we may construct
another representation pi : B, — HX(D,;p) where s is another parameter.

This works in exactly the way one might expect. The representation restricted
to the free factor gives rise to the local system on the punctured disc and thus
the twisted cohomology group and the compatibility condition provided by the
split extension structure gives the braid group action.

Various comments are in order concerning Theorem 2.2. The first is that
although the theorem is stated abstractly, there is a concrete recipe which enables
one to write down the description of p} given p. The second is that at first
sight, it might seem that this theorem is of limited usefulness, since it requires
a representation of the more complicated group, namely the split extension, but
in fact the algebraic structure of the braid group is very well-understood, and
so it has been known for some time that the group B, ,; contains subgroups
isomorphic to F,,>a B,,. Thus we deduce:

Theorem 2.3 Given a representation p : Bp11 — GL(V), we may construct a
representation pt : B, — H}(Dy;p) .

The theorem shows that given a k parameter representation of the braid
group, the construction yields a k + 1 parameter representation, apparently in a
nontrivial way. For example, if one starts with a (zero parameter) trivial repre-
sentation of F),>< B,,, the theorem produces the Burau representation. However
the role of this extra parameter is not purely to add extra complication - it also
adds extra structure. For there is a natural notion of what it should mean for
a representation of a braid group to be unitary (See [20], for example) and the
results of Deligne-Mostow and Kohno imply:

Theorem 2.4 In the above notation, if p is unitary, then for generic values of
is ot
s, so is p¥.

Moreover, we may iterate this construction and it is possible to identify a certain
sequence of local systems with the construction of [11], where it is proved that
such a procedure suffices to produce, as composition factors, the simple algebras
in the Jones representation corresponding to the Temperley-Lieb algebra. Thus
we have:



Theorem 2.5 [11] Iteration of the augmenting construction, beginning with the
trivial representation will eventually yield all summands of the Temperley-Lieb
algebra.

Our approach has the obvious advantage that it is extremely geometric and one
can write down criteria for faithfulness or otherwise of the representations so
produced in terms of cup and cap products in the twisted cohomology groups;
this is the promised generalisation of the cohomology classes [w;. It leads
to the notion of an effective local system. Roughly, effectiveness amounts to
asking whether geometric intersections are detected by the algebra coming from
Poincaré duality in the local system. If the pairing is effective this easily implies
that the representation is faithful. The converse need not be true, however and
in general it seems possible that the local system and braid group representation
provided by p : F,>1 B, — GL(V) could be (respectively) noneffective and
nonfaithful, but piece together to give a faithful representation p}. However
it is shown in [14] that this can happen only finitely often. The exact result
requires the following notation.

Suppose that py, : F,>< B, = GL(V,,) is a sequence of representations with
the property that V3 C V, C ... and that if p,, is restricted to B,,_; this is the
representation p,_1. If all the p,, are faithful representations of B,,, there is
nothing more to do so we suppose that this is not the case and we set r to be the
smallest number for which p, is not faithful when restricted to the braid group
factor. We take s to be the smallest number so that the local system coming
from p; restricted to the free factor has noneffective intersection pairing. Finally,
we define r* to be the largest number so that p:Gr is a faithful representation of
B,+_1. The result is:

Theorem 2.6
s<rt<s4+2r—2

For example, consider the sequence of one dimensional representations 7, :
F, > B,, -+ GL(C) where 7, is induced from the representation of B, where
the generator ¢; is multiplication by the complex number ¢{. In this case, r = 3
and although the exact value of s is not known, the results of [19] and [15] imply
that 3 < s < 6. The representation augments to Burau, and we deduce from 2.6
that the Burau representation has range of faithfulness given by s < rt < s +4.
In this case the information is weaker than what is already known.

In the case when n > 4 establishing whether a local system is effective or not
seems to be a hard problem. Indeed, it seems possible that there are no effective
local systems at all. Currently, even knowing this was true does not seem to
suffice to show that the Temperley-Lieb representation of the braid group is
eventually non-faithful; what this would show would be that for each fixed m,
the representations (n — m, m) become nonfaithful as n tends to infinity.

This problem highlights one of the difficulties of dealing "locally” with ob-
jects of the nature of the Jones representation which could be essentially global.
For as pointed out above, by Theorem 2.2 of [12] one cannot make a faithful rep-
resentation of B, by piecing together sums of nonfaithful representations. This



means that if one wants to deal with faithfulness questions, a summand by sum-
mand examination of say, the Jones representation is possible. However unless
the information obtained is very detailed, this may not suffice to establish faith-
fulness of the whole representation. For there seems to be no particular reason
for thinking that the Burau representation is alone in being ”stably nonfaithful”
amongst the summands of the Jones representation. But as n becomes large,
the number of "types” of summands increases very rapidly, so that every time
a particular type of summand becomes nonfaithful, some other type present is
still sufficiently complicated so as to be faithful. Even to prove results about the
Temperley-Lieb algebra, it would be necessary to sharpen Theorem 2.5 to show
that eventually one obtains a representation of the braid group which contains
all the two row representations simultaneously.
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