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A new presentation of the n-string braid group Bn is studied. Using it, a new
solution to the word problem in Bn is obtained which retains most of the desirable
features of the Garside�Thurston solution, and at the same time makes possible
certain computational improvements. We also give a related solution to the conjugacy
problem, but the improvements in its complexity are not clear at this writing.
� 1998 Academic Press

1. INTRODUCTION

In the foundational manuscript [3] Emil Artin introduced the sequence
of braid groups Bn , n=1, 2, 3, ... and proved that Bn has a presentation
with n&1 generators _1 , _2 , ..., _n&1 and defining relations:

_t _s=_s_t if |t&s|>1. (1)

_t_s_t=_s _t_s if |t&s|=1. (2)
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The word problem in Bn was solved by Artin in [3]. His solution was
based on his knowledge of the structure of the kernel of the map , from
Bn to the symmetric group 7n which sends the generator _i to the trans-
position (i, i+1). He used the group-theoretic properties of the kernel of ,
to put a braid into a normal form called a ``combed braid''. While nobody
has investigated the matter, it seems intuitively clear that Artin's solution
is exponential in the length of a word in the generators _1 , ..., _n&1 .

The conjugacy problem in Bn was also posed in [3], also its importance
for the problem of recognizing knots and links algorithmically was noted,
however it took 43 years before progress was made. In a different, but
equally foundational manuscript [9] F. Garside discovered a new solution
to the word problem (very different from Artin's) which then led him to
a related solution to the conjugacy problem. In Garside's solution one
focusses not on the kernel of ,, but on its image, the symmetric group 7n .
Garside's solutions to both the word and conjugacy problem are exponen-
tial in both word length and braid index.

The question of the speed of Garside's algorithm for the word problem
was first raised by Thurston. His contributions, updated to reflect improve-
ments obtained after his widely circulated preprint appeared, are presented in
Chapter 9 of [8]. In [8] Garside's algorithm is modified by introducing
new ideas, based upon the fact that braid groups are biautomatic, also that
Bn has a partial ordering which gives it the structure of a lattice. Using
these facts it is proved in [8] that there exists an algorithmic solution to
the word problem which is O( |W |2 n log n), where |W | is word length. See,
in particular, Proposition 9.5.1 of [8], our discussion at the beginning of
Sect. 4 below, and Remark 4.2 in Sect. 4. While the same general set of
ideas apply equally well to the conjugacy problem [7], similar sharp
estimates of complexity have not been found because the combinatorics are
very difficult.

A somewhat different question is the shortest word problem, to find a
representative of the word class which has shortest length in the Artin
generators. It was proved in [13] that this problem in Bn is at least as
hard as an NP-complete problem. Thus, if one could find a polynomial
time algorithm to solve the shortest word problem one would have proved
that P=NP.

Our contribution to this set of ideas is to introduce a new and very
natural set of generators for Bn which includes the Artin generators as a
subset. Using the new generators we will be able to solve the word problem
in much the same way as Garside and Thurston solved it, moreover our
solution generalizes to a related solution to the conjugacy problem which
is in the spirit of that of [7]. The detailed combinatorics in our work are,
however, rather different from those in [7] and [8]. Our algorithm solves
the word problem in O( |W |2 n). Savings in actual running time (rather
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than complexity) also occur, because a word written in our generators is
generally shorter by a factor of n than a word in the standard generators
which represents the same element. (Each generator ats , in our work replaces
a word of length 2(t&s)&1, where n>t&s>0 in the Artin generators).
Also the positive part is shorter by a factor of n because the new generators
lead to a new and shorter ``fundamental word'' $ which replaces Garside's
famous 2.

Our solution to both the word and conjugacy problems generalizes the
work of Xu [17] and of Kang, Ko and Lee [10], who succeeded in finding
polynomial time algorithms for the word and conjugacy problems and also
for the shortest word problem in Bn for n=3 and 4. The general case
appears to be more subtle than the cases n=3 and 4, however polynomial
time solutions to the three problems for every n do not seem to be totally
out of reach, using our generators.

In the three references [7], [8] and [9] a central role is played by
positive braids, i.e. braids which are positive powers of the generators.
Garside introduced the fundamental braid 2:

2=(_1_2 } } } _n&1)(_1_2 } } } _n&2) } } } (_1_2)(_1). (3)

He showed that every element W # Bn can be represented algorithmically
by a word W of the form 2rP, where r is an integer and P is a positive
word, and r is maximal for all such representations. However his P is
non-unique up to a finite set of equivalent words which represent the same
element P. These can all be found algorithmically, but the list is very long.
Thus instead of a unique normal form one has a fixed r and a finite set of
positive words which represent P. Thurston's improvement was to show
that P can in fact be factorized as a product P1P2 } } } Ps , where each P j is
a special type of positive braid which is known as ``permutation braid''.
Permutation braids are determined uniquely by their associated permuta-
tions, and Thurston's normal form is a unique representation of this type
in which the integer s is minimal for all representations of P as a product of
permutation braids. Also, in each subsequence PiPi+1 } } } Ps , i=1, 2, ..., s&1,
the permutation braid Pi is the longest possible permutation braid in a
factorization of this type. The subsequent work of Elrifai and Morton [7]
showed that there is a related algorithm which simultaneously maximizes
r and minimizes s within each conjugacy class. The set of all products
P1P2 } } } Ps which do that job (the super summit set) is finite, but it is not
well understood.

Like Artin's, our generators are braids in which exactly one pair of
strands crosses, however the images of our generators in 7n are arbitrary
transpositions (s, t) instead of simply adjacent transpositions (s, s+1). For
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each t, s with n�t>s�1 we consider the element of Bn which is defined
by:

ats=(_t&1_t&2 } } } _s+1) _s(_&1
s+1 } } } _&1

t&2_&1
t&1). (4)

The braid ats , is depicted in Figure 1(a). Notice that a21 , a321 ... coincide
with _1 , _2 , ... . The braid ats , is an elementary interchange of the t th and
sth strands, with all other strands held fixed, and with the convention that
the strands being interchanged pass in front of all intervening strands. We
call them band generators because they suggest a disc-band decomposition
of a surface bounded by a closed braid. Such decompositions have been
studied extensively by L. Rudolph in several papers, e.g., see [15]. The
bands which we use are his ``embedded bands.''

We introduce a new fundamental word :

$=an(n&1)a(n&1)(n&2) } } } a21=_n&1 _n&2 } } } _2 _1 . (5)

The reader who is familiar with the mathematics of braids will recognize
that 22=$n generates the center of Bn . Thus 2 may be thought of as the
``square root'' of the center, whereas $ is the ``n th root'' of the center. We
will prove that each element W # Bn may be represented (in terms of the
band generators) by a unique word W of the form:

W=$ jA1A2 } } } Ak , (6)

where A=A1A2 } } } Ak is positive, also j is maximal and k is minimal for all
such representations, also the Ai 's are positive braids which are determined
uniquely by their associated permutations. We will refer to Thurston's
braids Pi as permutation braids, and to our braids Ai as canonical factors.

FIG. 1. The band generators and relations between them.
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Let W be an arbitrary element of Bn and let W be a word in the band
generators which represents it. We are able to analyze the speed of our
algorithm for the word problem, as a function of both the word length |W |
and braid index n. Our main result is a new algorithmic solution to the
word problem (see Sect. 4 below). Its computational complexity, which is
analysed carefully in Sect. 4 of this paper, is an improvement over that
given in [8] which is the best among the known algorithms. Moreover our
work offers certain other advantages, namely:

1. The number of distinct permutation braids is n !, which grows
faster than kn for any k # R+. The number of distinct canonical factors is
the n th Catalan number Cn=(2n)!�n ! (n+1)!, which is bounded above
by 4n. The reason for this reduction is the fact that the canonical factors
can be decomposed nicely into parallel, descending cycles (see Theorem 3.4).
The improvement in the complexity of the word algorithm is a result of the
fact that the canonical factors are very simple. We think that they reveal
beautiful new structure in the braid group.

2. Since our generators include the Artin generators, we may assume
in both cases that we begin with a word W of length |W | in the Artin
generators. Garside's 2 has length (n&1)(n&2)�2, which implies that the
word length |P| of the positive word P=P1 P2 } } } Pq is roughly n2 |W |. On
the other hand, our $ has word length n&1, which implies that the length
|A| of the product A=A1A2 } } } Ak is roughly n |W |.

3. Our work, like that in [8], generalizes to the conjugacy problem.
We conjecture that our solution to that problem is polynomial in word
length, a matter which we have not settled at this writing.

4. Our solution to the word problem suggests a related solution to
the shortest word problem.

5. It has been noted in conversations with A. Ram that our work
ought to generalize to other Artin groups with finite Coxeter groups. This
may be of interest in its own right.

Here is an outline of the paper. In Sect. 2 we find a presentation for Bn

in terms of the new generators and show that there is a natural semigroup
B+

n of positive words which is determined by the presentation. We prove
that every element in Bn can be represented in the form $tA, where A is a
positive word. We then prove (by a long computation) that B+

n embeds
in Bn , i.e. two positive words in Bn represent the same element of Bn if and
only if their pullbacks to B+

n are equal in B+
n . We note (see Remark 2.8)

that our generators and Artin's are the only ones in a class studied in [16]
for which such an embedding theorm holds. In Sect. 3 we use these ideas
to find normal forms for words in B+

n , and so also for words in Bn . In
Sect. 4 we give our algorithmic solution to the word problem and study its
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complexity. In Sect. 5 we describe very briefly how our work generalizes to
the conjugacy problem.

Remark 1.1. In the article [6] P. Dehornoy gives an algorithmic
solution to the word problem which is based upon the existence, proved in
a different paper by the same author, of an order structure on Bn . His
methods seem quite different from ours and from those in the other papers
we have cited, and not in a form where precise comparisons are possible.
Dehornoy does not discuss the conjugacy problem, and indeed his methods
do not seem to generalize to the conjugacy problem.

2. THE SEMIGROUP OF POSITIVE BRAIDS

We begin by finding a presentation for Bn in terms of the new generators.
We will use the symbol ats , whenever there is no confusion about the two
subscripts, and symbols such as a(t+2)(s+1) when there might be confusion
distinguishing between the first and second subscripts. Thus a(t+1) t=_t .

Proposition 2.1. Bn has a presentation with generators [ats ; n�t>s�1]
and with defining relations

atsarq=arqats if (t&r)(t&q)(s&r)(s&q)>0 (7)

atsasr=atr ats=asr atr for all t, s, r with n�t>s>r�1. (8)

Remark 2.2. Relation (7) asserts that ats and arq commute if t and s do
not separate r and q. Relation (8) expresses a type of ``partial'' commuta-
tivity in the case when ats , and arq share a common strand. It tells us that
if the product atsasr occurs in a braid word, then we may move ats to the
right (resp. move asr to the left) at the expense of increasing the first sub-
script of asr to t (resp. decreasing the second subscript of ats to r.)

Proof. We begin with Artin's presentation for Bn , using generators
_1 , ..., _n&1 and relations (1) and (2). Add the new generators ats , and
the relations (4) which define them in terms of the _i 's. Since we know
that relations (7) and (8) are described by isotopies of braids, depicted in
Figure 1(b), they must be consequences of (1) and (2), so we may add
them too.

In the special case when t=s+1 relation (4) tells us that a(i+1) i=_i , so
we may omit the generators _1 , ..., _n&1 , to obtain a presentation with
generators ats , as described in the theorem. Defining relations are now (7),
(8) and:
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a(t+1) ta(s+1) s=a(s+1)s a(t+1) t if |t&s|>1 (9)

a(t+1) t a(s+1)sa(t+1) t=a(s+1) sa(t+1) ta(s+1)s if |t&s|=1 (10)

ats=(at(t&1)a(t&1)(t&2) } } } a(s+2)(s+1)) a(s+1) s

_(at(t&1) a(t&1)(t&2) } } } a(s+2)(s+1))
&1 (11)

Our task is to prove that (9), (10) and (11) are consequences of (7)
and (8).

Relation (9) is nothing more than a special case of (7). As for (10), by
symmetry we may assume that t=s+1. Use (8) to replace a(s+2)(s+1)a(s+1)s

by a(s+1) sa(s+2) s , thereby reducing (10) to a(s+2)s a(s+2)(s+1)=a (s+2)(s+1)

a(s+1, s) , which is a special case of (8). Finally, we consider (11). If t=s+1
this relation is trivial, so we may assume that t>s+1. Apply (8) to change
the center pair a(s+2)(s+1) a(s+2)s to a(s+2) sa(s+2)(s+1) . If t>s+2 repeat this
move on the new pair a(s+3)(s+2) a(s+2)s . Ultimately, this process will move
the original center letter a(s+1) s to the leftmost position, where it becomes ats .
Free cancellation eliminates everything to its right, and we are done. K

A key feature which the new presentation shares with the old is that the
relations have all been expressed as relations between positive powers of
the generators, also the relations all preserve word length. Thus our presen-
tation also determines a presentation for a semigroup. A word in positive
powers of the generators is called a positive word. Two positive words are
said to be positively equivalent if one can be transformed into the other by
a sequence of positive words such that each word of the sequence is
obtained from the preceding one by a single direct application of a defining
relation in (7) or (8). For two positive words X and Y, write X.Y if they
are positively equivalent. Positive words that are positively equivalent have
the same word length since all of defining relations preserve the word
length. We use the symbol B+

n for the monoid of positive braids, which can
be defined by the generators and relations in Theorem 2.1. Thus B+

n is the
set of positive words modulo positive equivalence. Our next goal is to
prove that the principal theorem of [9] generalizes to our new presenta-
tion, i.e. that the monoid of positive braids embeds in the braid group Bn .
See Theorem 2.7 below.

Before we can begin we need to establish key properties of the fundamental
braid $. Let { be the inner automorphism of Bn which is induced by conjuga-
tion by $.

Lemma 2.3 Let $ be the fundamental braid. Then:

(I) $=an(n&1) a(n&1)(n&2) } } } a2l is positively equivalent to a word
that begins or ends with any given generator ats , n�t>s�1. The explicit
expressions are:
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$.(ats)(an(n&1) } } } a(t+2)(t+1) a(t+1) sas(s&1) } } } a21)(at(t&1) } } } a(s+2)(s+1))

$.(an(n&1) a(n&1)(n&2) } } } a(t+1) t

_at(s&1) a(s&1)(s&2) } } } a21 )(a(t&1)(t&2) } } } a(s+1)s)(ats)

(II) Let A=anmnm&1
anm&1nm&2

} } } an2n1
where n�nm>nm&1> } } } >

n1�1. Then A is positively equivalent to a word which begins or ends with antns
,

for any choice of nt , ns with n�nt>ns�1.

(III) ats $.$a(t+1)(s+1) , where subscripts are defined mod n.

Proof. (I) With Remark 2.2 in mind, choose any pair of indices t, s
with n�t>s�1. We need to show that $ can be represented by a word
that begins with ats . Focus first on the elementary braid a(s+1) s in the
expression for $ which is given in (5), and apply the first of the pair of
relations in (8) repeatedly to move a(s+1)s to the left (increasing its first
index as you do so) until its name changes to ats . Then apply the second
relation in the pair to move it (without changing its name) to the extreme
left end, vis:

$.an(n&1)a(n&1)(n&2) } } } a(s+2)(s+1)a(s+1) sas(s&1) } } } a21

.an(n&1)a(n&1)(n&2) } } } a(t+1) tats at(t&1) } } } a(s+2)(s+1)as(s&1) } } } a21

.ats an(n&1) } } } a(t+2)(t+1) a(t+1) sat(t&1) } } } a(s+2)(s+1) as(s&1) } } } a21

.(ats)(an(n&1) } } } a(t+2)(t+1) a(t+1) sas(s&1) } } } a21)(at(t&1) } } } a(s+2)(s+1))

We leave it to the reader to show that the proof works equally well when
we move letters to the right instead of to the left.

(II) The proof of (II) is a direct analogy of the proof of (I).

(III) To establish (III), we use (I):

$a(t+1)(s+1)

.atsan(n&1) } } } a(t+2)(t+1)a(t+1)sat(t&1) } } } a(s+2)(s+1)as(s&1) } } } a21a(t+1)(s+1)

.ats an(n&1) } } } a(t+2)(t+1) a(t+1) sa(t+1) t at(t&1) } } } a(s+2)(s+1) as(s&1) } } } a21)

.ats an(n&1) } } } a(t+2)(t+1) a(t+1) tat(t&1) } } } a(s+2)(s+1)a(s+1) sas(s&1) } } } a21)

.ats $. K

We move on to the main business of this section, the proof that the
semigroup B+

n embeds in Bn . We will use Lemma 2.3 in the following way:
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the inner automorphism defined by conjugation by $ determines an index-
shifting automorphism { of Bn and B+

n which is a useful tool to eliminate
repetitious arguments. We define:

{(ats)=a(t+1)(s+1) and {&1(ats)=a(t&1)(s&1) .

Following the ideas which were first used by Garside [9], the key step
is to establish that there are right and left cancellation laws in B+

n . We
remark that even though Garside proved this for Artin's presentation, it
does not follow that it's still true when one uses the band generator presen-
tation. Indeed, counterexamples were discovered by Xu [17] and given
in [10].

If X.Y is obtained by a sequence of t single applications of the defining
relations in (7) and (8):

X#W0 � W&1 � } } } � Wt #Y,

then the transformation which takes X to Y will be said to be of
chain-length t.

Theorem 2.4 (Left ``cancellation''). Let atsX.arqY for some positive
words X, Y. Then X and Y are related as follows:

(I) If there are only two distinct indices, i.e. t=r and s=q, then X.Y.

(II) If there are three distinct indices:

(i) If t=r and q<s, then X.asqZ and Y.atsZ for some
Z # B+

n ,

(ii) If t=r and s<q, then X.atqZ and Y.aqsZ for some
Z # B+

n ,

(iii) If t=q, then X.arsZ and Y.atsZ for some Z # B+
n ,

(iv) If s=r, then X.asqZ and Y.atqZ for some Z # B+
n ,

(v) If s=q and r<t, then X.atrZ and Y.ats Z for some Z # B+
n ,

(vi) If s=q and t<r, then X.arsZ and Y.artZ for some Z # B+
n ,

(III) If the four indices are distinct and if (t&r)(t&q)(s&r)(s&q)>0,
then X.arqZ and Y.atsZ for some Z # B+

n .

(IV) If the four indices are distinct, then:

(i) If q<s<r<t, then X.atrasq Z and Y.atqars Z for some
Z # B+

n ,

(ii) If s<q<t<r, then X.atqars Z and Y.artaqs Z for some
Z # B+

n ,
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Proof. The proof of the theorem for positive words X, Y of word length
j that are positively equivalent via a transformation of chain-length k will
be referred to as T( j, k). The proof will be proceeded by an induction on
( j, k) ordered lexicographically. This induction makes sense because T( j, 1)
holds for any j. Assume that T( j, k) holds for all pairs ( j, k)<(l, m), that
is,

(V) T( j, k) is true for 0� j�l&1 and any k.

(VV) T(l, k) is true for k�m&1.

Now suppose that X and Y are positive words of length l and ats X.arqY
via a transformation of chain-length m�2. Let a;:W be the first inter-
mediate word in the sequence of transformation from atsX to arqY. We can
assume that a;: {ats and a;: {ars , otherwise we apply the induction
hypotheses (VV) to complete the proof. Furthermore, since a;:W must be
obtained from atsX by a single application of a defining relation, we see by
using (VV) that X.aU and W.bU for some distinct generators a, b and
a positive word U.

For case (I), we see again by using (VV) that W.bV and Y.aV for a
positive word V. Then W.bU.bV implies U.V by (V). Thus X.aU.
aV.Y.

It remains to prove cases II, III, IV(i) and IV(ii). We fix notation as
follows: Using (VV), W.BV and Y.AV for a positive word V and two
distinct positive words A, B of word length 1 or 2 depending on a;: and arq .
When the word length of A and B is 1, we apply (V) to W.bU.BV. If
b=B, U.V and so X.aU and Y.AU are the required form. If b{B,
we obtain U.CQ and V.DQ for a positive word Q and two distinct
word C and D of word length 1 or 2 depending on b and B. Then we apply
some defining relations to X.aCQ and Y.ADQ to achieve the desired
forms.

When the word lengths of A and B are 2, we rewrite B=b$b" in terms
of generators. Notice that b$b"=b"b$. Apply (V) to either W.bU.b$(b"V )
or W.bU.b"(b$V ) to obtain U.CQ and either b"V.DQ or b$V.DQ
for a positive word Q and two distinct generators C and D. In the tables
below, we will use the symbols so that we have b"V.DQ. Apply (V) to
b"V.DQ. If b"=D, we obtain V.Q and then we apply defining relations
to X.aCV and Y.AV to get the required forms. If b"{D, we obtain
V.EP and Q.FP for a positive word P and distinct words E, F of word
length 1 or 2 depending on b" and D. Then we apply some defining relations
to X.aCFP and Y.AEP to achieve the desired forms.

The four tables below treat cases II, III, IV(i) and IV(ii). The first
column covers the possible relative positions of q, r, s, t, :, ;. The second
column contains one of 4 possible forms aU, aCQ, aCV, aCFP of the word
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X as explained above and similarly the third column contains one of 4
possible forms AU, ADQ, AV, AEP of Y. Finally the fourth and fifth columns
contain the values of b and B, respectively.

In case (II), it is enough to consider the subcases (i) and (ii) because the
other subcases can be obtained from (i) or (ii) by applying the auto-
morphism {. But we may also assume that q<s, otherwise we switch the
roles of X and Y.

In case (III), there are actually 4 possible positions of q, r, s, t but they
can be obtained from one position by applying {. Thus we only consider
case q<r<s<t. The table shows all possible cases required in the induction.

In case (IV), it is again enough to consider the case q<s<r<t and the
table covers all possible inductive steps.
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This completes the proof that ``Left Cancellation'' is possible in the
monoid of positive words. K

Similarly we can prove the following theorem.

Theorem 2.5 (Right ``cancellation''). Let Xats.Yarq for some positive
words X, Y. Then X and Y are related as follows:

(I) If t=r and s=q, then X.Y,

(II) (i) If t=r and q<s, then X.Zatq and Y.Zasq for
some Z # B+

n ,

(ii) If t=r and s<q, then X.Zaqs and Y.Zats for some
Z # B+

n ,

(iii) If t=q, then X.Zart and Y.Zats for some Z # B+
n ,

(iv) If s=r, then X.Zatq and Y.Zats for some Z # B+
n ,

(v) If s=q and r<t, then X.Zars and Y.Zatr for some
Z # B+

n ,

(vi) If s=q and t<r, then X.Zart and Y.Zats for some
Z # B+

n ,
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(III) If (t&r)(t&q)(s&r)(s&q)>0, then X.Zarq and Y.Zats for
some Z # B+

n .

(IV) (i) If q<s<r<t, then X.Zatqars and Y.Zatsasq for
some Z # B+

n ,

(ii) If s<q<t<r, then X.Zart aqs and Y.Zatq ars for
some Z # B+

n ,

The properties of $ which were worked out in Lemma 2.3 ensure that $
can take the role of the half twist 2 of the Garside's argument in [9] to
show:

Theorem 2.6 (Right reversibility). If X, Y are positive words, then there
exist positive words U, V such that UX.VY.

Using left and right ``cancellation'' and right reversibility, we obtain (as
did Garside) the following embedding theorem [5].

Theorem 2.7 (Embedding Theorem). The natural map from B+
n to Bn

is injective, that is, if two positive words are equal in Bn , then they are
positively equivalent.

Remark 2.8. Any time that the defining relations in a group presenta-
tion are expressed as relations between positive words in the generators
one may consider the semigroup of positive words and ask whether that
semigroup embeds in the corresponding group. Adjan [1] and also Remmers
[14] studied this situation and showed that a semigroup is embeddable if
it is ``cycle-free'', in their terminology. Roughly speaking, this means that
the presentation has relatively few relations, so that a positive word can
only be written in a small number of ways. But the fundamental words 2
and $ can be written in many many ways, and it therefore follows that
large subwords of these words can too, so our presentations are almost the
opposite to those considered by Adjan and Remmers.

According to Sergiescu [16], any connected planar graph with n vertices
gives rise to a positive presentation of Bn in which each edge gives a gener-
ator which is a conjugate of one of Artin's elementary braids and relations
are derived at each vertex and at each face. In fact one can generalize his
construction as follows. Consider the elements in Bn defined by:

bts=(_&1
t&1_&1

t&2 } } } _&1
s+1) _s(_s+1 } } } _t&2_t&1).

The braid bts is geometrically a positive half-twisted band connecting the
tth and the s th strands, and passing behind all intermediate strands. Since
bt(t&1)=_t&1=at(t&1) , the set X=[ats , bts | �s<t�n] contains (n&1)2

elements. Then X may be described by a graph on a plane where n vertices
are arranged, in order, on a line. An element ats , bts # X belongs to an edge
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connecting the t th and the s th vertices on one side or the other, depending
on whether it is an ats or bts . In this way one obtains a planar graph in
which two edges have at most one interior intersection point. It is not hard
to show that a subset Y/X is a generating set of Bn if and only if the
generators in Y form a connected subgraph. Consider all presentations that
have Y/X as a set of generators and have a finite set of equations between
positive words in Y as a set of relators. All Sergiescu's planar graphs are
of this type. Artin's presentation corresponds to the linear graph with n&1
edges and our presentation corresponds to the complete graph on n vertices.
One can prove [12] that the embedding theorem falls to hold in all but
two presentations of this type. Those two are Artin's presentation and ours.

3. THE WORD PROBLEM

In this section we present our solution to the word problem in Bn , using
the presentation of Proposition 2.1. Our approach builds on the ideas of
Garside [9], Thurston [8] and Elrifai and Morton in [7]. In the next
section we will translate the results of this section into an algorithm, and
compute its complexity.

We begin with a very simple consequence of Lemma 2.3.

Lemma 3.1. Every element W # Bn can be represented by a word of
the form $ pQ where p is an integer and Q is a word in the generators at, s

of B+
n /Bn .

Proof. Choose any word which represents W. Using (I) of Lemma 2.3
replace every generator which occurs with a negative exponent by $&1M,
where M is positive. Then use (III) of Lemma 2.3 to collect the factors $&1

at the left. K

The word length of a (freely reduced) word W in our presentation of Bn

is denoted by |W |. The identity word will be denoted by e, |e|=0. For
words V, W, we write V�W (or W�V) if W=P1VP2 for some P1 , P2 # B+

n .
Then W # B+

n if and only if e�W. Also V�W if and only if W&1�V&1.
Recall that { is the inner automorphism of Bn which is defined by

{(W )=$&1W$. By Lemma 2.3 the action of { on the generators is given by
{(ats)=a(t+1)(s+1) .

Proposition 3.2. The relation ``�'' has the following properties:

(I) ``�'' is a partial order on Bn .

(II) If W�$u, then $u=PW=W{u(P) for some P # B+
n

(III) If $u�W, then W=P$u=$u{u(P) for some P # B+
n
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(IV) If $v1�V�$v2 and $w1�W�$w2, then $v1+w1�VW�$v2+w2.

(V) For any W there exist integers u, v such that $u�W�$v.

Proof. See [7] or [10]. The proofs given there carry over without any
real changes to the new situation. K

The set [W | $u�W�$v] is denoted by [u, v]. For W # Bn , the last
assertion of the previous proposition enables us to define the infimum
and the supremum of W as inf(W)=max[u # Z | $u�W] and sup(W)=
min[v # Z | W�$v], where W represents W. The integer l(W)=sup(W)
&inf(W) is called the canonical length of W.

A permutation ? on [1, 2, ..., n] is called a descending cycle if it is
represented by a cycle (tj , tj&1 , ..., t1) with j�2 and t j>tj&1> } } } >t1 .
Given a descending cycle ?=(tj , tj&1 , ..., t1), the symbol $? denotes the
positive braid atj tj&1

atj&l tj&2
} } } at2 t1

. A pair of descending cycles (tj , tj&1 , ..., t1),
(si , si&1 , ..., s1) are said to be parallel if ta and tb never separate sc and sd .
That is, (ta&sc)(ta&sd)(tb&sc)(tb&sd)>0 for all a, b, c, d with 1�a<
b� j and 1�c<d�i. The cycles in a product of parallel, descending cycles
are disjoint and non-interlacing. Therefore they commute with one-another.
For pairwise parallel, descending cycles ?1 , ?2 , ..., ?k , the factors in the
product $?1

$?2
} } } $?k

are positive braids which commute with one-another
and therefore there is a well-defined map from the set of all products
of parallel descending cycles to Bn , which splits the homomorphism
,: Bn � 7n , ,(ats)=(t, s).

Our first goal is to prove that braids in [0, 1], i.e. braids A with
e�A�$ are precisely the products $?1

$?2
} } } $?k

as above. We will also
prove that each $?i

is represented by a unique word in the band generators,
so that the product A also has a representation which is unique up to the
order of the factors.

Let A=BaCbD be a decomposition of the positive word A into subwords,
where a, b are generators. Let t, s, r, q be integers, with n�t>s>r>q�1.
We say that the pair of letters (a, b) is an obstructing pair in the following
cases:

case (1): a=atr , b=asq

case (2): a=asq , b=atr

case (3): a=asr , b=ats

case (4): a=ats , b=atr

case (5): a=atr , b=asr

case (6): a=ats , b=ats .

Lemma 3.3. A necessary condition for a positive word A to be in [0, 1]
is that A has no decomposition as BaCbD, with B, a, C, b, D�e and (a, b)
an obstructing pair.

337WORD AND CONJUGACY PROBLEMS IN THE BRAID GROUPS



File: DISTL1 176117 . By:GC . Date:12:10:98 . Time:09:58 LOP8M. V8.B. Page 01:01
Codes: 3773 Signs: 2577 . Length: 45 pic 0 pts, 190 mm

Proof. We use a geometric argument. Given a braid word W in the
at, s's, we associate to W a surface FW bounded by the closure of W, as
follows: FW consists of n disks joined by half-twisted bands, with a band for
each letter in W. The half-twisted band for ats is the negative band connecting
the t th and the s th disks. Our defining relations in (7) and (8) correspond
to isotopies sliding a half-twisted band over an adjacent half-twisted band
or moving a half-twisted band horizontally. (See Figure 1(b)). Thus defining
relations preserve the topological characteristics of FW . For example the
surface F$ has one connected component and is contractible.

By the proof of Lemma 2.3, we may write $=ats W where W=$?$ $?" for
parallel descending cycles ?$=(t, t&1, ..., s+1) and ?"=(n, n&1, ..., t+1,
s, s&1, ..., 1). Thus for this W the surface FW has two connected components,
F$$?

and F$"?
.

It is enough to consider the cases (a, b)=(atr , asq), (asr , ats), (ats , ats)
since all other cases are obtained from these cases by applying the auto-
morphism {, which preserves $. Since A is in [0, 1] we know that $=V1AV2

for some V1 , V2�e. By Proposition 3.2 (II) we see that AE=$ for some
word E�e. So BaCbDE=$, which implies that aCbDE{(B)=$. If a=atr ,
b=asq for t>s>r>q and $=atrW, then FW has two connected components
and the s th disk and the q th disk lie on distinct components. But the s th
and the q th disks lie in the same component in FCbDE{(B) since they are
connected by b and this is a contradiction.

If a=asr , b=ats and $=asrW, then the tth and sth disks lie in distinct
components in FW but they lie in the same component in FCbDE{(B) and
this is again a contradiction.

If a=b, then FAE contains a non-trivial loop but F$ is contractible and
this is a contradiction. K

Theorem 3.4. A braid word A is in [0, 1] if and only if A=$?1
$?2

} } } $?k

for some parallel, descending cycles ?1 , ?2 , ..., ?k in 7n .

Proof. First assume that A=$?1
$?2

} } } $?k
. We induct on the number n

of braid strands to prove the necessity. The theorem is true when n=2.
Suppose that ?1 , ?2 , ..., ?k are parallel, descending cycles in 7n . In view of
the inductive hypothesis, we may assume without loss of generality that the
index n appears in one of cycles. Since the factors $?1

, ..., $?j
in the product

commute with one-another, we may assume that for some 1�i�k, the
cycle ?i=(n, t, ..., s), where all of the indices occurring in ?1 , ..., ? i&1 are
greater than t and all of the indices occurring in ?i+1 , ..., ?k are less than t. The
induction hypothesis implies that

C1 $?1
} } } $?i&1

=a(n&1)(n&2) } } } a (t+1) t

$?$i
$?i+1

} } } $?k
C2=at(t&1) } } } a21
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where ?$i=(t, ..., s) and C1 , C2 are positive words. Thus

C1AC2=a(n&1)(n&2) } } } a(t+1) tantat(t&1) } } } a21

=an(n&1) a(n&1)(n&2) } } } a21=$.

Thus our condition is necessary.
Now assume that A is in [0, 1]. We prove sufficiency by induction on

the word length of A. The theorem is true when |A|=1. Suppose, then,
that |A|>1. Let A=ats A$. By the induction hypothesis A$=$?1

$?2
} } } $?k

for some parallel, descending cycles ?1 , ?2 , ..., ?k in 7n . Since A is in [0, 1],
we know, from Lemma 3.3, that A has no decomposition as BaCbD with
(a, b) an obstructing pair, so in particular there is no arq # A$ such that
(ats , arq) is an obstructing pair. Therefore, in particular, by cases (1) and
(2) for obstructing pairs we must have (t&r)(t&q)(s&r)(s&q)>0 for all
arq�A$. Therefore, if neither t nor s appears among the indices in any of
the ?i , then the descending cycle (t, s) is clearly parallel to each ?i and
A=ats?1 } } } ?k is in the desired form.

Suppose that t appears in some ?i=(t1 , t2 , ..., tm). Then, by cases (3)
and (4) for obstructing pairs we must have t=t1 and s<tm . Suppose that
s appears in some ?j=(s1 , s2 , ..., sl). Then case (5) in our list of obstructing
pairs tells us that either s=sh and t<sh&1 for 1<h�l or s=s1 . Thus we
have the following three possibilities:

(i) t appears in some ?i=(t1 , t2 , ..., tm) and s does not appear. Then

A=$?1
} } } $?i&1

$?$i
$?i+1

} } } $?k

is in the desired form, where ?$i=(t1 , t2 , ..., tm , s);

(ii) s appears in some ?j=(s1 , s2 , ..., sl) and t does not appear. Then

A=$?1
} } } $?j&1

$?$j
$?j+1

} } } $?k

is in the desired form, where ?$j=(s1 , ..., sh&1 , t, sh , ..., s l) or (t, s1 , ..., sl);
(iii) t appears in some ?i=(t1 , t2 , ..., tm) and s appears in some

?j=(s1 , s2 , ..., sl). Then we may assume i< j and

A=$?1
} } } $?i&1

$?$i
$?i+1

} } } $?j&1
$?j+1

} } } $?k

is in the desired form, where ?$i=(t1 , t2 , ..., tm , s1 , s2 , ..., sl). K

Definition. From now on we will refer to a braid which is in [0, 1],
and which can therefore be represented by a product of parallel descending
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cycles, as a canonical factor. For example, the 14 distinct canonical factors
for n=4 are:

e, a21 , a32 , a31 , a43 , a42 , a41 , a32a21 , a43a32 , a43a31 , a43a21 ,

a42a21 , a41a32 , a43 a32a21 .

A somewhat simpler notation describes a descending cycle by its subscript
array. In the example just given the 13 non-trivial canonical factors are:

(21), (32), (31), (43), (42), (41), (321), (432), (431), (421),

(4321), (43)(21), (41)(32).

The associated permutation is the cycle associated to the reverse of the
subscript array, with all indices which are not listed explicitely fixed.

Corollary 3.5. For each fixed positive integer n the number of distinct
canonical factors is the n th Catalan number Cn=(2n)!�n ! (n+1)!.

Proof. We associate to each product ?=?1?2 } } } ?k of parallel descending
cycles a set of n disjoint arcs in the upper half-plane whose 2n endpoints
are on the real axis. Mark the numbers 1, 2, ..., n on the real axis. Join i to
?(i) by an arc, to obtain n arcs, some of which may be loops. Our arcs
have disjoint interiors because the cycles in ? are parallel. By construction
there are exactly two arcs meeting at each integer point on the real axis.
Now split the i th endpoint, i=1, 2, ..., n, into two points, i $, i", to obtain
n disjoint arcs with 2n endpoints. The pattern so obtained will be called an
[n]-configuration. To recover the product of disjoint cycles, contract each
interval [i $, i"] to a single point i. In this way we see that there is a one-to-
one correspondence between canonical factors and [n]-configurations. But
the number of [n]-configurations is the n th Catalan number (see [11] for
a proof). K

Note that Cn �Cn&1=4&6�(n+1)�4 and so Cn�4n. In the Artin
presentation of Bn , the number of permutation braids is n! which is much
greater than Cn . This is one of the reasons why our presentation gives a
faster algorithm than the algorithm in [8].

It is very easy to recognize canonical factors when they are given as
products of parallel descending cycles. If, however, such a representative is
modified in some way by the defining relations, we will also need to be able
to recognize it. For computational purposes the following alternative
characterization of canonical factors will be extremely useful. It rests on
Lemma 3.3:
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Corollary 3.6. A positive word A is a canonical factor if and only if A
contains no obstructing pairs.

Proof. We established necessity in Lemma 3.3. We leave it to the reader
to check that the proof of Theorem 3.4 is essentially a proof of sufficiency.

K

The braid $ can be written in many different ways as a product of the
ats and by Corollary 3.6 each such product contains no obstructing pair.
Any descending cycle $? also has this property. If an element in Bn is
represented by a word which contains no obstructing pairs, then it is a
canonical factor and so it can be written as a product of parallel descending
cycles. It follows that there is no obstructing pair in any word representing
it.

To get more detailed information about canonical factors $?1
$?2

} } } $?k
,

we begin to investigate some of their very nice properties. We proceed as
in the foundational paper of Garside [9] and define the starting set S(P)
and the finishing set F(P):

S(P)=[a | P=aP$, P$�e, a is a generator],

F(P)=[a | P=P$a, P$�e, a is a generator].

Note that S({(P))={(S(P)) and F({(P))={(F(P)).
Starting sets play a fundamental role in the solutions to the word and

conjugacy problems in [7]. Our canonical form allows us to determine
them by inspection.

Corollary 3.7. The starting sets of canonical factors satisfy the following
properties:

(I) If ?=(tm , tm&1 , ..., t1) is a descending cycle, then the starting
set (and also the finishing set) of $? is [atj ti

; m� j>i�1].

(II) If ?1 , ..., ?k are parallel descending cycles, then S($?1
} } } $?k

)=
S($?1

) _ } } } _ S($?k
).

(III) If A is a canonical factor, then S(A)=F(A).

(IV) If A and B are canonical factors, and if S(A)=S(B) then A=B.

(V) Let P be a given positive word. Then there exists a canonical
factor A such that S(P)=S(A).

(VI) If S(A)/S(P) for some canonical factor A, then P=AP$ for
some P$�e.

(VII) For any P�e, there is a unique canonical factor A such that
P=AP$ for some P$�e and S(P)=S(A).
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Proof. To prove (I), observe that the defining relations (7) and (8)
preserve the set of distinct subscripts which occur in a positive word, so if
aqp is in the starting set (resp. finishing set) of $? then q=t j and p=ti for
some j, i with m� j>i�1. Since it is proved in part (II) of Lemma 2.3
that every atj ti

occurs in both the starting set and the finishing set, the
assertion follows.

To prove (II) one need only notice that $?r
commutes with $?s

when the
cycles ?r , ?s are parallel.

Clearly (III) is a consequence of (I) and (II).
As for (IV), by Theorem 3.4 a canonical word is uniquely determined by

a set of parallel descending cycles. If two distinct descending cycles ?, + are
parallel, then $? , $+ have distinct starting sets, so if A and B are canonical
factors, with S(A)=S(B), the only possibility is that A=B.

To prove (V), we induct on the braid index n. The claim is clear for
n=2. Let P # B+

n have starting set S(P). If all generators of the form ant for
n&1�t�1 are deleted from S(P) we obtain a set S$(P) which, by
the induction hypothesis, is the starting set of a braid A$=$?1

} } } $?k
, where

?1 , ..., ?k are parallel, descending cycles in 7n&1 . It is now enough to check
the following properties of S(P):

(i) If ans , atr # S(P), with t>s, then ats # S(P);

(ii) If ans # S(P) and if s happens to be in one of the descending
cycles ?i=(tm , ..., t1) associated to S$(P), then antj

# S(P) for every j with
m� j�1;

(iii) If ans # S(P), where s is not in any of the descending cycles
?$1 , ..., ?$r associated to S$(P), then there is no atr # S(P) such that t>s>r.

To establish (i), note that since ans , atr # S(P), we have P=ans X=atr Y
with n>t>s>r. But then the assertion follows from Theorem 2.4, part (IV),
case (ii).

To establish (ii), set +=(n, tm , ..., t1). Then y is a descending cycle for A,
so by (I) and (II) of this lemma we conclude that antj

# S(P) for m� j�1.
Property (iii) can be verified by observing that if ans # S(P), then

+=(n, ..., s...) (where + could be (n, s)) must be a descending cycle belong-
ing to a canonical factor $+ for A. But if so, and if atr # S(P) with r<s<t, then
by (i) ats is also in S(P), so that in fact +=(n, ..., t, ..., s, ..., r, ...). But then
the cycle survives after deleting n, contradicting the hypothesis that the
subscript s does not appear in any descending cycle associated to S$(P).
Thus we have proved (V).

To prove (VI), induct on the word length of P. The assertion is clear if
|P|=1. Assume |P|>1. We may assume that ant is in S(A) for some
1�t<n, otherwise we apply the index-shifting automorphism {. We make
this assumption to reduce the number of the cases that we have to consider.
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By Theorem 3.4, we may write A=$?1
$?2

} } } $?k
for some parallel, descend-

ing cycles ?1 , ?2 , ..., ?k in 7n and we may assume ?1=(n, t1 , ..., tj). Let
A=ant1B and P=ant1Q. We are done by induction if we can show that
S(B)/S(Q). Let asr be any member of S(B). We have three possible cases
after considering the properties of the words A and B:

(i) s=t1 and r=t i for some 2�i� j ;

(ii) s<t1 ;

(iii) t1<r<s<n.

When (i) is the case, then A=ant1
at1 ti

C=anti
at1 ti

C for some canonical
factor C and so anti

# S(P). Since both ant1
and anti

are in S(P), Theorem
2.4(II)(ii) implies that at1 ti

# S(Q). For the other two cases we can show, in
a similar way, that asr is in S(Q), using Theorem 2.4.

Assertion (VII) is an immediate consequence of (V) and (VI). K

Theorem 3.4 has given us an excellent description of the canonical
factors. What remains is to translate it into a solution to the word problem.
For that purpose we need to consider products A1A2 } } } Ak , where each Ai

is a canonical factor. The argument we shall use is very similar to that in
[7], even though our $ and our canonical factors are very different from
their 2 and their permutation braids. See [10], where a similar argument
is used.

A decomposition Q=AP, where A is a canonical factor and P�e, is
said to be left-weighted if |A| is maximal for all such decompositions.
Notice that AP is not left-weighted of there exists p # S(P) such that AP is
a canonical factor, for if so then |A| is not maximal. We call A the maximal
head of Q when Q=AP is left-weighted. The symbol A W P means that AP
is left-weighted. The following corollary gives an easy way to check whether
a given decomposition is left-weighted.

Corollary 3.8. Let A, P be positive words, with A representing a
canonical factor. Then A W P if and only if for each b # S(P) there exists
a�A such that (a, b) is an obstructing pair.

Proof. By the definition of left-weightedness, A W P if and only if, for
each b # S(P), Ab is not a canonical factor. By Corollary 3.6 Ab is not a
canonical factor if and only if Ab contains an obstructing pair (a, q). We
cannot have both a�A and q�A because by hypothesis A is a canonical
factor so that by Corollary 3.6 no word which represents it contains an
obstructing pair. Thus q=b. K

Define the right complementary set R(A) and the left complementary set
L(A) of a canonical factor A as follows:
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R(A)=[a | Aa�$]

R(A)=[a | aA�$],

where a is a generator. Define the right complement of a canonical factor
A to be the word A* such that AA*=$. Since W$=${(W ), we have
L({(A))={(L(A)) and R({(A))={(R(A)).

Note that (A*)*={(A), R(A)=S(A*)=F(A*), L(A*)=F(A)=S(A).
Also R(A*) S({(A))=F({(A)), because {&1(A*)A=$=A*{(A) and L(A)
=F({&1(A*))=S({&1(A*)).

The next proposition shows us equivalent ways to recognize when a
decomposition of a positive word is left-weighted.

Proposition 3.9. For any Q�e, let Q=AP be a decomposition, where
A is a canonical factor and P�e. Then the following are equivalent:

(I) A W P.

(II) R(A) & S(P)=<.

(III) S(Q)=S(A).

(IV) If WQ�$ for some W�e, then WA�$.

(V) For any V�e, S(VQ)=S(VA).

(VI) If Q=A1P1 is another decomposition with A1 a canonical factor
and P1�e, then A=A1A$ for some canonical factor A$ (where A$ could be e).

Proof. See [7] and [10]. K

We can now give the promised normal form, wich solves the word
problem for our new presentation for Bn :

Theorem 3.10. Any n-braid W has a unique representative W in left-
canonical form:

W=$uAlA2 } } } Ak ,

where each adjacent pair Ai Ai+1 is left weighted and each Ai is a canonical
factor. In this representation inf(W)=u and sup(W)=u+k.

Proof. For any W representing W we first write W=$vP for some
positive word P and a possibly negative integer v. For any P�e, we then
iterate the left-weighted decomposition P=A1P1 , P1=A2 P2 , ... to obtain
W=$uA1A2 } } } Ak , where e<Ai<$ and R(Ai) & S(Ai+1)=<. This
decomposition is unique, by Corollary 3.7, because S(AiAi+1 } } } Ak)=
S(Ai) for 1�i�k. K
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The decomposition of Theorem 3.10 will be called the left-canonical form
of W. For future use, we note one of its symmetries:

Proposition 3.11. (I) Let A, B be canonical factors. Then A W B if and
only if B* W {(A*).

(II) The left-canonical forms of W and W&1 are related by:

W=$uAlA2 } } } Ak , W&1=$&(u+k){&(u+k)(Ak*) } } } {&(u+1)(A1*).

Proof. It is easy to show that the following identities hold for A # [0, 1].

S({(A))={(S(A)), R({(A))={(R(A)),

S(A*)=R(A), R(A*)=S({(A)).

Then (I) is clear because

R(B*) & S({(A*))=S({(B)) & R({(A))={(R(A) & S(B))

As for (II), it is easy to see that the equation for W&1 holds. And it is the
canonical form by (I). K

We end this section with two technical lemmas and a corollary which
will play a role in the implementation of Theorem 3.10 as an algorithm.
They relate to the steps to be followed in the passage from an arbitrary
representative of a braid of the form $uA1A2 } } } Ar , where each Ai is in
[0,1], to one in which every adjacent pair AiAi+1 satisfies the conditions
for left-weightedness. The question we address is this: suppose that A1A2 } } } Ai

is left-weighted, that Ai+1 is a new canonical factor, and that AiAi+1 is not
left-weighted. Change to left-weighted form A$iA$i+1 . Now Ai&1A$1 may not
be left-weighted. We change it to left-weighted form A$i&1Ai". The question
which we address is whether it is possible that after both changes Ai"A$i+1

is not left-weighted? The next two lemmas will be used to show that the
answer is ``no''.

Lemma 3.12. Let AB, BC be canonical factors. Then A W C if and only
if (AB) W C.

Proof. By Corollary 3.8, (AB) W C iff for each c # S(C) there exists
a�(AB) such that (a, c) is an obstructing pair. Since BC is a canonical
factor, we know from Corollary 3.6 that we cannot have a�B. Therefore
the only possibility is that a�A. K

Lemma 3.13. Suppose that A, B, C, D, B$, C$ are canonical factors and
that ABCD=AC$B$D. Suppose also that BC, CD, AC$, C$B$ are canonical
factors, and that A W B and B W D. Then B$ W D.
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Proof. By Proposition 3.11 it suffices to show that D* W {((B$)*).

S(D*)�S(D*{((B$)*))

�S(D*{((B$)*) {2((AC$)*))

=S(((AC$) B$D)&1 $3)

=S((AB(CD))&1 $3)

=S((CD)* {(B*) {2(A*))

=S((CD)* {(B*))

=S(D*{((BC)*))

=S(D*)

Here the fourth equality which follows the first two inclusions is a conse-
quence of the fact that A W B. The sixth equality follows from B W D, which
(by Lemma 3.12) implies that (BC) W D. But then, every inclusion must be
an equality, so that S(D*)=S(D*{(B$*)). But then, by Proposition 3.11, it
follows that B$ W D. K

We now apply the two lemmas to prove what we will need about
left-weightedness.

Corollary 3.14. Suppose that Ai&1 , Ai , Ai+1 are canonical factors,
with Ai&1 W A i . Let A$i , A$i+1 be canonical factors with A iA i+1=A$i A$i+1 and
A$i W A$i+1 . Let A$i&1 , Ai" be canonical factors with A i&1A$i=A$i&1Ai" and
A$i&1 W Ai". Then Ai" W A$i+1 .

Proof. The conversion of (Ai)(Ai+1) to left-weighted form A$i W A$i+1

implies the existence of U�e with

(Ai)(Ai+1)=(Ai)(UA$i+1)=(AiU)(A$i+1)=(Ai$)(A$i+1).

The subsequent conversion of (Ai&1)(Ai$) to left-weighted form A$i&1 W Ai"
implies the existence of V�e with

(Ai&1)(A$i )=(Ai&1)(VA i")=(Ai&1V )(A i")=(A$i&1)(Ai").

Set Ai&1=A, Ai=B, U=C, A$i+1=D, V=B$, Ai"=C$ and apply Lemma
3.13 to conclude that Ai" W A$i+1 . K
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4. ALGORITHM FOR THE WORD PROBLEM,
AND ITS COMPLEXITY

In this section we describe our algorithm for putting an arbitrary W # Bn

into left-canonical form and analyze the complexity of each step in the
algorithm. The complexity of a computation is said to be O( f (n)) if the
number of steps taken by a Turing machine (TM) to do the computation
is at most kf (n) for some positive real number k. Our calculations will
be based upon the use of a random access memory machine (RAM), which
is in general faster than a TM model (see Chapter 1 of [2]). An RAM
machine has two models: in the first (which we use) a single input (which
we interpret to be the braid index) takes one memory unit of time. Unless
the integer n is so large that it cannot be described by a single computer
word, this ``uniform cost criterion'' applies. We assume that to be the case,
i.e. that the braid index n can be stored by one memory unit of the machine.

We recall that each canonical factor decomposes into a product of parallel
descending cycles A=$?1

} } } $?k
, and that A is uniquely determined by the

permutation ?1 } } } ?k . So we identify a canonical factor with the permuta-
tion of its image under the projection Bn � 7n . We denote each cycle ?i by
its ordered sequence of subscripts. For example, we write (5, 4, 3, 1) for
a54 a43a31 .

We use two different ways to denote a permutation ? which is the image
of a canonical factor: the first is by the n-tuple (?(1), ..., ?(n)) and the
second is by its decomposition as a product of parallel, descending cycles
?1 } } } ?k . The two notations can be transformed to one another in linear
time. The advantage of the notation ?=(?(1), ..., ?(n)) is that the group
operations of multiplication and inversion can be perfomed in linear time.

If A, B # [0, 1], the meet of A and B, denoted A 7B, is defined to be the
maximal canonical factor C such that C�A and C�B. Our definition is
analogous to that in [8, page 185]. Note that C can be characterized by
the property that S(C)=S(A) & S(B).

Lemma 4.1. If A, B # [0, 1], then A 7B can be computed in linear time
as a function of n.

Proof. Let A=?1 } } } ?k and B={1 } } } {l , where the ordering of the
factors is arbitrary, but once we have made the choice we shall regard it as
fixed. Let ~ denote disjoint union. Then A 7 B=>i, j ? i 7 {j since

S(A 7 B)=S(A) & S(B)=\�
i

S(?i)+& \�
j

S({j)+
=�

i, j

(S(?i) & S({j))=�
i, j

(S(?i 7 { j)).
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For two descending cycles ?i=(t1 , ..., tp) and {j=(s1 , ..., sq), we have:

S(?i) & S({j)=[ats | t>s and t, s # [t1 , ..., tp] & [s1 , ..., sq]]

Thus

?i 7 {j

={(u1 , ..., ur)
e

if [t1 , ..., tp] & [s1 , ..., sq]=[u1 , ..., ur] where r�2
if |[t1 , ..., tp] & [s1 , ..., sq]�1

If we treat a decreasing cycle as a subset of [1, ..., n] and a canonical factor
as a disjoint union of the corresponding subsets, we may write A 7 B as

A7 B=�
i, j

(?i & {j).

We will find this disjoint union A 7 B of subsets of [1, ..., n] in linear time
by the following four steps:

1. Make a list of triples [(i, j, m) such that m=1, ..., n appears in ?i

and {j]. We do this by scanning A=?i } } } ?k first and writing (i, � , m) if ? i

contains m and then scanning B={1 } } } {l and filling in the middle entry of
the triple (i, � , m) with j if {j contains m. We throw away all triples with
a missing entry. The list contains at most n triples. For example, if A=
(5, 4, 1)(3, 2) and B=(4, 2, 1), our list contains three triples, (1, 1, 4),
(1, 1, 1), (2, 1, 2). This operation is clearly in O(n).

2. Sort the list of triples lexicographically. In the above example,
(2, 1, 2), (1, 1, 4), (1, 1, 1) are the entries in the sorted list. There is an
algorithm to do this in time O(n). See [2, Theorem 3.1].

3. Partition the sorted list by collecting triples with the same first two
entries and then throw away any collection with less than one element. In
the above example, [(2, 1, 2)], [(1, 1, 4), (1, 1, 1)] forms the partitioned
list and we need to throw away the collection [(2, 1, 2)]. This can be done
by scanning the sorted list once. Its complexity is O(n).

4. From each collection, write down the third entry to form a descend-
ing cycle. Note that the third entries are already in descending order. In the
above example, (4, 1) becomes A 7 B. This step again takes O(n).

Since the above steps are all in O(n), we are done. K

Remark 4.2. We remark that the key step in both our computation and
that in [8] is in the computation of A 7 B, where A and B are permutation
braids in [8] and canonical factors in our work. Our computation is
described in Lemma 4.1. We now examine theirs. The set R_ which is used
in [8] is defined on pages 184�5 of [8] and characterized inductively
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on page 185. The fact that R_ is defined inductively means that one cannot
use a standard merge-sort algorithm. To get around this, the merge-sort
approach is modified, as explained on lines 2�5 of page 206: one sorts
1, 2, ..., n by the rule i< j if C(i)<C( j), where C(i) is the image of i under
the permutation C=A 7 B. This ordering between two integers cannot be
done in constant time. The running time is O(n log n), where log n is the
depth of recursion and n is the time needed to assign integers as above and
to merge sets at each depth.

Lemma 4.3. Let A, B be canonical factors, i, e. e�A, B�$. There is an
algorithm of complexity O(n) that converts AB into the left weighted decom-
postion, i.e. A W B.

Proof. Let A* be the right complement of A, i.e. A* # [0, 1] and
AA*=$. Let C=A*7 B and B=CB$ for some B$ # [0, 1]. Then
(AC) W B$, for if there is ast�B$ such that ACast # [0, 1], then ast�B$�B
and ast�(AC)*�A*, which is impossible by the definition of meet. Thus
the algorithm to obtain the left weighted decomposition consists in the
following four steps:

(I) Compute the right complement A* of A.

(II) Compute C=A* 7 B.

(III) Compute B$ such that B=CB$.

(IV) Compute AC.

Step (II) is in O(n) by the Lemma 4.1. Steps (I), (III) and (IV) are in
O(n) since they involve inversions and multiplications of permutations like
A*=A&1$ and B$=C&1B. K

Now the algorithm for the left canonical decomposition of arbitrary
words is given by the following four processes.

The algorithm. We are given an element W # Bn and a word W in the
band generators which represents it.

1. If W is not a positive word, then the first step is to eliminate each
generator which has a negative exponent, replacing it with $&1A for some
positive word A # [0, 1]. The replacement formulas for the negative letters
in W is:

a&1
ts =$&1(n, n&1, ..., t+1, t, s&1, s&2, ..., 2, 1)(t&1, t&2, ..., s+1, s)

The complexity of this substitution process is at most O(n |W | ). Notice that
|P| can be as long as O(n |W | ), because each time we eliminate a negative
letter we replace it by a canonical factor of length n&2.
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2. Use the formulas:

Ai $k=$k{k(Ai) and $&1 $k=$k&1

to move the $&1's to the extreme left, to achieve a representative of W of
the form

W=$uA1A2 } } } Ak , Ai # [0, 1] (12)

and |Ai |=1 or n&2, according as Ai came from a positive or a negative
letter in W. Since we can do this process by scanning the word just once,
the complexity of this rewriting process depends on the length of A1A2 } } } Ak

and so it is at most O(n |W | ).

3. Now we need to change the above decomposition (12) to left
canonical form. In the process we will find that u is maximized, k is mini-
mized and Ai W Ai+1 for every i with 1�i�k. This can be achieved by
repeated uses of the subroutine that is described in the proof of Lemma 4.3.

In order to make the part A1 A2 } } } Ak left-weighted, we may work either
forward or backward. Assume inductively that A1A2 } } } Ai is already in its
left canonical form. Apply the subroutine on AiAi+1 to achieve Ai W Ai+1

and then to Ai&1Ai to achieve Ai&1 W Ai . Corollary 3.14 guarantees that
we still have Ai W Ai+1 , i.e. we do not need to go back to maintain the
left-weightedness. In this manner we apply the subroutine at most i-times
to make A1A2 } } } Ai Ai+1 left-weighted. Thus we need at most k(k+1)�2
applications of the subroutine to complete the left canonical form of
A1A2 } } } Ak and the complexity is O( |W |2 n) since k is proportional to |W |.

We may also work backward to obtain the same left canonical form by
assuming inductively that Ai Ai+1 } } } Ak is already in its canonical form and
trying to make Ai&1 AiAi+1 } } } Ak left-weighted.

4. Some of canonical factors at the beginning of A1A2 } } } Ak can be
$ and some of canonical factors at the end of A1A2 } } } Ak can be e. These
should be absorbed in the power of $ or deleted. Note that a canonical
factor A is $ if and only if |A|=n&1 and A is e if and only if |A|=0. Thus
we can decide whether A is $ of e in O(n) and so the complexity of this
process is at most O(kn)=O( |W | n).

Theorem 4.4. There is an algorithmic solution to the word problem that
is O( |W |2 n) where |W | is the length of the longer word among two words in
Bn that are being compared.

Proof. When we put two given words into their canonical forms, each
step has complexity at most O( |W |2 n). K
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5. THE CONJUGACY PROBLEM

Let W=$uA1 A2 } } } Ak , be the left-canonical form of W # Bn . The result
of a cycling (resp. decycling) of W=$uAlA2 } } } Ak , denoted by c(W ) (resp.
d(W)), is the braid $uA2 } } } Ak{&u(A1) (resp. $u{u(Ak) A1 } } } Ak&1). Iterated
cyclings are defined recursively by ci (W)=c(ci&1(W ), and similarly for
iterated decyclings. It is easy to see that the cycling (resp. decycling) does
not decrease (resp. increase) the inf (resp. sup).

With essentially no new work, we are able to show that the solution to
the conjugacy problem of [9] and [7] can be adapted to our new presen-
tation of Bn . This approach was taken in [10] for n=4. But there are no
new difficulties encountered when one goes to arbitrary n. The following
two theorems are the keys to the solution to the conjugacy problem.

Theorem 5.1 ([7], [10]). Suppose that W is conjugate to V.

(I) If inf(V )>inf(W ), then repeated cyclings will produce cl (W )
with inf (cl (W))>inf(W).

(II) If sup(V )<sup(W ), then repeated decyclings will produce dl (W )
with sup(dl (W ))<sup(W ).

(III) In every conjugacy class, the maximum value of inf(W ) and the
minimnum value of sup(W ) can be achieved simultaneously.

Theorem 5.2 ([7], [10]). Suppose that two n-braids V, W # [u, v] are
in the same conjugacy class. Then there is a sequence of n-braids V=V0 ,
V1 , ..., Vk=W, all in [u, v], such that each Vi+1 is the conjugate of Vi by
some element of [0, 1].

An algorithm for the solution to the conjugacy problem. We can
now describe our solution to the conjugacy problem. Suppose that two
words V, W represent conjugate elements V, W of Bn . Recall the defini-
tions of inf(V ) and sup(V ) which were given after Proposition 3.2. By
Theorem 5.1, inf(V )�sup(W ) and inf(W )�sup(V). Let u=min[inf(V ),
inf(W )] and let v=max[sup(V), sup(W )]. Then V, W # [u, v]. The
canonical lengths sup(V)&inf(V ) and sup(W )&inf(W ) are proportional
to the word lengths |V| and |W |, respectively. Thus v&u is at most
O( |V|+|W | ). The cardinality |[u, v]| is given by |[0, 1]|v&u. Since
|[0, 1]|�4n, it follows that |[u, v]| is at most O(exp(n( |V|+|W | ))).
By Theorem 5.2, there is a sequence V=V0 , V1 , ..., Vk=W of words in
[u, v] such that each element is conjugate to the next one by an element
of [0, 1]. The length k of this sequence can be |[u, v]| (in the worst
case) and so we must have U &1VU=W for some positive word U of
canonical length �|[u, v]|. Since there are |[0, 1]| |[u, v]| many positive
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words of canonical length �|[u, v]|, the number of all possible U is at
most O(exp(exp(n( |V|+|W | ))). This certainly gives a finite algorithm for
the conjugacy problem.

A more practical algorithm can be given as follows: Given a n-braid W,
the collection of conjugates of W that has both the maximal infimum and
the minimal supremum is called the super summit set of W after [9], [7].
Clearly the super summit set of a word is an invariant of its conjugacy
class. If we iterate the cycling operati on a word W, then the fact that the
number of positive words of fixed length is finite insures that we eventually
obtain an integer K such that cN(W)=cN+K (W ). In view of Theorem 5.1
we conclude that inf(cN(W )) is the maximum value of infimum among all
conjugates of W, Similarly, by interated decycling on cN(W ), we have
dMcN(W )=dM+LcN+K (W ) and so we conclude that sup(dMcN(W )) is the
minimum value of supremum among all all conjugates of W. Therefore
dMcN(W ) belongs the super summit set of W.

In order to decide whether two words V, W in Bn are conjugate, we
proceed as follows:

1. Iterate cycling and decycling on V and W until we have V$ and W$
in the super summit sets, respectively. If V, W have distinct maximal inf or
minimal sup, we conclude that they are not conjugate.

2. If V, W have the same maximal inf and minimal sup, the entire
super summit set of V must be generated by using Theorem 5.2 and the
finiteness of the super summit set.

3. If any one element in the super summit set of W is also in the
super summit set of V, then W and V are conjugate. Otherwise, they are
not.

It is hard to give complexity estimates for steps 1 and 2 above. We have
many conjectures and lots of data which gives evidence of structure, but we
have not been able to solve the problem.

Example. The conjugacy classes of the following two 4-braids X, Y
have the same ``numerical class invariants'', i.e. the same inf, sup and
cardinality of the super summit set. Also, the super summit set splits into
orbits under cycling and decycling, and the numbers and lengths of these
orbits coincide. But the braids are not conjugate because their super summit
sets are disjoint:

X=a&2
43 a32a&1

43 a32a3
21 a&1

32 a21a&2
32 ,

Y=a2
43a&1

32 a3
21a32a&1

43 a&1
21 a&2

32 .
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