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§1. Introduction

1.1. The Johnson-Morita filtration of the mapping class
group

Let Mg be a closed oriented 2-manifold of genus g and Γ̃g be its
mapping class group, that is, the group of isotopy classes of orientation-
preserving diffeomorphisms of Mg. Also, let π = π1(Mg), and denote
by π(k) the kth term in the lower central series of π, i.e. π(1) = π and
π(k+1) = [π, π(k)]. Then Γ̃g acts on the quotient groups π/π(k), and that
action yields a representation ρk : Γ̃g → Γk

g , where Γk
g < Aut (π/π(k)).

With these conventions, ρ1 is the trivial representation and ρ2 is the
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symplectic representation. The kernels of these representations make
what has been called the ‘Johnson filtration’ of Γ̃g, because they were
studied by Johnson in [21, 20]. Subsequently they were developed by
Morita in a series of papers [30, 31, 32, 33]. In particular, Morita studied
the extensions of Johnson’s homomorphisms to Γ̃, and so we refer to our
representations as the Johnson-Morita filtration of Γ̃.

Our work in this article is motivated by the case when Mg is a Hee-
gaard surface in a 3-manifold W and elements of Γ̃g are ‘gluing maps’
for the Heegaard splitting. One may then study W by investigating the
image under the maps ρk of the set of all possible gluing maps that yield
W . Among the many papers which relate to this approach to 3-manifold
topology are those of Birman [2], Birman and Craggs [3], Brendle and
Farb [5], Broaddus, Farb and Putman [6], Cochran, Gerges and Orr [10],
Garoufalidis and Levine [14], Johnson [17, 18, 19, 20], Montesinos and
Safont [27], Morita [29], Pitsch [37], [38], and Reidemeister [40]. The
papers just referenced relate to the cases k =1-4 in the infinite sequence
of actions of Γ̃g on the quotient groups of the lower central series, but
the possibility is there to study deeper invariants of W , obtainable in
principle from deeper quotients of the lower central series. The founda-
tions for such deeper studies have been laid in the work of Morita[30, 31],
who introduced the idea of studying higher representations via crossed
homomorphisms. It was proved by Day [11] that the crossed product
structure discovered by Morita in the cases k = 3 and 4 can be general-
ized to all k, enabling one in principle to separate out, at each level, the
new contributions.

The invariants of 3-manifolds that can be obtained in this way are
known to be closely related to finite type invariants of 3-manifolds [9, 14],
although as yet this approach to finite type invariants opens up many
more questions than answers. For example, it is known that the Rochlin
and Casson invariants of 3-manifolds appear in this setting at levels 3
and 4, respectively. It is also known that in general there are finitely
many linearly independent finite-type invariants of 3-manifolds at each
fixed order (or, in our setting, fixed level) k, yet at this moment no more
than one topological invariant has been encountered at any level.

The simplest non-trivial example of the program mentioned above
is the case k = 2. Here Γ̃g acts on H1(Mg) = π/[π, π]. The information
about W that is encoded in ρ2(φ), where φ ∈ Diff+(Mg) is the Heegaard
gluing map for a Heegaard splitting of W of minimum genus, together
with the images under ρ2 of the Heegaard gluing maps of all ‘stabiliza-
tions’ of the given splitting, is what we have in mind when we refer to a
‘symplectic Heegaard splitting’.
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The purpose of this article is to review the literature on symplectic
Heegaard splittings of 3-manifolds and the closely related literature on
linked abelian groups, with the goal of describing what we know, as
completely and explicitly and efficiently as possible, in a form in which
we hope will be useful for future work. At the same time, we will add a
few new things that we learned in the process. That is the broad outline
of what the reader can expect to find in the pages that follow.

This article dates back to 1989. At that time, the first two authors
had discussed the first author’s invariant of Heegaard splittings, in [2],
and had succeeded in proving three new facts : first, that the invariant
in [2] could be improved in a small way; second, that the improved
invariant was essentially the only invariant of Heegaard splittings that
could be obtained from a symplectic Heegaard splitting; and third, that
the index of stabilization of a symplectic Heegaard splitting is one. That
work was set aside, in partially completed form, to gather dust in a filing
cabinet. An early version of this paper had, however, been shared with
the authors of [27] (and was referenced and acknowledged in [27]). Alas,
it took us 18 years to prepare our work for publication! Our work was
resurrected, tentatively, at roughly the time of the conference on Groups
of Diffeomorphisms that was held in Tokyo September 11-15, 2006. As it
turned out, the subject still seemed to be relevant, and since a conference
proceedings was planned, we decided to update it and complete it, in
the hope that it might still be useful to current workers in the area.
When that decision was under discussion, the manuscript was shared
with the third author, who contributed many excellent suggestions, and
also answered a question posed by the first author (see §8). Soon after
that, he became a coauthor.

1.2. Heegaard splittings of 3-manifolds

Let W be a closed, orientable 3-dimensional manifold. A Heegaard
surface in W is a closed, orientable surface M of genus g � 0 embedded
in W which divides W into homeomorphic handlebodies N ∪ N̄ , where
N ∩ N̄ = ∂N = ∂N̄ = M . For example, if W is the 3-sphere

S3 =
{
(x1, x2, x3, x4) ∈ R4 | x2

1 + x2
2 + x2

3 + x2
4 = 1

}
,

then the torus

M =
{

(x1, x2, x3, x4) ∈ S3 | x2
1 + x2

2 = x2
3 + x2

4 =
1
2

}

is a Heegaard surface.



138 J. Birman, D. Johnson and A. Putman

Proposition 1.1. Every closed orientable 3-manifold W admits
Heegaard splittings.

See [41], for example, for a proof. One will also find there related
notions of Heegaard splittings of non-orientable 3-manifolds, of open
3-manifolds such as knot complements, and of 3-manifolds with bound-
ary, and also an excellent introduction to the topic and its many open
problems from the viewpoint of geometric topology.

Since any Heegaard splitting clearly gives rise to others under home-
omorphisms of W , an equivalence relation is in order.

Definition 1.2. Assume that W is an oriented 3-manifold, and
write W = N ∪ N̄ = N ′ ∪ N̄ ′. These two Heegaard splittings will be
said to be equivalent if there is a homeomorphism F : W → W which
restricts to homeomorphisms f : N → N ′ and f̄ : N̄ → N̄ ′. Observe
that our particular way of defining equivalent Heegaard splittings involve
a choice of the initial handlebody N and a choice of an orientation on
W . The genus of the splitting W = N ∪ N̄ is the genus of N . ||

There are 3-manifolds and even prime 3-manifolds which admit more
than one equivalence class of splittings (for example, see [12, 4]), there
are also 3-manifolds which admit unique equivalence classes of splittings
of minimal genus (e.g. lens spaces and the 3-torus S1×S1×S1), and there
are also 3-manifolds which admit unique equivalence classes of Heegaard
splittings of every genus. A very fundamental example was studied by
Waldhausen in [46], who proved:

Theorem 1.3 ([46]). Any two Heegaard splittings of the same, but
arbitrary, genus of the 3-sphere S3 are equivalent.

After that important result became known, other manifolds were
investigated. At the present writing, it seems correct to say that ‘most’
3-manifolds admit exactly one equivalence class of minimal genus Hee-
gaard splittings. On the other hand, many examples are known of man-
ifolds that admit more than one equivalence class of splittings. See, for
example, [28], where all the minimal genus Heegaard splittings of certain
Seifert fiber spaces are determined.

If a three-manifold admits a Heegaard splitting of genus g, then it
also admits of one genus g′ for every g′ > g. To see why this is the
case, let Ng ∪ N̄g be a Heegaard splitting of W of genus g, and let
T1 ∪ T̄1 be a Heegaard splitting of the 3-sphere S3 of genus 1. Remove
a 3-ball from W and a 3-ball from S3, choosing these 3-balls so that
they meet the respective Heegaard surfaces in discs. Using these 3-balls
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to form the connected sum W#S3, we obtain a new Heegaard splitting
(Ng#T1) ∪ (N̄g#T̄1) of W ∼= W#S3 of genus g + 1. This process is
called stabilizing a Heegaard splitting. Note that Theorem 1.3 implies
that the equivalence class of the new genus g+1 splitting is independent
of the choice of T1 and of T̄1, as subsets of S3, since all splittings of S3 of
genus 1, indeed of any genus, are equivalent. Iterating the procedure, we
obtain splittings (Ng#T1# · · ·#T1) ∪ (N̄g#T̄1# · · ·#T̄1) of W of each
genus g + k, k > 0.

Heegaard splittings of genus g and g′ of a 3-manifold W are said to
be stably equivalent if they have equivalent stabilizations of some genus
g + k = g′ + k′. In this regard, we have a classical result, proved in 1933
by Reidemeister [39] and (simultaneously and independently) by James
Singer [44]:

Theorem 1.4 ([39], [44]). Any two Heegaard splittings of any closed,
orientable 3-manifold W are stably equivalent.

Remark 1.5. We distinguish two types of candidates for inequiva-
lent minimum genus Heegaard splittings of a 3-manifold. The first (we
call it ordinary) is always present: two splittings which differ in the
choice of ordering of the two handlebodies, i.e. N ∪ N̄ in one case and
N̄ ∪ N in the other. Two ordinary Heegaard splittings may or may
not be equivalent. The second are all examples which are not ordinary,
e.g. the ‘horizontal’ and ‘vertical’ Heegaard splittings of certain Seifert
fibered spaces [28]. In view of the fact that Theorem 1.4 was proved in
1933, it seems remarkable that the following situation exists, as we write
in 2008:

• The only examples of inequivalent minimal genus Heegaard
splittings of genus g of the same 3-manifold which can be
proved to require more than one stabilization before they be-
come equivalent are ordinary examples;

• The discovery of the first ordinary examples which can be
proved to require more than one stabilization was made in 2008
[15].

• While non-ordinary examples have been known for some time,
at this writing there is no known pair which do not not be-
come equivalent after a single stabilization. For example, the
inequivalent minimal genus Heegaard splittings of Seifert fiber
spaces which were studied in [28] were proved in [42] to become
equivalent after a single stabilization.

Note that ordinary examples can be ruled out by a small change in
the definition of equivalence, although we have chosen not to do so,
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because the situation as regards ordinary examples is still far from being
understood. ||

Keeping Remark 1.5 in mind, we have several classical problems
about Heegaard splittings:

• How many stabilizations are needed before two inequivalent
Heegaard splittings of a 3-manifold become equivalent, as they
must because of Theorem 1.4? Is there a uniform bound, which
is independent of the choice of W and of the Heegaard surface
∂N = ∂N̄ in W?

• Can we use stabilized Heegaard splittings to find topological
invariants of 3-manifolds?

An example of a 3-manifold invariant which was discovered with the
help of Heegaard splittings is Casson’s invariant [1].

A Heegaard splitting of a 3-manifold W is said to have minimal
genus (or simply to be minimal) if there do not exist splittings of W
which have smaller genus. Our second problem involves Heegaard split-
tings which are not stabilized. Since it can happen that a Heegaard
splitting of a 3-manifold W is non-minimal in genus, but is not the sta-
bilization of a Heegaard splitting of smaller genus (a complication which
we wish to avoid), we assume from now on that wherever we consider
unstabilized Heegaard splittings, we assume the genus to be minimal
over all Heegaard splittings of the particular manifold. This brings us
to another problem:

• Can we find invariants of unstable Heegaard splittings, and so
reach a better understanding of the classification of Heegaard
splittings?

Surprisingly, such invariants are very hard to come by, and little is
known.

1.3. Symplectic Heegaard splittings

We begin by setting up notation that will be used throughout this
paper. We will use a standard model for a symplectic space and for the
symplectic group Sp(2g, Z). Let Ng be a handlebody. Then H1(∂Ng)
is a free abelian group of rank 2g. Thinking of it as a vector space,
the free abelian group H1(Ng; Z) is a subspace. We choose as basis
elements for the former the ordered array of homology classes of the loops
a1, . . . , ag, b1, . . . , bg which are depicted in Figure 1. With our choices,
the images of the ai under the inclusion map ∂Ng → Ng are a basis for
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Fig. 1. Curves representing a canonical basis for H1(∂Ng)

H1(Ng; Z). The algebraic intersection pairing (·, ·) defines a symplectic
form on H1(∂Ng; Z), making it into a symplectic space. The matrix of

intersection numbers for our canonical basis is J =
(

0g Ig

−Ig 0g

)
, where

0g and Ig are the g × g zero and identity matrices.

Definition 1.6. Sp(2g, Z) is the group of all 2g × 2g matrices H =(
R P
S Q

)
over Z which satisfy

(1) Ĥ J H = J

where Ĥ denotes the transpose of H. Hence H ∈ Sp(2g, Z) if and only
if its g × g blocks R,P ,S,Q satisfy
(2)
R̂S, P̂Q,RP̂ and SQ̂ are symmetric, and R̂Q − ŜP = RQ̂ − PŜ = I.

Note that H ∈ Sp(2g, Z) if and only if Ĥ ∈ Sp(2g, Z). ‖

Lemma 1.7. The group Γg (i.e. the image of the mapping class
group under ρ2) coincides with Sp(2g, Z).

Proof. The fact that elements of Γg satisfy the constraints in (2)
comes from the fact that topological mappings preserve algebraic in-
tersection numbers. The fact that every symplectic matrix is in the
image of ρ2 can be proven by combining the classical fact that Sp(2g, Z)
is generated by symplectic transvections with the fact that every such
symplectic transvection is the image of a Dehn twist. This fact was used
by Humphries, in his famous paper [16], to find a lower bound on the
number of Dehn twists needed to generate the mapping class group. He
used the known fact that Γg cannot be generated by fewer than 2g + 1
transvections. Q.E.D.
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Lemma 1.8. Let Λg be the subgroup of matrices in Γg which are in-
duced by topological mappings of ∂Ng which extend to homeomorphisms
of Ng (the so-called handlebody subgroup). Then Λg coincides with the
subgroup of all elements in Γg with a g × g block of zeros in the upper
right corner.

Proof. By our choice of a basis for H1(∂Ng; Z), a topologically
induced automorphism of H1(∂Ng; Z) extends to an automorphism of
H1(Ng; Z) only if it preserves the kernel of the inclusion-induced ho-
momorphism H1(∂Ng) → H1(Ng), i.e. the subgroup generated by
b1, . . . , bg. Sufficiency is proved by finding generators for the group Λg,
given in [34], and showing that each comes from a topological mapping
on ∂Ng which extends to a homeomorphism of Ng. Explicit lifts are
given in [2]. Q.E.D.

In § 1.2, we saw that every closed orientable 3-manifold admits Hee-
gaard splittings. Let us now choose coordinates to make this more ex-
plicit. Let N = Ng be a standard model for an oriented handlebody of
genus g, and let N̄ = φ(N) be a copy of N , where φ is a fixed orientation-
reversing homeomorphism. (Note that representative diffeomorphisms
are always required to be orientation-preserving.) Choosing any element
h̃ ∈ Diff+(∂Ng), we may then construct a 3-manifold W as the disjoint
union of Ng and N̄g, glued together by the rule φ ◦ h̃(x) = x, x ∈ ∂Ng.
To stress the role of h̃ we will write W = Ng ∪φ◦h̃ N̄g. With these con-
ventions, if we choose h̃ to be the identity map, the manifold W will be
the connect sum of g copies of S2×S1. The mapping class group Γ̃g now
means π0Diff+(∂Ng).

Now let Λ̃ = Λ̃g denote the subgroup of Γ̃g consisting of mapping
classes which have a representative which extends to a homeomorphism
of Ng. Note that every map of ∂Ng which is isotopic to the identity
extends, hence if one representative extends then so does every other
representative, so Λ̃g is well-defined.

Proposition 1.9. Equivalence classes of genus g Heegaard split-
tings of 3-manifolds are in 1-1 correspondence with double cosets in the
sequence of groups Γ̃g mod Λ̃g.

Proof. Each Heegaard splitting of a 3-manifold determines a
(non- unique) h̃ ∈ Γ̃g for some g, and each h̃ ∈ Γ̃g determines a 3-
manifold W = Ng ∪φ◦h̃ N̄g. Suppose Ng ∪φ◦h̃ N̄g and N ′

g ∪φ◦h̃′ N̄g
′
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are equivalent splittings of a 3-manifold W . Then there is an equiv-
alence F which restricts to equivalences f, f̄ on Ng, N̄g and then to
f0 = f |∂Ng , f̄0 = f̄ |∂N̄g

. There is thus a commutative diagram

∂Ng
h̃−−−−→ ∂Ng

φ−−−−→ ∂N̄g⏐⏐	f0

⏐⏐	f̄0

∂Ng
h̃′

−−−−→ ∂Ng
φ−−−−→ ∂N̄g

Then h̃′f0 = φ−1f̄0φh̃, hence h̃′ ∈ Λ̃h̃Λ̃. Conversely, if h̃′ ∈ Λ̃h̃Λ̃ then
h̃′f0 = φ−1f̄0φh̃ for some f0, φ

−1f̄0φ ∈ Λ̃. Let f, φ−1f̄φ be an extension
of f0, φ

−1f0φ to Ng. Define F |Ng = f , F |N̄g
= f̄ . Q.E.D.

For convenience, we will not distinguish between the diffeomorphism h̃
and the mapping class it determines in Γ̃g.

Corollary 1.10. Let W = Ng ∪φ◦h̃ N̄g and let W ′ = Ng′ ∪φ◦h̃′ N̄g′ .
Let s̃ be any choice of gluing map for a genus 1 splitting of S3. Then
W is homeomorphic to W ′ if and only if there are integers k, k′ with
g+k = g′+k′ so that h̃#ks̃ is in the same double coset of Γ̃g+k mod Λ̃g+k

as h̃′#k′ s̃.

Proof. This follows directly from Theorem 1.4. Q.E.D.

Corollary 1.11. Let W be a closed, orientable 3-dimensional man-
ifold which is defined by any Heegaard splitting of genus g with Heegaard
gluing map h̃. Then invariants of the stable double coset of h̃ in Γ̃g are
topological invariants of the 3-manifold W .

Proof. This is a direct consequence of Proposition 1.1, Proposi-
tion 1.9, and Corollary 1.10. Q.E.D.

We pass to the action of Γ̃g on π1(∂Ng)/[π1(∂Ng), π1(∂Ng)], i.e. to
the representation ρ2 : Γ̃g → Γg. What information might we expect
to detect about Heegaard splittings from the image ρ2(h̃) of our gluing
map h̃ in Γg?

Definition 1.12. A stabilization of index k of H is the image of
H ∈ Γg under the embedding Γg → Γg+k defined by bordering R,P ,S,Q
according to the rule

R 	→ 0k ⊕R, P 	→ Ik ⊕ P , S 	→ −Ik ⊕ S, Q 	→ 0k ⊕Q.
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This is a particular way of taking the direct sum of H ∈ Γg with the
matrix J ∈ Γ1, which is the image under ρ2 of a Heegaard gluing map
that defines S2.

Define H,H′ ∈ Γg to be equivalent (H � H′) if H′ ∈ ΛgHΛ and
stably equivalent (H �s H′) if H and H′ have equivalent stabilizations
for some index k � 0. Equivalence classes are then double cosets in
Γg mod Λg and stable equivalence classes are double cosets in Γg+k

modulo Λg+k.

A stabilized symplectic Heegaard splitting is the union of all stabi-
lizations of the double coset ΛgHΛg. ‖

This brings us to the main topic of this article. Choose any h̃ ∈ Γ̃g

and use it to construct a 3-manifold W as above. Let H be the symplectic
matrix that is induced by the action of h = ρ2(h̃).

Definition 1.13. A symplectic Heegaard splitting of the 3-manifold
W = Ng ∪φ◦h̃ N̄g is the double coset ΛgHΛg ⊂ Sp(2g, Z), together
with the double cosets of all stabilizations of H. A symplectic Heegaard
splitting is minimal if it is not the stabilization of a symplectic Heegaard
splitting of lower genus which is in the same double coset. ‖

1.4. Survey of the literature

The earliest investigation of Heegaard splittings were the proofs,
by Singer [44] and Reidemeister [39] that all Heegaard splittings of
an arbitrary 3-manifold are stably equivalent. Shortly after the publi-
cation of [39] Reidemeister asked about invariants of 3-manifolds that
can be determined from a Heegaard splittings. His invariants are given
in the paper [40]. He proves by an example (the Lens spaces) that the
invariants he discovered distinguish manifolds which have the same fun-
damental group π1(W ), and so are independent of the rank and torsion
coefficients of W . Reidemeister’s invariants are determined from the ac-
tion of a Heegaard gluing map on H1(W ; Z). We will explain exactly
what he proved at the end of §6.4.

Essentially simultaneously and independently of Reidemeister’s
work, Seifert [43] introduced the concept of a linking form on a 3-
manifold whose homology group has a torsion subgroup T , and studied
the special case when T has no 2-torsion, obtaining a complete set of
invariants for linked abelian groups in this special case. His very new
idea was that linking numbers could be defined not just in homology
spheres, but also in 3-manifolds whose Z-homology group has torsion.
Let W be a closed, oriented 3-manifold and suppose that the torsion
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subgroup T of H1(W ; Z) is non-trivial. Let a, b be simple closed curves
in W which represent elements of T of order α, β respectively. Since
αa, βb are homologous to zero they bound surfaces A, B ⊂ W . Let A · b
denote the algebraic intersection number of A with b, similarly define
B · a. The linking number λ(a, b) of a with b is the natural number

λ(a, b) =
1
α

A · b =
1
β

a · B.

Seifert’s invariants are defined in terms of an array of integer determi-
nants associated to the p-primary cyclic summands of T . The invariant
depends upon whether each determinant in the array is or is not a qua-
dratic residue mod pk. His work is, however, restricted to the case when
there is no 2-torsion. In the appendix to [43], and also at the end of
[40], both Seifert and Reidemeister noted that their invariants are in
fact closely related, although neither makes that precise. Both [40] and
[43] are, at this writing very well known but it takes some work to pin
down the precise relationship so that one can move comfortably between
them. See §6.4.

In [7] Burger reduced the problem of classifying linked p-groups
(p � 2) to the classification of symmetric bilinear forms over Zpn . His
procedure, together with Minkowski’s work on quadratic forms [26] gives
a complete set of invariants for the case p = 2, but they are inconve-
niently cumbersome. Our contribution here is to reduce Burger’s in-
variants to a simple and useful set. Most of what we do is probably
obtainable from Burger’s work together with the work of O’Meara [36];
however, our presentation is unified and part of a systematic study,
hence it may be more useful than the two references [7] and [36]. We
note that Kawauchi and Kojima [22] also studied linked abelian groups
with 2-torsion. They obtained a solution of the problem which is similar
to ours, however, their goal was different and the intersection between
their paper and ours is small.

Invariants of Heegaard splittings, rather than of the manifold itself,
were first studied in the context of symplectic Heegaard splittings, in [2].
Later, the work in [2] was further investigated in [27], from a slightly
different perspective, with two motivations behind their work. The first
is that they thought that linking forms in 3-manifold might give more
information than intersection forms on a Heegaard surface, but that is
not the case. Second, they thought that, because a finite abelian group
can be decomposed as a direct sum of cyclic groups of prime power
order, whereas in [2] the decomposition was as a direct sum of a (in
general smaller) set of cyclic groups which are not of prime power order,
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that perhaps there were invariants of unstabilized Heegaard splittings
that were missed in [2]. The main result in [27] is that, with one small
exception in the case when there is 2-torsion, the Heegaard splitting
invariants in [2] cannot be improved.

See [23] for an invariant of Heegaard splittings which is related in
an interesting way to our work in this paper. The relationship will be
discussed in §8 of this paper.

1.5. Six problems about symplectic Heegaard splittings

In this article we will consider six problems about symplectic Hee-
gaard splittings, giving complete solutions for the first five and a partial
solution for the sixth:

Problem 1: Find a complete set of invariants for stabilized sym-
plectic Heegaard splittings.
The full solution is in Corollary 5.16, which asserts the well-known result
that a complete set of invariants are the rank of H1(W ; Z), its torsion
coefficients, and the complete set of linking invariants.

Problem 2: Knowing the invariants which are given in the solu-
tion to Problem 1 above, the next step is to learn how to compute them.
Problem 2 asks for a constructive procedure for computing the invariants
in Problem 1 for particular H ∈ Γ. The easy part of this, i.e. the compu-
tation of invariants which determine H1(W ; Z), is given in Theorem 2.4.
The hard part is in the analysis of the linking invariants associated to
the torsion subgroup of H1(W ; Z). See §6.2 for the case when p is odd
and §6.3 for the case where there is 2-torsion.

Problem 3: Determine whether there is a bound on the stabiliza-
tion index of a symplectic Heegaard splitting. We will prove that there
is a uniform bound, and it is 1. See Corollary 5.22.

Problem 4: Find a complete set of invariants which characterize
minimal (unstabilized) symplectic Heegaard splittings and learn how to
compute them. In Theorem 7.5 we will prove that the only invariant is
a strengthened form of the invariant which was discovered in [2], using
very different methods. Example 7.14 shows that we have, indeed, found
an invariant which is stronger than the one in [2].

Problem 5: Count the number of equivalence classes of minimal
(unstabilized) symplectic Heegaard splittings. The answer is given in
Theorem 7.7.

Problem 6: This problem asks for a normal form which allows one
to choose a unique representative for the collection of matrices in an
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unstabilized double coset in Γg (mod Λg). We were only able to give a
partial solution to this problem. In §7.5 we explain the difficulty.

In §8 we go a little bit beyond the main goal of this paper, and
consider whether the work in §3 of this paper can be generalized to the
higher order terms in the Johnson-Morita filtration. As we shall see, the
approach generalizes, but it does not yield anything new.

§2. Symplectic matrices : a partial normalization

Our task in this section is the proof of Theorem 2.4, which gives
a partial solution to Problem 2 and tells us how to recognize when a
symplectic Heegaard splitting is stabilized.

2.1. Preliminaries

We follow the notation that we set up §1. Let h̃ be the gluing map
for a Heegaard splitting of a 3-manifold W . We wish to study the double
coset ΛghΛg ⊂ Γ. For that it will be helpful to learn a little bit more
about the subgroup Λg. Recall that, by Lemma 1.8, the group Λg is the
subgroup of elements in Γg with a g×g block of zeros in the upper right
corner.

Lemma 2.1. (i) The group Λg is the semi-direct product of its
normal subgroup

Ω =
{(

I 0
Z I

) ∣∣∣∣ Z symmetric
}

and its subgroup

Σ =
{(

A 0
0 Â−1

) ∣∣∣∣ A unimodular
}

.

(ii) Every element in Ω and every element in Σ is induced by a home-
omorphism of ∂Xg which extends to a homeomorphism of Xg.

Proof. (i) Since a general matrix ( A 0
C D ) ∈ Λg is symplectic, it fol-

lows from (2) that ÂD = I, hence Â = D−1, so A ∈ GL(g, Z). Since(A 0
0 A−1

)
∈ Λg, it follows that the most general matrix in Λg has the

form:(
A 0
C A−1

)
=
(
A 0
0 A−1

)(
I 0
Z 0

)
=
(

I 0
Â−1ZA−1 I

)(
A 0
0 Â−1

)
,
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with Z = AC. But then (by (2) again) Z must be symmetric. A simple
calculation reveals that the conjugate of any element in Ω by an element
in Λ is in Ω. The semi-direct product structure follows from the fact
that both Σ and Ω embed naturally in Λ, and that they generate Λ.

(ii) The reader is referred to [2] for explicit lifts of generators of Ω
and Σ to the mapping class group. Q.E.D.

In several places in this article it will be necessary to pass between
the two canonical ways of decomposing a finite abelian group T into
cyclic summands. We record here the following well-known theorem:

Theorem 2.2 (The fundamental theorem for finitely generated
abelian groups). Let G be a finitely generated abelian group. Then the
following hold:

(i) G is a direct sum of r infinite cyclic groups and a finite abelian
group T . The group T is a direct sum of t finite cyclic sub-
groups T (1) ⊕ · · · ⊕ T (t), where T (i) has order τi. Each τi divides
τi+1, 1 ≤ i ≤ t − 1. The integers r, t, τ1, . . . , τt are a complete set
of invariants of the isomorphism class of G.

Let p1, . . . , pk be the prime divisors of τt. Then each integer
τi, 1 ≤ i ≤ t has a decomposition as a product of primes:

(3)
τi = p

ei,1
1 p

ei,2
2 · · · pei,k

k , 0 � e1,d � e2,d � · · · � et,d, for each 1 ≤ d ≤ k.

(ii) T is also a direct sum of p-primary groups T (p1) ⊕ · · · ⊕ T (pk).
Here each T (pd) decomposes in a unique way as a direct sum
of cyclic groups, each of which has order a power of pd. Focusing
on one such prime pd, 1 ≤ d ≤ k, the group T (pd) is a sum of
cyclic groups of orders p

e1,d

d , p
e2,d

d , . . . , p
et,d

d , where the powers ei,d

that occur are not necessarily distinct. That is, we have:

e1,d = e2,d = · · · = et1,d < et1+1,d = · · ·(4)
= et2,d < · · · < etr+1,d = etr+2,d = · · · = etr+1,d.

(iii) Let yi be a generator of the cyclic group of order τi in (i) above.
Let gi,d be a generator of the cyclic group of order p

ei,d

d in (ii)
above. Note that there may be more than one group with this
order. Then the generators gi,d and yi, where 1 ≤ i ≤ t and
1 ≤ d ≤ k are related by:

(5) gi,d =

(
τi

(pei,d

d )

)
yi = (pei,1

1 p
ei,2
2 · · · pei,d−1

d−1 p
ei,d+1
d+1 · · · pei,k

k )yi.
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The following corollary to statement (i) of Theorem 2.2 allows us to
transform a presentation matrix for a finitely generated abelian group
into a particularly simple form.

Corollary 2.3 (Smith normal form, see, e.g., [34, Theorem II.9]).
Let P be any g × g integer matrix. Then there exist U ,V ∈ GL(g, Z)
so that UPV = Diag(1, . . . , 1, τ1, . . . , τt, 0, . . . , 0), where the τi are non-
negative integers which are different from 1 and satisfying τi|τi+1 for all
1 ≤ i < g. The diagonal matrix is called the Smith normal form of P.
Additionally, the Smith normal form of a matrix is unique, so that in
particular the torsion free rank r (the number of zeros in the diagonal)
and the torsion rank t are unique. The number of 1′s is the index of
stabilization of the symplectic Heegaard splitting, which can vary.

2.2. A partial normal form

Theorem 2.4. Let

(6) H = ρ2(h̃) =
(
R P
S Q

)

be the symplectic matrix associated to a given Heegaard splitting of a
3-manifold W , where h̃ is the Heegaard gluing map. Then:

(i) The g-dimensional matrix P is a relation matrix for H =
H1(W ; Z). This is true, independent of the choice of H in
its double coset modulo Λg. Different choices correspond to
different choices of basis for H.

(ii) The double coset ΛgHΛg has a representative:

(7) H′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 I 0 0
0 R(2) 0 0 P(2) 0
0 0 I 0 0 0
−I 0 0 0 0 0
0 S(2) 0 0 Q(2) 0
0 0 0 0 0 I

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where P(2) = Diag‘(τ1, . . . , τt) with the τi positive integers sat-
isfying τi|τi+1 for 1 ≤ i < t. In this representation the subma-
trix

(8) H(2) =
(

R(2) P(2)

S(2) Q(2)

)

is symplectic.
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(iii) The t × t matrix P(2) is a relation matrix for the torsion sub-
group T of H, which is a direct sum of cyclic groups of orders
τ1, . . . , τt. The number r of zeros in the lower part of the diag-
onal of P (1) = Diag(1, . . . , 1, τ1, . . . , τt, 0, . . . 0) is the free rank
of H and the number of 1′s is the index of stabilization of the
splitting. In particular, a symplectic Heegaard splitting with
defining matrix H ∈ Sp(2g, Z) is unstabilized precisely when
the diagonal matrix P(1) contains no unit entries.

(iv) We may further assume that every entry qij ∈ Q(2) and every
entry rij ∈ R(2) is constrained as follows. Assume that i ≤ j.
Then:

0 ≤ qji < τj , qij = (τj/τi)qji, and 0 ≤ rij < τi, rji = (τj/τi)rij .

Proof. Proof of (i). Apply the Mayer-Vietoris sequence to the de-
composition of the 3-manifold W that arises through the Heegaard split-
ting Ng ∪φ◦h̃ N̄g.

Proof of (ii). The proof is a fun exercise in manipulating symplectic
matrices, but without lots of care the proof will not be very efficient.

In view of Lemma 2.1, the most general element in the double coset
of H =

(R P
S Q
)

has the form

M =
(

I 0
Z1 I

)(
U 0
0 Û−1

)(
R P
S Q

)(
V̂−1 0
0 V

)(
I 0
Z2 I

)
(9)

=
(
∗ UPV
∗ ∗

)

where U ,V are arbitrary matrices in GL(2,Z).

Choose U ,V ∈ GL(t, Z) so that

P(1) = (I ⊕ U ⊕ I)(P)(I ⊕ V ⊕ I)
= Diag(1, 1, . . . , 1, τ1, τ2, . . . , τt, 0, . . . , 0) ∈ GL(g, Z).

By Corollary 2.3, this is always possible. Let P(2) = Diag(τ1, τ2, . . . , τt) ∈
GL(t, Z). Using (9). we have shown that H is in the same double coset
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as
(10)

H(1) =
(
R(1) P(1)

S(1) Q(1)

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

R11 R12 R13 I 0 0
R21 R22 R23 0 P(2) 0
R31 R32 R33 0 0 0
S11 S12 S13 Q11 Q12 Q13

S21 S22 S23 Q21 Q22 Q23

S31 S32 S33 Q31 Q32 Q33

⎞
⎟⎟⎟⎟⎟⎟⎠

This is the first step in our partial normal form.

It will be convenient to write H(1) in several different ways in block
form. The first one is the block decomposition in (10). In each of the
other cases, given below, the main decomposition is into square g × g
blocks, and these blocks will not be further decomposed (although much
later they will be modified):

(11) H(1) =

⎛
⎜⎜⎝

A11 A12 B11 0
A21 A22 0 0
C11 C12 D11 D12

C21 C22 D21 D22

⎞
⎟⎟⎠ =

(
A B
C D

)

where

A11 =
(

R11 R12

R21 R(2)

)
, B11 =

(
I 0
0 P(2)

)
,

C11 =
(

S11 S12

S21 S(2)

)
, . . .

A12 =
(

R13

R23

)
, A21 =

(
R31 R32

)
, A22 = (R33) , . . .

In general, the blocksRij ,Aij , . . . are not square, however R(2),S(2),P(2),

Q(2) are square t × t matrices.

Now H(1) ∈ Γg, hence its g × g block satisfy the conditions (1)
and (2). Working with the decomposition of H(1) into the block form
given in (10), one sees that because of the special form of B =

( B11 0
0 0

)
,

the 2(g − r) × 2(g − r) matrix
(A11 B11

C11 D11

)
also satisfies (1) and (2), now

with respect to its (g − r) × (g − r) block. From there it follows (using
Definition 1.6) that the matrix given in (10) is in the group Γ2(g−r). One
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may then verify without difficulty that the augmented matrix

M(2) =

⎛
⎜⎜⎝

A11 0 B11 0
0 I 0 0
C11 0 D11 0
0 0 0 I

⎞
⎟⎟⎠(12)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

R11 R12 0 I 0 0
R21 R(2) 0 0 P(2) 0
0 0 I 0 0 0
S11 S12 0 Q11 Q12 0
S21 S(2) 0 Q21 Q(2) 0
0 0 0 0 0 I

⎞
⎟⎟⎟⎟⎟⎟⎠

,

which has dimension 2g again, also satisfies the conditions (1) and (2),
now with respect to its g × g block, and so H(2) is in Γg.

We will need further information about H(1) and M(2). Return-
ing to (10), and using the right decomposition of H(1), we now verify
that conditions (1) and (2) imply the following relations between the
subblocks:

Q13 = Q23 = R31 = R32 = 0(13)

P(2)Q21 = Q̂12(14)

R12P(2) = R̂21(15)

P(2)Q(2) symmetric(16)

R(2)P(2) symmetric(17)
Q11,R11 symmetric(18)

Now observe that if ( A B
C D ) ∈ Γg then (1) and (2) imply that

(19)
(
A B
C D

)−1

=
(

D̂ −B̂
−Ĉ Â

)
.

Using equation (19) to compute (M(2))−1, and making use of the
conditions in (13)-(18), one may then verify that the product matrix
(M(2))−1H(1) has a g × g block of zeros in the upper right corner. But
then (M(2))−1H(1) ∈ Λg, hence M(2) and H(1) are in the same double
coset.

Further normalizations are now possible. Since R11 and Q11 are
symmetric (by the symplectic constraints (2)) the following matrices are
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in the subgroup Ω ⊂ Λg defined in Lemma 2.1:

N1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0

−Q11 −Q̂21 0 I 0 0
−Q21 0 0 0 I 0

0 0 0 0 0 I

⎞
⎟⎟⎟⎟⎟⎟⎠

N2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0

−R11 −R21 0 I 0 0
−R̂12 0 0 0 I 0

0 0 0 0 0 I

⎞
⎟⎟⎟⎟⎟⎟⎠

Computing, we find that

N1M(2)N2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 I 0 0
0 R(2) 0 0 P(2) 0
0 0 I 0 0 0
∗ ∗ 0 0 0 0
∗ S(2) 0 0 Q(2) 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Since this matrix is in Γg, its entries satisfy the conditions (1) and (2).
An easy check shows that the lower left g×g box necessarily agrees with
the entries in the matrix defined in the statement of Theorem 2.4. Thus
H(2) = N1M(2)N2 is in the same double coset as M(2), H(1) and H.
This completes the proof of (ii).

Proof of (iii). In (i) we saw that in the partial normal form the ma-
trix Ig−r−t ⊕ P(2) ⊕ 0r is a relation matrix for H . Since H is a finitely
generated abelian group, it is a direct sum of t cyclic groups of order
τ1, . . . , τt and r infinite cyclic groups and g − r − t trivial groups. The
g − r − t trivial groups indicate that the symplectic Heegaard splitting
has been stabilized g − r − t times. That is, (iii) is true.

Proof of (iv). We consider additional changes in the submatrix H(2)

which leave the P(2)-block unchanged. Note that by Lemma 2.1, any
changes in the double coset of H(2) in Γt can be lifted canonically to
corresponding changes in the double coset of H′ in Γg, and therefore it
suffices to consider modifications to the double coset of H(2) in Γt. To
simplify notation for the remainder of this proof, we set H(2) =

(R P
S Q
)
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Choose any element
( It 0t

Z It

)
in the subgroup Ωt of Sp(2t, Z). Then:

(
It 0t

Z It

)(
R P
S Q

)
=
(
R P

 Q + ZP

)
,

(
R P
S Q

)(
It 0t

Z It

)
=
(
R + PZ P


 Q

)

Let Q = (qij), R = (rij),Z = (zij). Then ZP = (τjzij) and
PZ = (τizij). Therefore we may perform multiplications as above so
that if i ≤ j then 0 ≤ qji < τj and 0 ≤ rij < τi. The fact that H(2)

is symplectic shows that PQ and RP are symmetric. Therefore qij =
(τj/τi)qji, rji = (τj/τi)rij . Thus the matrices Q and R are completely
determined once we fix the entries qji and rij which satisfy i ≤ j. This
completes the proof of (iv), and so of Theorem 2.4. Q.E.D.

Remark 2.5. As noted in §1.2, we made two choices when we de-
fined equivalence of Heegaard splittings: the choice of one of the two
handlebodies as the preferred one, and the choice of a preferred orienta-
tion on the 3-manifold W . When we allow for all possible choices, we see
that the symplectic matrix H of Theorem 2.4 is replaced by 4 possible
symplectic matrices, related by the operations of taking the transpose
and the inverse and the inverse of the transpose:(
R(2) P(2)

S(2) Q(2)

)
,

(
R̂(2) Ŝ(2)

P̂(2) Q̂(2)

)
,

(
Q̂(2) −P̂(2)

−Ŝ(2) R̂(2)

)
,

(
Q(2) −S(2)

−P(2) R(2)

)
.

Any one of the four could equally well have been chosen as a represen-
tative of the Heegaard splitting. These four matrices may or may not
be in the same double coset. ‖

2.3. Uniqueness questions

There is a source of non-uniqueness in the partial normal form of
Theorem 2.4. It lies in the fact that further normalizations are possible
after those in (iv) of Theorem 2.4, but they are difficult to understand.
By Lemma 2.1, we know that Λt is the semi-direct product of the normal
subgroup Ωt and the subgroup Σt that were defined there. We already
determined how left and right multiplication by elements in Ωt change
H′ in the proof of part (iv) of Theorem 2.4. We now investigate further
changes, using left (resp right) multiplication by matrices in Σt.

Lemma 2.6. Assume that P(2) = Diag(τ1, . . . , τt) is fixed, and that
P(2)Q(2) = Q̂(2)P(2). Then there is a well-defined subgroup G of Σt×Σt,
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determined by the condition that there exist matrices U ,V ∈ GL(t, Z)
such that UP(2) = P(2)V . Equivalently, there exist symplectic matrices
U, V ∈ Σt such that (U, V ) ∈ G ⇐⇒

U

(
R(2) P(2)

S(2) Q(2)

)
V =

(
U 0
0 Û−1

)(
R(2) P(2)

S(2) Q(2)

)(
V 0
0 V̂−1

)
(20)

=
(


 P(2)


 Û−1Q(2)V̂−1

)
.

For later use, we also have that if (P(2))−1 is the diagonal matrix
whose ith entry is the rational number 1/τi, then Q(2)(P(2))−1 will be
replaced by Û−1(Q(2)(P(2))−1)U−1.

Proof. The statement in (20) is a simple calculation. We need to
prove that it determines a group. Suppose that (U1, V1), (U2, V2) ∈ G.
Then UiP(2) = P(2)Vi for i = 1, 2, so U1U2P(2) = U1P(2)V̂2 = P(2)V̂1V̂2.
Therefore (U1U2, V1V2) ∈ G. Also, (P(2))−1U−1

1 = V̂1
−1

(P(2))−1, which
implies that (U−1

1 , V −1
1 ) ∈ G, so G is a group. It is immediate that

P(2) remains unchanged and that Q(2)(P(2))−1 changes in the stated
way. Q.E.D.

Remark 2.7. The condition UP(2) = P(2)V̂ means that U is re-
stricted to t × t unimodular matrices which satisfy the condition: U =
(uij), where uji is divisible by τj/τi whenever j < i. There are no re-
strictions on uij when j ≥ i other than that the determinant |uij | = ±1.
‖

Remark 2.8. We were unable to find a nice way to choose U and V
so as to obtain a unique representative of the double coset of a symplectic
Heegaard splitting, in the case when H is not torsion-free. The reason
will become clear in §6: invariants of the matrix Q(2)(P(2))−1, and so
also a normal form, depend crucially on whether or not there is 2-torsion
in the torsion subgroup T of H , and so a general rule cannot be easily
stated. See also the discussion in §7.5. ‖

§3. Presentation theory for finitely generated abelian groups

We are ready to begin the main work in this article. In Section 1
we described the topological motivation that underlies the work in this
paper, namely we were interested in understanding all topological invari-
ants of a 3-manifold W and of its Heegaard splittings that might arise
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through symplectic Heegaard splittings. In Theorem 2.4 we saw that
the matrix associated to a symplectic Heegaard splitting gives a natural
presentation of H1(W ; Z). Therefore it is natural to begin our work by
investigating the theory of presentations of abelian groups. Our goal is
to understand, fully, that part of the obstruction to stable equivalence
coming from a symplectic Heegaard splitting.

We begin by introducing the two concepts of isomorphism and equiv-
alence of presentations. The rank of a presentation is defined and a
concept of stabilizing a presentation (thereby increasing the rank) is in-
troduced. Most of this is aimed at Theorem 3.15, which gives necessary
and sufficient conditions for an automorphism of H to lift to an auto-
morphism of the free group of a presentation. Theorem 3.15 implies
Corollaries 3.16, 3.17 and 3.18, which assert (in various ways) that any
two presentations of the same finitely generated abelian group which
are of non-minimal equal rank are equivalent. From this it follows that
at most a single stabilization is required to remove any obstruction to
equivalence between two presentations. This does not solve Problem
3, but it is a first step in the direction of this problem’s solution. We
remark that, by contrast, the usual proof of Tietze’s Theorem on equiv-
alence of two particular presentations of an arbitrary finitely generated
but in general non-abelian group shows that presentations of rank r, r′

become equivalent after stabilizations of index r′, r, respectively [25].

The latter half of the section focuses on presentations of minimal
rank of a finitely generated abelian group. An “orientation” and a “vol-
ume” on H are defined. The determinant of an endomorphism h of
abelian groups, and hence of a presentation π of an abelian group, is
introduced. The key result is Theorem 3.26, which gives necessary and
sufficient conditions for an isomorphism between two minimal presen-
tations to lift to the presentation level. Corollary 3.27 follows: two
minimal presentations of H are equivalent if and only if they have the
same volume on H . The section closes with two examples which il-
lustrate the application of Theorem 3.26 and Corollary 3.27 to explicit
group presentations.

In §7, we will apply the notion of “volume” to obtain invariants
of Heegaard splittings. It turns out that associated to a symplectic
Heegaard splitting is a natural presentation of the first homology group,
and thus an induced volume. We will use the interplay between this
volume and a linking form on the first homology group to find invariants
of Heegaard splittings.
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3.1. Equivalence classes of not-necessarily minimal pre-
sentations

We begin our work with several definitions which may seem unnec-
essary and even pedantic; however, extra care now will help to make
what follows later seem natural and appropriate.

Definition 3.1. A free pair is a pair of groups (F, R) with R ⊂ F
and F free abelian and finitely generated; its quotient is F/R. If H is
a finitely generated abelian group, a presentation of H is a surjection
π : F → H , with F again a finitely generated free abelian group. The
rank of a free pair and of a presentation is the rank of F . Direct sums of
these objects are defined in the obvious way. The index k stabilization
of a free pair (F, R) is the free pair (F ⊕ Zk, R ⊕ Zk), and the index k
stabilization of a presentation π : F → H is the presentation π ⊕ 0 :
F ⊕ Zk → H . ‖

Definition 3.2. An isomorphism of free pairs (F, R), (F ′, R′) is an
isomorphism f : F → F ′ such that f(R) = R′. An isomorphism of
presentations is a commutative diagram

F
π−−−−→ H

f

⏐⏐	 ⏐⏐	h

F ′ π′
−−−−→ H ′

with f, h isomorphisms. If H = H ′, then we have the stronger notion of
an equivalence of presentations, which is a commutative diagram

F

H.

F ′
��

f
������� π

�������
π′

with f an isomorphism. Two free pairs (resp. two presentations) are
stably isomorphic (resp. stably equivalent) if they have isomorphic (resp.
equivalent) stabilizations. If π : F → H , π′ : F ′ → H are both of
minimal rank and stably equivalent, then we define the stabilization
index of π, π′ to be the smallest index k such that π, π′ have equivalent
stabilizations of index k. ‖

Example 3.3. To see that equivalence and isomorphism of presen-
tations are distinct concepts, let F = Z and let H = Z5 with π : Z → Z5

defined by π(1) = 1 and π′ : Z → Z5 defined by π′(1) = 2. Then π and
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π′ are isomorphic because the automorphism h : Z5 → Z5 defined by
h(1) = 2 lifts to the identity automorphism of Z. However, it is easy to
see that π and π′ are not equivalent. ‖

The standard ‘elementary divisor theorem’ concerning presentations
of abelian groups may be phrased as follows:

Proposition 3.4. Two free pairs are isomorphic if and only if they
have the same rank and isomorphic quotients. For any pair (F, R) there
is a basis fi of F and integers mi so that {mifi | mi �= 0} is a basis for
R. The fi and mi may be chosen so that mi|mi+1 for all i.

Since we can always stabilize two pairs to the same rank, two pairs
are stably isomorphic if and only if their quotients are isomorphic.

We now investigate equivalence classes of presentations of a finitely
generated abelian group H .

Definition 3.5. If H is a finitely generated abelian group, its rank
is, equivalently,

• the minimal number of infinite and finite cyclic direct sum-
mands required to construct H

• the minimal rank of a presentation of H
• the number of torsion coefficients of the torsion subgroup T of

H plus the rank of H/T .

A presentation of minimal rank is simply called a minimal presentation.
‖

Lemma 3.6. Every non-minimal presentation F
π−→ H is equivalent

to a presentation of the form F ′⊕Z
π′⊕0−−−→ H, where π′ is a presentation

of H. Every presentation of H is a stabilization of a minimal one.

Proof. Clearly, by stabilizing, H has a presentation of every rank
� rank H . Let F ′ j−→ H be a presentation of rank (rank F − 1). By
Proposition 3.4, the stabilization of j is isomorphic to F

π−→ H , say by a
diagram of the form

F
π−−−−→ H

f

⏐⏐	 ⏐⏐	h

F ′ ⊕ Z
j⊕0−−−−→ H
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Hence
F

H

F ′ ⊕ Z
��

f
���������

π

�������
h−1◦(j⊕0)

is an equivalence, as desired. By induction, we conclude that every
presentation of H is a stabilization of a minimal one. Q.E.D.

In the next few lemmas, we will show that all presentations of H
are stably equivalent and that the index of stabilization required is at
most one.

Lemma 3.7. Let n be the rank of rank (H/T ) and let T = Tor (H).
Then any presentation of H is equivalent to one of the form F⊕Zn π−→ H,
where π|F is a presentation of T and π|Zn is injective.

Proof. A presentation of the required type certainly exists and may
be of any rank � rank H . The proof that any presentation is equivalent
to one of this form is similar to the proof of Lemma 3.6. Q.E.D.

Lemma 3.8. Let h be an automorphism of H which acts trivially
on T . Then for any presentation π : F → H there is an automorphism
f of F so that

F
π−−−−→ H

f

⏐⏐	 ⏐⏐	h

F
π−−−−→ H

commutes.

Proof. By Lemma 3.7, our presentation is equivalent to the direct
sum of presentations F0 → T and Zn id−→ Zn, where H has been decom-
posed as T ⊕ Zn. Representing elements of H by column vectors ( t

z )
with t ∈ T , z ∈ Zn, any automorphism h of H must be of the form

( t
z ) 	→ ( A B

0 C ) ( t
z ) ,

where A : T → T and C : Zn → Zn are automorphisms and B :
Zn → T is a homomorphism; by hypothesis, A = 1. If we lift B to a
homomorphism B̄ : Zn → F0, then the endomorphism

(
1 B̄
0 C

)
of F0 ⊕Zn

is an automorphism which clearly induces ( 1 B
0 C ) on T ⊕ Zn = H , as

desired. Q.E.D.
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Definition 3.9. In the situation of Lemma 3.8, we say that f lifts
h. ‖

Corollary 3.10. Using the notation of the proof of Lemma 3.8, if
h is any automorphism of H so that h|T lifts to F0, then h lifts to F .

Proof. Let g = (h|T ) ⊕ 1Zn . Clearly g lifts to F0 ⊕ Zn. Hence
h ◦ g−1 = 1 on T , so hg−1 also lifts. We conclude (hg−1) ◦ g lifts, as
desired. Q.E.D.

Definition 3.11. Let f : F → F be an endomorphism. Since F is
free abelian, we may represent f by a matrix with respect to any basis
for F . We define the determinant of F to be the determinant of any
such matrix. Clearly det f is well-defined, up to sign, independent of
the choice of basis. ‖

Lemma 3.12. Let T be an abelian p-group for some prime p. Let
π : F → T be a presentation and let h : T → T be an automorphism.
Then there is an endomorphism (which we are not claiming is an auto-
morphism) f : F → F lifting h so that p does not divide det f .

Proof. Since F is a free abelian group, it is easy to construct an
endomorphism f of F that lifts h, so the key point is to construct one
so that p does not divide det(f).

By Lemma 3.6, the presentation π is equivalent to π0⊕0k : F0⊕Zk →
T with π0 minimal (here possibly k = 0). Choose f0 ∈ End F0 so that
π0f0 = hπ0, and let f = f0 ⊕ 1Zk . By construction f lifts h, and we
claim that p does not divide det f .

Consider the canonical map T → T/pT and the composite πp : F0 →
T → T/pT . Since T is an abelian p-group and since π0 is minimal, we
have rank T/pT = rank T = rank F0. Hence kerπp = pF0. Now h
induces an automorphism hp of T/pT and we have

F0/pF0

∼=−−−−→ T/pT

fp

⏐⏐	 hp

⏐⏐	
F0/pF0

∼=−−−−→ T/pT

Hence fp must be an isomorphism. This implies that p does not divide
det f = det f0, for p divides det f0 if and only if the induced map on
F0/pF0 is not an isomorphism. Q.E.D.
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Lemma 3.13. Let T be any finite abelian group, π : F → T be a
presentation of T , and h : T → T be any automorphism. Then there is
an endomorphism (which we are again not claiming is an automorphism)
f : F → F lifting h so that (det f, |T |) = 1.

Proof. Let p be a prime divisor of |T |. Suppose that pk is the
highest power of p which divides |T |. Then Tp := T/pkT is an abelian
p-group isomorphic to the p-component of T , and h induces an auto-
morphism hp of Tp. By the previous lemma, there is an endomorphism
fp of F with p � | det fp so that

F
πp−−−−→ Tp

fp

⏐⏐	 ⏐⏐	hp

F
πp−−−−→ Tp

commutes. Fixing a basis of F and representing fp as a matrix, we
note that any matrix congruent to fp mod pk also induces hp on Tp.
By the Chinese remainder theorem, there is a single matrix f so that
f ≡ fp mod pk for all primes p which divide |T |, that is to say, a
single endomorphism f of F inducing hp on Tp for each such prime.
Since det f ≡ det fp mod pk, we have p � | det f for all such p, i.e.
(det f, |T |) = 1.

It remains to prove that f induces h on T . Since Tp = T/pkT is a
p-group isomorphic to the p-component of T , it follows that the kernel
of π : F → T is precisely

kerπ =
⋂

p divides |T |
ker(πp : F → Tp).

Hence

f(kerπ) = f

(⋂
p

kerπp

)
⊂
⋂
p

f(kerπp) =
⋂
p

kerπp = kerπ.

This shows that f induces some automorphism of T . But this automor-
phism induces hp on Tp for every p, so it must be h. Q.E.D.

Lemma 3.14. Let T be a torsion group and let h ∈ Aut (T ). Then
for any non-minimal presentation π : F → T there is some f ∈ Aut (F )
which lifts h.
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Proof. Since π is non-minimal, by Lemma 3.6 we may assume that
π = π′ ⊕ 0 : F ′ ⊕ Z → T . By Lemma 3.13, we may lift h to f ∈ End F ′

with (det f, m) = 1, where m = |T |. Choose an integer δ such that
δ · det f ≡ 1 mod m. Let d denote the endomorphism of Z defined by
d(1) = δ. Then f ⊕ δ ∈ End (F ′ ⊕ Z) and det(f ⊕ δ) ≡ 1 mod m.
Since the canonical homomorphism SL(r, Z) → SL(r, Zm) is surjective,
we may lift f ⊕ δ to f ′ ∈ Aut (F ′⊕Z). More precisely, we can find some
f ′ ∈ Aut(F ′ ⊕ Z) which (when considered as a matrix over Z) is equal
to f ⊕ δ mod m. Since f ⊕ δ lifts h, the diagram

F ′ ⊕ Z
π⊕0−−−−→ T

f⊕δ

⏐⏐	 ⏐⏐	h

F ′ ⊕ Z
π⊕0−−−−→ T

commutes. Now m(F ′ ⊕ Z) ⊂ ker(π ⊕ 0), since mx = 0 for all x ∈ T .
Note that by construction, f ′ ≡ f ⊕ δ mod m, i.e. for each x ∈ F ′ ⊕ Z
there is a y ∈ F ′ ⊕ Z such that f ′(x) = (f ⊕ δ)(x) + my. Hence f ′ also
lifts h. Q.E.D.

Theorem 3.15. If h is any automorphism of H and if π : F → H
is any non-minimal presentation of H, then h lifts to F .

Proof. By Lemma 3.7, we may decompose F as F = F0 ⊕ Zn,
where π|F0 : F0 → T is a presentation and π|Zn = 1 : Zn → Zn. The
non-minimality of F then implies the non-minimality of F0. Hence by
Lemma 3.14, we may lift h|T to F0. Corollary 3.10 then implies that h
lifts to F , as desired. Q.E.D.

The following three results will be important later. They are imme-
diate consequences of Theorem 3.15.

Corollary 3.16. If h : H → H ′ is an isomorphism and π : F → H,
π′ : F ′ → H ′ are non-minimal of equal rank, then h lifts to a presenta-
tion isomorphism.

Corollary 3.17. All presentations of H are stably equivalent, and
any of two presentations of non-minimal, equal rank are equivalent.

Corollary 3.18. If π : F → H, π′ : F → H are two minimal
presentations, then π, π′ have stabilization index 0 or 1.

Example 3.19. To illustrate Corollary 3.18, recall Example 3.3.
Two rank 1 presentations π, π′ of H = Z5 were defined by π(1) = 1 and
π′(1) = 2. These are obviously inequivalent. We claim that they have
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equivalent index 1 stabilizations π ⊕ 0, π′ ⊕ 0, i.e. there exists some f
so that the following diagram commutes:

Z ⊕ Z

H.

Z ⊕ Z
��

f
������

� π⊕0

�������
π′⊕0

For example, we may define f by

( z1
z2 ) 	→ ( 3 5

1 2 ) ( z1
z2 ) =

(
3z1+5z2
z1+2z2

)
We then have

(π′ ⊕ 0) ◦ f(z1, z2) = 6z1 + 10z2 ≡ z1 (mod 5) = (π ⊕ 0)(z1, z2). ‖

3.2. Equivalence classes of minimal presentations

We continue our study of presentations of finitely generated abelian
groups by investigating equivalence classes of minimal presentations of
finitely generated abelian groups. The main results are Theorem 3.26
and Corollary 3.27, which give a complete invariant of equivalence of
minimal presentations of H .

First we recall the definition of the exterior powers of an abelian
group H . From the kth tensor power Hk = H ⊗ · · · ⊗ H we form a
quotient by dividing out by the subgroup generated by all x1 ⊗ · · · ⊗ xk

in which two xi’s are equal. This quotient is the kth exterior power of H ,
denoted by ΛkH . The image of an arbitrary tensor product x1⊗· · ·⊗xk

in ΛkH is denoted by x1 ∧ · · · ∧ xk, and we have the usual law

x1 ∧ · · ·xi ∧ xi+1 · · · ∧ xk = −x1 ∧ · · ·xi+1 ∧ xi · · · ∧ xk.

Also as usual, x1 ∧ · · · ∧ xk = 0 if any xi is a linear combination of the
other terms, which implies that ΛkH = 0 if k > rank H .

Lemma 3.20. Let r = rank H and τ be the smallest elementary
divisor of the torsion subgroup T of H. If T = 0, we put τ = 0. Then
ΛrH is cyclic of order τ if T �= 0, whereas if T = 0, then ΛrH is infinite
cyclic. If x1, . . . , xr generate H, then x1 ∧ · · · ∧ xr generates ΛrH.

Proof. The case when T = 0 is well known, so we assume that
τ > 0. We prove the last statement first. Now, ΛrH is generated
by all y1 ∧ · · · ∧ yr as the yi range over H . But let yi =

∑r
j=1 αijxj
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for integers αij . A straightforward check shows that y1 ∧ · · · ∧ yr =
det(αij)(x1 ∧ · · · ∧ xr).

Thus ΛrH is cyclic. Elementary divisor theory tells us that H is
the direct sum of r cyclic groups Zτi , where the τi are the elementary
divisors (Z0 means Z here). If these cyclic summands have generators
xi, with x1, say, of order τ = τ1, then θ = x1 ∧ · · · ∧ xr generates ΛrH ,
and τθ = (τx1) ∧ x2 ∧ · · · ∧ xr = 0 since τx1 = 0. Thus |ΛrH | � τ .

We must therefore prove that |ΛrH | � τ . Consider the map d :
Hr → Zτ defined by

d(y1 ⊗ · · · ⊗ yr) = det(αij) mod τ,

where yi =
∑

j αijxj . This is well defined, since if for some i we had∑
j αijxj = 0 in H , then we must have αij ≡ 0 mod τ for all j, and

hence det(αij) ≡ 0 mod τ . The map d is also clearly onto (let yi = xi).
Finally, d kills all terms having two yi’s equal, so it induces a map of
ΛrH onto Zτ . Q.E.D.

Definition 3.21. If H has rank r, an orientation of H is a selection
of a generator θ of ΛrH . A volume of H is a pair ±θ of orientations
of H . i.e. an orientation of H , determined up to sign. Observe that a
free abelian group of rank r has Λr � Z and hence two orientations and
only one volume, but if H has torsion, then it will in general have many
volumes. ‖

If f : H → H ′ is a homomorphism between groups of the same rank
r, then f induces a homomorphism Λrf : ΛrH → ΛrH ′ in the standard
way; we will write simply f for Λrf .

Lemma 3.22. Assume that H and H ′ both have rank r and that
f : H → H ′ is surjective. Let τ and τ ′ be the smallest elementary
divisors of H and H ′, respectively. Then τ ′ | τ and if θ is any orientation
of H, then f(θ) is an orientation of H ′.

Proof. Let x1, . . . , xr generate H , so ϕ = x1 ∧ · · · ∧ xr generates
ΛrH . There is thus some generator m of Zτ so that θ = mϕ. But since f
is onto, H ′ is generated by f(x1), . . . , f(xr) and ϕ′ = f(x1)∧· · ·∧f(xr) =
f(ϕ) generates ΛrH ′. This shows that f : ΛrH → ΛrH ′ is also surjective
and hence that τ ′ | τ . We conclude that m is also a generator of Zτ ′ ,
and hence that θ′ = f(θ) = mf(ϕ) = mϕ′ generates ΛrH ′. Q.E.D.

If H, H ′ have specific orientations θ, θ′ and f : H → H ′ is a ho-
momorphism, then since θ′ generates ΛrH ′ we have f(θ) = mθ′ for a
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unique m ∈ Zτ ′ . We call m the determinant of f (with respect to the
orientations θ, θ′) and write f(θ) = det f ·θ′. If H, H ′ have only volumes
specified, then det f is determined up to sign. If, however, H = H ′

and θ = θ′, then det f is independent of θ; in fact, f : ΛrH → ΛrH ′

is just multiplication by det f ∈ Zτ . Thus endomorphisms of H have a
well-defined determinant, and it is easy to see that this definition is the
classical one when H is free. More generally, we have:

Lemma 3.23. Suppose

F
π−−−−→ H

f

⏐⏐	 ⏐⏐	h

F ′ π′
−−−−→ H ′

commutes, where π, π′ are presentations and all groups have the same
rank. Then if ϕ, ϕ′ are orientations of F, F ′ inducing orientations θ, θ′

of H, H ′, we have deth ≡ det f mod τ ′. If no orientations are specified,
then we measure deth with respect to the canonical induced volumes,
and the above congruence holds up to sign.

Proof. Observe that det f · ϕ′ = f(ϕ) and that

deth ·θ′ = h(θ) = hπ(ϕ) = π′(det f ·ϕ′) ≡mod τ ′ det f ·π′(ϕ′) = det f ·θ′.

The final statement is obvious. Q.E.D.

Note that if H = H ′, F = F ′ and π = π′, then det f , deth and the
congruence are independent of the orientations.

The following two lemmas show that det behaves like the classical
determinant.

Lemma 3.24. If f : (H1, θ1) → (H2, θ2) and g : (H2, θ2) →
(H3, θ3) are homomorphisms of oriented groups so that all the Hi have
the same rank, then if τ3 is the smallest elementary divisor of H3 we
have det(gf) ≡ (det g) · (det f) mod τ3.

Proof. We calculate:

det(gf) · θ3 = gf(θ1) = g(det f · θ2) = det f · g(θ2) = det f · det g · θ3.

Q.E.D.
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Lemma 3.25. Let F and G be abelian groups with F free, and let h
be an endomorphism of F ⊕G so that h(G) < G. Let g = h|G and let f
be the map on F = F⊕G

G induced by h. Then deth = det f ·det g mod τ ,
where τ is the smallest elementary divisor of G (and hence of F ⊕ G).
In particular, if h is an automorphism, then det h = ± det g.

Proof. Let m = rank F and n = rank G; then m+n = rank F ⊕G
holds because F is free. Let x1, . . . , xm and y1, . . . , yn be minimal sets
of generators of F and G; their union is then a minimal set of generators
of F ⊕ G. By hypothesis, h(yi) = g(yi); also, h(xi) = f(xi) + e(xi) is
the direct sum decomposition of h(xi), where e is some homomorphism
F → G. Hence

deth · (x1 ∧ · · · ∧ xm) ∧ (y1 ∧ · · · ∧ yn)
= (f(x1) + e(x1)) ∧ · · · ∧ (f(xm) + e(xm)) ∧ (g(y1) ∧ · · · ∧ g(yn))
= det g · (f(x1) + e(x1)) ∧ · · · ∧ (f(xm) + e(xm)) ∧ (y1 ∧ · · · ∧ yn) .

But since e(xi) is a linear combination of the yi’s, the above reduces to
just

det g · (f(x1)∧ · · · ∧ f(xm))∧ (y1 ∧ · · · ∧ yn) = det f ·det g · (x1 ∧ · · · ∧ yn)

as desired. If h is an automorphism, then det f must be ±1, proving the
last statement. Q.E.D.

Suppose now that F
π−→ H is a minimal presentation, so that rank F =

rank H = r. Let ±ϕ be the unique volume on F , and let ±θ ∈ ∧rH be
±π(ϕ′); we call the volume ±θ the volume of (or induced by) the presen-

tation π. Suppose now that F
π′
−→ H is an equivalent presentation, i.e.

there exists a diagram
F

H

F ′
��

f
�����

��� π

������� π′

with f an isomorphism. If ±θ′ is the volume induced by π′, we then
have

±θ = π(±ϕ) = π′f(±ϕ) = π′(± det f · ϕ′) = ± det f · θ′.

But the fact that f is an isomorphism implies that det f = ±1, and
hence, equivalent presentations have the same volume. This argument
generalizes in the obvious way to prove the necessity in the following:
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Theorem 3.26. Let π : F → H, π′ : F ′ → H ′ be two minimal
presentations with volumes θ, θ′ and let h : H → H ′ be an isomorphism.
Then h lifts to an isomorphism f : F → F ′ if and only if h(±θ) =
±θ′; that is, if and only if deth = ±1 mod τ where τ is the smallest
elementary divisor of H ∼= H ′.

Proof. We first claim that it suffices to consider the special case
when the two presentations are identical. Indeed, by Proposition 3.4
the two presentations are isomorphic; i.e. there exists a commutative
diagram

F
π−−−−→ H

f ′
⏐⏐	 ⏐⏐	h′

F ′ π′
−−−−→ H ′

with both f ′ and h′ isomorphisms. Since f ′ is an isomorphism, the map
h′ has determinant 1 and hence so does h ◦ h′−1. If we could lift the
automorphism h◦h′−1 to an automorphism f ′′ of F ′, then f := f ′′ ◦ f ′ :
F → F ′ would be the desired lift of h.

Hence let h be an automorphism of H with det h = ±1 and let F
π−→

H be any minimal presentation. The proof proceeds just as the proof of
Theorem 3.15: if T is the torsion subgroup of H and F0 = π−1(T ) and
h0 = h|T , then it still suffices to lift h0 to F0. Since H is the direct sum
of T and a free abelian group, the presentation F0 → T is also minimal.
Furthermore, the conditions of Lemma 3.25 hold here, so deth0 = ±1
also. Thus it suffices to prove the theorem when H = T is a torsion
group.

Let |H | = m. By Lemma 3.12 we may lift h to an endomorphism f0

of F such that (det f0, m) = 1; by Lemma 3.14, it follows that det f0 ≡
deth ≡ ±1 mod τ . Choose k such that k · det f0 ≡ ±1 mod m, where
the sign here is to be the same as the one above, so that k ≡ 1 mod τ .
We choose a basis e1, . . . , er of F (as in Proposition 3.4) so that H is
the direct sum of the cyclic subgroups generated by xi = π(ei) and x1

has order τ = m1. The endomorphism f1 of F defined by e1 	→ ke1,
ei 	→ ei for all i > 1 clearly induces the identity map on H , since
k ≡ 1 mod τ . Hence f0f1 still induces h on H , and its determinant
is now det f0 · det f1 ≡ k det f0 ≡ ±1 mod m. Just as in the proof of
Lemma 3.14, we conclude that there exists an isomorphism f of F , with
determinant ±1 (same sign!) such that f ≡ f0f1 mod m (we are here
using the fact that GL(r, Z) maps onto all elements of GL(r, Zm) with
determinant ±1). As in Lemma 3.14, f still induces h on H , and we are
done. Q.E.D.
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Lifting the identity automorphism gives:

Corollary 3.27. Two minimal presentations of H are equivalent if
and only if they induce the same volume on H.

Here are some examples to show that calculations can actually be
done with this machinery.

Example 3.28. In Example 3.3 we gave an example of inequivalent
minimal presentations, namely Z

1�→1−−−→ Z5 and Z
1�→2−−−→ Z5. Now observe

that r = 1, τ = 5, Λ1Z5 = Z5; θ = ±1, θ′ = 2(±1) = ±2 �≡ ±1 mod 5. ‖
Example 3.29. Let H = Z2n−1 ⊕ Z2

2n with standard generators
e1, e2, e3 and standard presentation Z3 → H taking (1, 0, 0) 	→ e1, etc.
Let the second presentation be given by

(1, 0, 0) 	→ e1 + 2e2 − 2e3 ; (0, 1, 0) 	→ e1 + e2 ; (0, 0, 1) 	→ e1 − e3

(it is easily seen that this map is onto H). The former volume is ±e1 ∧
e2 ∧ e3, the latter

±(e1+2e2−2e3)∧(e1 +e2)∧(e1−e3) = ±θ ·det

⎛
⎝ 1 2 −2

1 1 0
1 0 −1

⎞
⎠ = ±3θ.

Since τ = 2n−1 here, the presentations are equivalent if and only if
±3 ≡ ±1 mod 2n−1, i.e. if and only if n � 3 (the signs on 3 and 1 are
independent).‖

§4. Symplectic spaces, Heegaard pairs and symplectic Hee-
gaard splittings

As we noted at the start of the previous section, when a 3-manifold
W is defined by a Heegaard splitting, then we have, in a natural way,
a presentation of H1(W ; Z). In fact we have more, because there is
also a natural symplectic form associated to the presentation. In this
section, our goal is to begin to broaden the concept of a presentation
by placing additional structure on the free group of the presentation,
and then to extend the results of Section 3 to include the symplectic
structure. With that goal in mind we introduce symplectic spaces and
their lagrangian subspaces, leading to the concept of a Heegaard pair.
There are equivalence relations on Heegaard pairs analogous to those on
free pairs (F, R). Just as we stabilized free pairs by taking their direct
sums with (Zk, Zk), we will see that there is an analogous concept of
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stabilization of Heegaard pairs, only now we need direct sums with a
standard Heegaard pair. At the end of the section (see Theorem 4.8)
we will relate our Heegaard pairs to the symplectic Heegaard splittings
that were introduced in §1.

4.1. Symplectic spaces and Heegaard pairs

To begin, we reinterpret the free group F of Definition 3.1, intro-
ducing new notation, ideas and structure in the process.

Definition 4.1. A symplectic space is a finitely generated free abelian
group V which is endowed with a non-singular antisymmetric bilinear
pairing, written here as a dot product. Non-singular means that for each
homomorphism α : V → Z there is an xα ∈ V (necessarily unique) such
that α(y) = xα · y (∀y ∈ V ). A symplectic or Sp-basis for V is a basis
{ai, bi; 1 � i � g} such that ai · aj = bi · bj = 0, ai · bj = δij , 1 � i, j � g.
Every symplectic space has such a basis, and so is of even rank, say 2g.
As our standard model of a rank 2g symplectic space we have Xg = Z2g

with basis {a1, . . . , ag, b1, . . . , bg} the 2g unit vectors, given in order. An
isomorphism V → V which is form-preserving is a symplectic isomor-
phism. The group of all symplectic isomorphisms of V is denoted Sp(V ).
‖

Definition 4.2. Let B ⊂ V be a subset of a symplectic space V
and define B⊥ = {v ∈ V | v · b = 0 (∀b ∈ B)}.

• A subspace B ⊂ V is symplectic if, equivalently,
a) the symplectic form restricted to B is non-singular, or
b) V = B ⊕ B⊥.

• A subspace B ⊂ V is isotropic if, equivalently,
a) x · y = 0 for all x, y ∈ B, or
b) B ⊂ B⊥.

• A subspace B ⊂ V is lagrangian if, equivalently,
a) B is maximal isotropic, or
b) B = B⊥, or
c) B is isotropic, a direct summand of V , and rank B =

1
2 rank V .

We shall omit the proof that these various conditions are indeed equiv-
alent. ‖

Our next definition is motivated by the material in §1.2, where we
defined symplectic Heegaard splittings. We will see very soon that our
current definitions lead to the identical concept.
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Definition 4.3. A Heegaard pair is a triplet (V ; B, B̄) consisting of
a symplectic space V and an ordered pair B, B̄ of lagrangian subspaces.
The genus of the pair is rank B = rank B̄ = 1

2 rank V . An isomorphism
of Heegaard pairs (Vi; Bi, B̄i), i = 1, 2 is a symplectic isomorphism f :
V1 → V2 such that f(B1) = B2, f(B̄1) = B̄2. ‖

We now want to define a concept of “stabilization” for Heegaard
pairs. If V has Sp-basis {ai, bi | i = 1, . . . , g}, then the ai’s (and also the
bi’s) generate a lagrangian subspace. These two subspaces A, B have
the following properties:

(a) A ⊕ B = V
(b) the symplectic form induces a dual pairing of A and B, i.e. ai ·aj =

bi · bj = 0, ai · bj = δij , 1 � i, j � g.

Any pair of lagrangian subspaces of V satisfying these two properties
with respect to some basis will be called a dual pair, and either space
will be called the dual complement of the other.

If Xg is the standard model for a symplectic space, then the la-
grangian subspaces Eg spanned by a1, . . . , ag and Fg spanned by f1, . . . , fg

are a dual pair. We will refer to (Xg; Eg, Fg) as the standard Heegaard
pair. Note that in an arbitrary Heegaard pair (V ; B, B̄) the lagrangian
subspaces B, B̄ need not be dual complements.

If V1 and V2 are symplectic spaces, then V1 ⊕ V2 has an obvious
symplectic structure, and V1 and V2 are Sp-subspaces of V1 ⊕ V2 with
V1 = V ⊥

2 and V2 = V ⊥
1 . This induces a natural direct sum construction

for Heegaard pairs, with (V1; B1, B̄1) ⊕ (V2; B2, B̄2) = (V1 ⊕ V2; B1 ⊕
B2, B̄1 ⊕ B̄2). The stabilization of index k of a Heegaard pair is its
direct sum with the standard Heegaard pair (Xk; Ek, Fk) of genus k.
Two Heegaard pairs (Vi; Bi, B̄i), i = 1, 2, are then stably isomorphic if
they have isomorphic stabilizations.

These concepts will soon be related to topological ideas. First, how-
ever, we will show that stable isomorphism classes and isomorphism
classes of Heegaard pairs are in 1-1 correspondence with stable double
cosets and double cosets in the symplectic modular group Γ, with respect
to its subgroup Λ.

Note that if A, B is a dual pair of V and U : B → B is a linear
automorphism, then the adjoint map (U∗)−1 is an isomorphism of A =
B∗. Moreover (U∗)−1 ⊕U is a symplectic automorphism of V = A⊕B.

Lemma 4.4. If B ⊂ V is lagrangian, A ⊂ V is isotropic and
A ⊕ B = V , then A is lagrangian and A, B is a dual pair of V . Every
lagrangian subspace has a dual complement.
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Proof. Since A is an isotropic direct summand of V and rank A =
rank V − rank B = 1

2 rank V , it follows that A is lagrangian. Let now
f : B → Z be linear, and extend it to α : V → Z by setting α(A) = 0.
Then α(v) = x · v for some x ∈ V . Since x · A = 0 and A is maximal
isotropic, we must have x ∈ A, showing that A, B are dually paired and
hence a dual pair of V . To prove the second statement, let bi be a basis
of B. Since B is lagrangian it is a direct summand of V , so we may
choose a homomorphism f1 : V → Z such that f1(b1) = 1 and f1(bi) = 0
for i > 1. Let a1 ∈ V be such that a1 · v = f1(v) for all v. Clearly the
subgroup generated by a1 and B is still a direct summand of V , so choose
f2 : V → Z such that f2(b2) = 1, f2(a1) = f2(bi) = 0 (i �= 2) and a2 ∈ V
realizing this map. Continuing in this way, we get finally a1, . . . , ag

such that ai, bi satisfy the laws of a symplectic basis and generate a
direct summand of V . This direct summand has the same rank as V ,
so it equals V , and the group A generated by the ai’s is then a dual
complement of B. Q.E.D.

Proposition 4.5. Let A, B be a dual splitting and bi a basis of B. If
ai is the dual basis of A defined by ai ·bj = δij, then ai, bi is a symplectic
basis of V .

Corollary 4.6. If A, B and A′, B′ are two dual pairs of V , then
there is an f ∈ Sp(V ) such that f(A) = A′, f(B) = B′.

Proof. Choose symplectic bases ai, bi adapted to A, B and a′
i, b

′
i

adapted to A′, B′. Then the map defined by ai 	→ a′
i and bi 	→ b′i is

symplectic. Q.E.D.

Corollary 4.7. If B, B′ are lagrangian, there is an f ∈ Sp(V ) such
that f(B) = B′.

Proof. By Lemma 4.4, B and B′ have dual complements A and A′.
By Corollary 4.6 we may find f ∈ Sp(V ) such that f(B) = B′. Q.E.D.

4.2. Heegaard pairs and symplectic Heegaard splittings

We are now ready to relate our work on Heegaard pairs to the double
cosets introduced in §1. We follow notation used there.

Theorem 4.8. The following hold:

(1) Isomorphism classes of Heegaard pairs are in 1-1 correspon-
dence with double cosets in Γ mod Λ. Stable isomorphism
classes of Heegaard pairs are in 1-1 correspondence with stable
double cosets in Γ mod Λ.
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(2) Let j : ∂Ng → Ng, j̄ : ∂Ng → N̄g, and let j∗, j̄∗ be the induced
actions on homology.
Then the triplet (H1(M ; Z); ker j∗, ker j̄∗) is a Heegaard pair.

(3) Every Heegaard pair is topologically induced as the Heegaard
pair associated to a topological Heegaard splitting of some 3-
manifold. Moreover, equivalence classes and stable equiva-
lence classes of Heegaard pairs are topologically induced by
equivalence classes and stable equivalence classes of Heegaard
splittings.

Proof. We begin with assertion (1). Let (V ; B, B̄) be a Heegaard
pair of genus g. Then by Corollary 4.6 we may find a symplectic isomor-
phism f : V → Xg such that f(B) = Fg. Putting F̄g = f(B̄), we then
have (V ; B, B̄) isomorphic to (Xg; Fg, F̄g). If f ′ : (V, B) → (Xg, Fg) is
another choice, with f ′(B̄) = F̄ ′

g, then f ′f−1(Fg) = Fg, hence f ′f−1 ∈
Λ. Then we see that the isomorphism classes of genus g Heegaard pairs
correspond to equivalence classes of lagrangian subspaces F̄g ⊂ Xg, with
F̄g, F̄

′
g equivalent if there is a map m ∈ Λ such that m(F̄g) = F̄ ′

g. Now,
we have seen that there is a map h ∈ Γ such that F̄g = h(Fg), and
h1(Fg) = h2(Fg) if and only if h2 = h1f for some f ∈ Λ. Then each
F̄g can be represented by an element h ∈ Γ and h, h′ give equivalent
subspaces F̄g = h(Fg), F̄ ′

g = h′(Fg) if and only if there are f1, f2 ∈ Λ
such that h′ = f1hf2. The set of all f1hf2, fi ∈ Λ, is a double coset of
Γ mod Λ. Then the isomorphism classes of Heegaard pairs of genus g
are in 1-1 correspondence with the double cosets of Γ mod Λ.

Direct sums and stabilizations of Heegaard pairs corresponds to a
topological construction. If (Wi; Ni, N̄i) (i = 1, 2) are Heegaard split-
tings, their connected sum (W1#W2; N1#N2, N̄1#N̄2) is a Heegaard
splitting whose abelianization to a Heegaard pair is readily identifiable
as the direct sum of the Heegaard pairs associated to the summands.
Moreover, if (S3; Yk, Ȳk) is a standard Heegaard splitting of genus k for
S3, its Heegaard pair may be identified with the standard Heegaard pair
(Xk; Ek, Fk) of index k. This stabilization of Heegaard pairs is induced
by the topological construction (W ; N, N̄) → (W#S3; N#Yk, N̄#Ȳk).

In an entirely analogous manner to the proof just given for (1), stable
isomorphism classes of Heegaard pairs correspond to stable double cosets
in Γ mod Λ.

Proof of (2): There is a natural symplectic structure on the free
abelian group H1(M ; Z), with the bilinear pairing defined by intersection
numbers of closed curves which represent elements of H1(M ; Z) on M .
In fact, as claimed in (2) above, the triplet (H1(M ; Z); ker j∗, ker j̄∗) is a
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Heegaard pair. To see this, let B = ker j∗. Since x · y = 0 ∀x, y ∈ B, the
subspace B is isotropic. Also, rank B = 1

2 rank H1(M ; Z) = genus N =
genus M . Hence B is lagrangian. Similarly, B̄ is lagrangian. Therefore
the assertion is true.

Proof of (3): It remains to show that every Heegaard pair is topolog-
ically induced as the Heegaard pair associated to a topological Heegaard
splitting of some 3-manifold, and also that equivalence classes and sta-
ble equivalence classes of Heegaard pairs are topologically induced by
equivalence classes and stable equivalence classes of Heegaard splittings.
To see this, let (V ; B, B̄) be a Heegaard pair. By Theorem 4.8 we may
without loss of generality assume that (V ; B, B̄) is (Xg; Fg, F̄g). Choose
a standard basis for H1(M ; Z), with representative curves as illustrated
in Figure 1. We may without loss of generality take one of these (say
w1, . . . , wg) to be standard and cut M open along w1, . . . , wg to a sphere
with 2g boundary components wi, w̄i (i = 1, . . . , g). Choose 2g addi-
tional curves V1, . . . , Vg, W1, . . . , Wg on M such that each pair wi, Wi is
a canceling pair of handles, i.e. wi ·Wi = 1 point, wi ·Wj = Wi ·Wj = ∅
if i �= j, and similarly for the Vi’s. Then the matrices of algebraic inter-
section numbers ∥∥|vi · wj |

∥∥ ,
∥∥|vi · Wj |

∥∥
uniquely determine a symplectic Heegaard splitting. This gives a natural
symplectic isomorphism from H1(M ; Z) to Xg. Also, since M is pictured
in Figure 1 as the boundary of a handlebody N , our map sends H1(N ; Z)
to Fg. By Corollary 4.7 we may find h ∈ Γ such that h(Fg) = F̄g. By [8]
each h ∈ Γ is topologically induced by a homeomorphism h̃ : M → M .
Let N̄ be a copy of N , and let W be the disjoint union of N and N̄ ,
identified along ∂N = M and ∂N̄ = M by the map h̃. Then (W ; N, N̄)
is a Heegaard splitting of W which induces the Heegaard pair (V ; B, B̄).

In an entirely analogous manner, the correspondence between (sta-
ble) isomorphism classes of Heegaard pairs and symplectic Heegaard
splittings may be established, using the method of proof of Theorem
4.8 and the essential fact that each h ∈ Λ is topologically induced by a
homeomorphism h̃ : M → M . Q.E.D.

§5. Heegaard pairs and their linked abelian groups

In this section we meet linked groups for the first time in our in-
vestigations of Heegaard pairs. We show that the problem of classifying
stable isomorphism classes of Heegaard pairs reduces to the problem of
classifying linked abelian groups. This is accomplished in Theorem 5.15
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and Corollary 5.16. In Theorem 5.18 and Corollary 5.21 we consider the
question: how many stabilizations are needed to obtain equivalence of
minimal, stably equivalent Heegaard pairs? Corollary 5.22 asserts that
a single stabilization suffices, generalizing the results of Theorem 3.15
and Corollary 3.18. This solves Problem 3.

The final part of the section contains partial results about classifying
Heegaard pairs of minimal rank. Theorem 5.20 is a first step. The
complete solution to that problem will be given, later, in Theorem 7.5.

We will not be able to address the issue of computing the linking
invariants in this section. Later, after we have learned more, we will
develop a set of computable invariants for both stable and unstable
double cosets.

5.1. The quotient group of a Heegaard pair and its natural
linking form. Solution to Problem 1

We now introduce the concept of the quotient group of a Heegaard
pair. We will prove (see Theorem 5.5) that the quotient group of a
Heegaard pair has a natural non-singular linking form. This leads us
to the concept of a ‘linked abelian group’. In Corollary 5.9 we show
that, as a consequence of Theorem 5.5, the linked abelian group that is
associated to a Heegaard pair is an invariant of its stable isomorphism
class. Corollary 5.16 solves Problem 1.

Lemma 5.1. Let (V ; B, B̄) be a Heegaard pair and let C = {x ∈
V | x · (B + B̄) = 0}. Then C = B ∩ B̄.

Proof. We have x ∈ C if and only if x ·(B+B̄) = 0, which is true if
and only if x ·B = 0 and x · B̄ = 0. Since B, B̄ are maximally isotropic,
this is true if and only if x ∈ B and x ∈ B̄. Q.E.D.

This lemma implies that, for lagrangian subspaces B, B̄, B′, B̄′, if
B + B̄ = B′ + B̄′, then B ∩ B̄ = B′ ∩ B̄′.

Lemma 5.2. Every Heegaard pair (V ; B, B̄) is a direct sum of Hee-
gaard pairs of the form (V1; C, C) ⊕ (V2; D, D̄) where C = B ∩ B̄ and
D ∩ D̄ = 0.

Proof. Since B/C = B/(B ∩ B̄) ∼= (B + B̄)/B̄ ⊂ V/B̄, the group
B/C is free and thus C is a direct summand of B. Thus B = C ⊕ D
for some subgroup D of B. Let now B∗ be a dual complement of B in
V ; the splitting C ⊕ D of B then induces, dually, a splitting C∗ ⊕ D∗

of B∗, where C ⊥ D∗ and D ⊥ C∗ and where C and C∗ are dually
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paired (by the symplectic form) and likewise D, D∗. Thus V1 = C ⊕C∗

and V2 = D ⊕ D∗ are symplectic subspaces of V , with V1 = V ⊥
2 and

V = V1⊕V2 = C⊕C∗⊕D⊕D∗. We claim that B̄ ⊂ C⊕D⊕D∗. Indeed,
express b̄ ∈ B̄ as b̄ = c+c∗+d+d∗ with c ∈ C, etc. Since B̄ ⊃ C and B̄ is
isotropic, we have b̄·c′ = 0 for all c′ ∈ C, i.e. (c+c∗+d+d∗)·c′ = c∗·c′ = 0
for all c′ ∈ C. But C, C∗ are dually paired, so c∗ must be zero.

Hence we have C ⊕ D ⊕ D∗ ⊃ B̄ ⊃ C. But this implies that B̄ =
C ⊕ D̄, where D̄ = B̄ ∩ (D ⊕ D∗) = B̄ ∩ V2 = V2. We have now shown
that:

a) V = V1 ⊕ V2

b) B = C ⊕ D with C = B ∩ B̄ ⊂ V1, D ⊂ V2

c) B̄ = C ⊕ D̄ with D̄ ⊂ V2

Note that C = B∩B̄ = (C⊕D)∩(C∩D̄) = C⊕(D∩D̄), so D∩D̄ = 0.
To finish the proof, it suffices then to show that (V1; C, C) and (V2; D, D̄)
are Heegaard pairs. The former is trivially so since V1 = C ⊕ C∗, and
for the same reason, D is lagrangian in V2. We must then show that D̄
is lagrangian in V2. It is certainly isotropic, since B̄ = C ⊕ D̄ is so. But
let x ∈ V2 be such that x · D̄ = 0. We also have x · V1 = 0 since V1 ⊥ V2

and hence x · B̄ = x · (C ⊕ D̄) = 0. Since B̄ is maximally isotropic,
x ∈ B̄ and hence B̄ ∩ V2 = D̄, showing D̄ to be maximally isotropic in
V2. Q.E.D.

Lemma 5.3. Let (V ; B, B̄) and (V ; B, B̄′) be two Heegaard pairs
such that B + B̄ = B + B̄′. If the first is split as in the previous lemma,
then the second has a splitting of the form (V1; C, C)⊕(V2; D, D̄′), where
D ∩ D̄′ = 0 and D + D̄′ = D + D̄.

Proof. By Lemma 5.1, the fact that B + B̄ = B + B̄′ implies that
C = B ∩ B̄ = B ∩ B̄′. Examining the construction of Lemma 5.2, we
see that since B and C are the same for both pairs, we may choose B∗

and D the same, and hence C∗, D∗ and V1 = C ⊕ C∗, V2 = D ⊕ D∗

will also be the same. Thus the second pair has a splitting satisfying
all the requirements except possibly the last. But we have D + D̄′ =
(B + B̄′) ∩ V2 = (B + B̄) ∩ V2 = D + D̄. Q.E.D.

We define the quotient of a Heegaard pair (V ; B, B̄) to be the group
H = V/(B + B̄). Clearly, isomorphic Heegaard pairs have isomorphic
quotients. Furthermore, stabilization does not change this quotient ei-
ther, since

(V ⊕Xk)/[(B⊕Ek)+(B̄⊕Fk)] = (V ⊕Xk)/[(B+B̄)⊕Xk] ∼= V/(B+B̄).
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Thus the isomorphism class of the quotient is an invariant of stable
isomorphism classes of pairs. We cannot conclude, however, that two
Heegaard pairs are stably isomorphic if they have isomorphic quotients;
there are further invariants. To pursue these, we need the following
concepts.

Definition 5.4. If T is a finite abelian group, a linking form on T is
a symmetric bilinear Q/Z-valued form on T , where Q/Z is the group of
rationals mod 1. More generally, a linking form on any finitely generated
abelian group H means a linking form on its torsion subgroup T . A
linking form λ is non-singular if for every homomorphism ϕ : T → Q/Z,
there is a (necessarily unique) x ∈ T such that ϕ(y) = λ(x, y) for all
y ∈ T . A group H will be called a linked group if its torsion subgroup is
endowed with a non-singular linking form. ‖

Theorem 5.5. The quotient group of a Heegaard pair has a natural
non-singular linking form.

Proof. Let the pair be (V ; B, B̄), the quotient be H , and its torsion
subgroup be T . Consider x, y ∈ T and suppose that mx = 0. Lift x, y to
u, v ∈ V ; then mx = 0 implies that mu ∈ B + B̄, say mu = b+ b̄. Define
λ(x, y) to be 1

m (b ·v) mod 1. Note that if ny = 0 and hence nv ∈ B + B̄,
say nv = c + c̄ (c ∈ B, c̄ ∈ B̄) then we have

λ(x, y) ≡ 1
m

(b · v) ≡ 1
mn

(b · nv) ≡ 1
mn

b · (c + c̄) ≡ 1
mn

b · c̄ mod 1,

which gives a more symmetric definition of λ(x, y). We now verify the
necessary facts about λ.

a) Independent of the choice of b, b̄: if b + b̄ = b′ + b̄′, then we have
b′ = b + δ, b̄′ = b̄ − δ, with δ ∈ B ∩ B̄. But then 1

mnb′ · c̄ =
1

mn (b · c̄ + δ · c̄) = 1
mnb · c̄, since δ · c̄ = 0. Similarly, λ(x, y) is

independent of the choice of c, c̄.
b) Independent of the lifting u, v: a different lifting u′ satisfies u′ =

u + b1 + b̄1, so

mu′ = mu + m(b1 + b′1) = (b + mb1) + (b̄ + mb̄1),

and hence

λ(x, y) ≡ 1
m

b · v ≡ 1
m

(b + mb1) · v mod 1.

Similarly, λ(x, y) does not depend on the lifting v of y.
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c) Independent of the choice of m: if m′x = 0 also, with m′u = b′ + b̄′,
then mm′u = m′b + m′b̄ = mb′ + mb̄′ and

1
m′ (b

′ · v) ≡ 1
mm′ (mb′ · v) ≡ by a)

1
mm′ (m

′b · v) ≡ 1
m

(b · v) mod 1.

d) Bilinearity and symmetry: the first follows immediately from a).
Then for symmetry, we have λ(x, y) = 1

mn (b·c̄) and λ(y, x) = 1
mn (c·b̄).

But

mn(u·v) = (mu)·(nv) = (b+b̄)·(c+c̄) = b·c̄+b̄·c = b·c̄−c·b̄ ≡ 0 mod mn,

so 1
mn (b · c̄) ≡ 1

mn (c · b̄) mod 1.
e) Non-singularity: this is equivalent to the statement that λ(x, y) ≡

0 mod 1 for all y ∈ T implies that x = 0 in T .
Suppose then x ∈ T and λ(x, y) ≡ 0 for all y ∈ T , and let u

be a lifting of x to V . Now by Lemma 5.2, our Heegaard pair is a
direct sum (V1; C, C) ⊕ (V2; D, D̄) with C = B ∩ B̄ and D ∩ D̄ = 0.
Since the quotient V1/(C + C) is free, V2 projects onto T and so the
lifting of any torsion element may always be chosen in V2. If E is
a dual complement of D in V2, then in fact the projection V → H
will take E onto T . Thus we may assume that u ∈ E. If mx = 0
in T then mu = d + d̄ for some d ∈ D, d̄ ∈ D̄. The hypothesis that
λ(x, y) ≡ 0 mod 1, all y ∈ T is equivalent to d · v ≡ 0 mod m for all
v ∈ V2. Since V2 is symplectic, this implies that d is divisible by m
in V2, that is, d = md′ for some d′ ∈ V2. Now clearly d′ · D = 0, and
hence d′ ∈ D since D is maximally isotropic. Thus we have mu =
md′ + d̄, d̄ = m(u − d′) and we conclude similarly that u − d′ ∈ D̄,
say u− d′ = d̄′. Thus u = d′ + d̄′ ∈ D + D̄, which implies that x = 0.

Q.E.D.

Remark 5.6. Note that the maximal isotropic nature of B, B̄ was
used only in proving e); the weaker assumption that they are only
isotropic still suffices to prove a)–d) and thus construct a natural linking
on H . ‖

Lemma 5.7. Let B ⊂ V be lagrangian, let B̄ be isotropic of
rank 1

2 rank V , and suppose that B ∩ B̄ = 0. Then B̄ is lagrangian if
and only if the induced linking form λ on H is non-singular.

Proof. We have already proved the necessity, so suppose that λ is
non-singular. By Definition 4.2, we need only show that B̄ is a direct
summand of V . This is equivalent to showing that V/B̄ is torsion free,
i.e. that for u ∈ V , if mu ∈ B̄ for some nonzero m, then u ∈ B̄. If then
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mu ∈ B̄ and x is the image of u in H , then mx = 0 in H , so x is in the
torsion group T . But then u lifts x and mu decomposes in B + B̄ as
0 + mu. Hence if y ∈ T is lifted to v ∈ V , we get λ(x, y) = 1

m (0 · v) ≡
0 mod 1, i.e. λ(x, y) ≡ 0 for all y ∈ T . By hypothesis, we have x = 0 in
T , and hence u ∈ B + B̄, say u = b + b̄. Since mu = mb + mb̄ is in B̄,
mb is also in B̄. But it is also in B, so must be zero, i.e. b = 0. Thus
u = b̄ ∈ B̄. Q.E.D.

We have shown that the quotient of a Heegaard pair has the struc-
ture of a linked group in a natural way; clearly, isomorphic Heegaard
pairs have isomorphic linked quotients: the Heegaard isomorphism in-
duces an isomorphism on the quotients which preserves the linking. Let
us see how the linked quotient behaves under stabilization.

Lemma 5.8. The linked quotient of a stabilization of (V ; B, B̄) is
canonically isomorphic to the unstabilized quotient.

Proof. The canonical isomorphism of the quotients is induced by
the inclusion V ↪→ V ⊕Xk, and we identify the two quotients in this way.
To see that the linking defined by the two pairs are equal, let x, y ∈ T .
Their liftings u, v in V ⊕ Xk may be chosen to lie in V ⊕ 0, since Xk

projects to 0 in the quotient, and the splitting of mu may then be chosen
to be (b, 0) + (b̄, 0). The stabilized linking number, defined thus, is then
obviously the same as the unstabilized one. Q.E.D.

Corollary 5.9. The linked abelian group is an invariant of the stable
isomorphism class of a Heegaard pair.

The remainder of this section is devoted to strengthening Corol-
lary 5.9 by showing that, in fact, two Heegaard pairs are stably iso-
morphic if and only if their linked quotients are isomorphic (see Corol-
lary 5.16). It is easily verified that two linked groups are link-isomorphic
if and only if they have link-isomorphic torsion groups and, mod their
torsion groups, the same (free) rank.

Lemma 5.10. Let (V ; B, B̄) be a Heegaard pair with B ∩ B̄ = 0,
and let A be a dual complement of B. If Ā is the direct projection of B̄
into A, then there is a symplectic basis ai, bi of V (ai ∈ A, bi ∈ B) such
that:

a) miai is a basis for Ā, for some integers mi �= 0;
b) miai +

∑
j nijbj is a basis for B̄, for some integers nij such

that nij/mi = nji/mj.
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Remark 5.11. Note that the hypothesis B ∩ B̄ = 0 is equivalent
to the fact that the rank of B + B̄ is equal to the rank of V , i.e. that
the quotient is finite. ‖

Proof. Since B ∩ B̄ = 0, the projection of B̄ into A is 1-1, i.e.

rank Ā = rank B̄ =
1
2
rank V = rank A.

By Proposition 3.4, there is a basis ai of A such that miai is a basis
of Ā, and mi �= 0 because rank Ā = rank A. Let bi be the dual basis
of B = A∗; then ai, bi is a symplectic basis of V . The inverse of the
projection B̄ → Ā takes miai into a basis of B̄, which must then be of
the form b̄i = miai +

∑
k nikbk for nij ∈ Z. But b̄i · b̄j = 0 for all j, i.e.

minji − mjnij = 0 for all i, j. Q.E.D.

Lemma 5.12. Let (V ; B, B̄) and (V ; B, B̄′) be two Heegaard pairs
such that B + B̄ = B + B̄′ and B ∩ B̄ = B ∩ B̄′ = 0. Then the linkings
λ, λ′ induced on the common quotient H are identical if and only if
there is an f ∈ Sp(V ) such that f(B) = B, f(B̄) = B̄′, and such that
the automorphism h of H induced by f is the identity map.

Proof. Certainly the condition is sufficient. To prove the necessity,
let A be a dual complement of B and let Ā, Ā′ be the projections of B̄,
B̄′ into A. Note that Ā = A ∩ (B + B̄) and Ā′ = A ∩ (B + B̄′). Hence
Ā = Ā′. As in the previous lemma we choose an Sp-basis ai, bi with
miai a basis of Ā = Ā′, and corresponding bases

b̄i = miai +
∑

j

nijbj of B̄ and b̄′i = miai +
∑

j

n′
ijbj of B̄′.

Let βij =
n′

ij−nij

mi
; the “symmetry” conditions of the previous lemma on

the nij , n
′
ij imply that βij = βji. Let xi be the image of ai in H . Since

miai ∈ B + B̄, when calculating λ(xi, xk) we may choose the B-part of
the lift of xi to be −

∑
j nijbj , and we get

λ(xi, xk) =
1

mi
(−
∑

nijbj) · ak =
nik

mi
.

Likewise we get λ′(xi, xk) = n′
ik

mi
. By hypothesis, for all i, k we have

n′
ik

mi
≡ nik

mi
mod 1, i.e. βik = n′

ik−nik

mi
≡ 0 mod 1; that is, βik is integral

as well as symmetric. Thus the transformation f : V → V which fixes
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the bi and takes ai to ai +
∑

j βijbj is easily seen to be symplectic. We
have f(B) = B obviously, and

f(b̄i) = mi(ai +
∑

j

βijbj) +
∑

nijbj = miai +
∑

j

(miβij + nij)bj

= miai +
∑

j

n′
ijbj = b̄′i,

so f(B̄) = B̄′. Finally, h(xi) is the image of f(ai) = ai+
∑

j βijbj , which
is just xi; this shows that h = 1. Q.E.D.

Lemma 5.13. With hypotheses as in the preceding lemma, but omit-
ting the assumption that B ∩ B̄ = B ∩ B̄′ = 0, the conclusion remains
valid.

Proof. Again we need only prove the necessity. By Lemma 5.3, we
split (V ; B, B̄) as (V1; C, C)⊕(V2; D, D̄), where C = B∩B̄ = B∩B̄′, and
(V ; B, B̄′) as (V1; C, C) ⊕ (V2; D, D̄′). Since D + D̄ = (B + B̄) ∩ V2 =
(B + B̄′) ∩ V2 = D + D̄′, both the V2 pairs have the same quotient,
namely the torsion subgroup T , and both these pairs define the same
linking form. By the preceding lemma we have a map f2 ∈ Sp(V2) such
that f2(D) = D, f2(D̄) = D̄′ and so that

V2

T

V2

��

f2
�����

���

��������

commutes. Let f = 1V1 ⊕ f2; then f satisfies the requirements. Q.E.D.

Lemma 5.14. Let (V ; B, B̄) and (V ′; B′, B̄′) be Heegaard pairs of
the same genus g, and let h : H → H ′ be an isomorphism of the quotients
(not necessarily linking-preserving). If g > rank H, then there is a
symplectic isomorphism f : V → V ′ lifting h such that f(B) = B′ and
f(B + B̄) = B′ + B̄′.

Proof. Let A, A′ be dual complements of B, B′. Then the projec-
tions π, π′ map A, A′ onto H, H ′. Since A, A′ are free of rank g > rank H ,
we have non-minimal presentations A → H , A′ → H ′, and hence by
Theorem 3.15 there is an isomorphism p : A → A′ lifting h. Let q be
the adjoint map of p on B = A∗ (i.e. q = (p∗)−1); then f = p ⊕ q is
a symplectic isomorphism of A ⊕ B = V to A′ ⊕ B′ = V ′. It clearly
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still lifts h, which implies that f(B + B̄) = f(kerπ) = kerπ′ = B′ + B̄′.
Finally, f(B) = B′ by the construction of f . Q.E.D.

Theorem 5.15. Let (V ; B, B̄) and (V ′; B′, B̄′) be two Heegaard
pairs of genus g and h : H → H ′ a link-isomorphism of their linked
quotient groups. If g > rank H, then h lifts to a Heegaard isomorphism
j : (V ; B, B̄) → (V ′; B′, B̄′).

Proof. Lift h to f as in the previous lemma, and put B̄1 = f−1(B̄′).
Then (V ; B, B̄1) is a Heegaard pair and f maps it isomorphically
to (V ′; B′, B̄′). Note that

B + B̄1 = f−1(B′ + B̄′) = f−1f(B + B̄) = B + B̄,

so the quotient of (V ; B, B̄1) is also H . Moreover, by construction the
linking form on H induced by (V, B, B̄1) is identical to the linking form
induced by (V, B, B̄). By Lemma 5.13, there is a map g ∈ Sp(V ) such
that g(B) = B, g(B̄) = B̄1, and g induces the identity map on H .
Hence the map fg also induces h : H → H ′, and fg(B) = B′, fg(B̄) =
f(B̄1) = B̄′. Q.E.D.

We are now ready to give our solution to Problem 1 of the introduc-
tion to this paper.

Corollary 5.16. Two Heegaard pairs are stably isomorphic if and
only if they have the same torsion free ranks, and their torsion groups
are link-isomorphic; that is, if and only if they have isomorphic linked
quotients.

5.2. The stabilization index. Solution to Problem 3

In this subsection we introduce the notion of a Heegaard presenta-
tion and define the genus of a Heegaard presentation. We return to the
concept of the volume of a presentation of an abelian group, relating it
now to Heegaard presentations. See Theorem 5.20. At the end of this
section we give the solution to Problem 3 of the Introduction to this
article. See Corollary 5.22.

Definition 5.17. Let H be a linked group. A Heegaard presentation
of H consists of a Heegaard pair (V ; B, B̄) and a surjection π : V → H
such that:

a) kerπ = B + B̄
b) the linking induced on H by means of π is the given linking on H .
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The genus of the presentation is the given genus of the pair. We will use
the symbol (V ; B, B̄; π) to denote a Heegaard presentation. ‖

Theorem 5.18. Every linked group H has a Heegaard presentation
of genus equal to the rank of H.

Proof. Let H = Fk ⊕ T , where Fk is free of rank k and T is
torsion. If (V ; B, B̄; π) is a Heegaard presentation of T with genus
equal to rank T , then taking the direct sum with (Xk; Ek, Ek; ρ) where
ρ : Xk → Fk is a surjection with kernel Ek gives the required presen-
tation for H . Thus we need only prove the theorem for torsion groups
T . Let V be symplectic rank of 2rank T and let A, B be a dual pair
in V . Let πA : A → T be a presentation of T , which is possible since
rank A = rank T . We may, by Proposition 3.4, choose a basis ai of
A such that miai is a basis of kerπA, and mi �= 0 since T is a torsion
group. If bi is the dual basis of B, then ai, bi is a symplectic basis of V .
Let now xi = πA(ai); the xi’s generate T , and the order of xi in T is
mi.

If now λ is the linking form on T , choose rational numbers qij rep-
resenting λ(xi, xj) mod 1, which, since λ(xi, xj) ≡ λ(xj , xi), may be
assumed to satisfy qij = qji. Note that

miqij ≡ miλ(xi, xj) ≡ λ(mixi, xj) ≡ λ(0, xj) ≡ 0 mod 1,

that is, miqij = nij is integral.

We now define B̄ ⊂ V to be generated by b̄i = miai +
∑

j nijbj .
Clearly the map π : ai 	→ xi, bi 	→ 0 is a surjection of V onto T , and its
kernel is generated by miai and bi, or just as well by b̄i and bi. In other
words, kerπ = B + B̄. Observe that B̄ is isotropic since

b̄i · b̄k = minki − mknik = mimkqki − mkmiqik = 0.

Hence we have a linking λ′ induced on T , as in Lemma 5.7, by the
isotropic pair B, B̄. An easy calculation shows that λ′ = λ, and hence
is non-singular by hypothesis. Now rank B̄ is obviously = rank A =
1
2 rank V , and B ∩ B̄ = 0: for

∑
i rib̄i ∈ B if and only if

∑
i rimiai = 0,

i.e. if and only if ri = 0 all i (since mi �= 0). We now apply Lemma
5.7 to conclude that B̄ is lagrangian and so (V ; B, B̄; π) is a Heegaard
presentation of T with genus equal to the rank of T . Q.E.D.

Our next goal is to show that a minimal Heegaard pair has a natural
volume in the sense of §3.2.
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Lemma 5.19. Let (V ; B, B̄) be a minimal Heegaard pair of genus g
with quotient H. Then for any two dual complements Ai of B (i = 1, 2)
the two presentations Ai → H induce the same volumes. We shall call
this volume the volume induced by the Heegaard pair.

Proof. The direct sum projection of V = A2 ⊕ B onto A2 gives a
map j : A1 → A2, and j is an isomorphism. Clearly,

A1

H

A2

��

j
�������

�������

commutes, so the presentations are equivalent and have the same vol-
ume. Q.E.D.

We can strengthen Theorem 5.18 in the minimal volume case.

Theorem 5.20. Let (Vi; Bi, B̄i), (i = 1, 2) be minimal Heegaard
pairs of genus g with quotients Hi and induced volumes ±θi, and let
h : H1 → H2 be a linking isomorphism. Then h lifts to a Heegaard
isomorphism if and only if h is also volume preserving.

Proof. Assume that g = rank H . The proof of Theorem 5.15 goes
through exactly as is whenever we can lift h to f as in Lemma 5.14, and
examining the proof of this lemma, we see that it also goes through as
is if we can only lift h to an isomorphism p : A → A′ such that

A −−−−→ H

p

⏐⏐	 ⏐⏐	h

A′ −−−−→ H ′

commutes. Since rank A = rank A′ = g = rank H , the abelian groups H
and H ′ have volumes θ, θ′ induced by these presentations, and Theorem
3.26 tells us that h lifts if and only if h(±θ) = ±θ′, as desired. Q.E.D.

Corollary 5.21. Every Heegaard pair is isomorphic to a stabiliza-
tion of a Heegaard pair whose genus is equal to the rank of the quotient.

Proof. Let (V ; B, B̄) be of genus g and let its quotient be H of
rank r. If g = r we are done. If g > r, then by Theorem 5.18 there is a
Heegaard presentation of H of genus r, and then by Corollary 5.16, its
stabilization of index k = g − r > 0 is isomorphic to (V ; B, B̄). Q.E.D.



184 J. Birman, D. Johnson and A. Putman

Problem 3 asked whether there is a bound, or even more a uniform
bound on the stabilization index for arbitrary minimal inequivalent but
stably equivalent pairs H1,H2 ∈ Γg.

Corollary 5.22. If two Heegaard splittings of the same 3-manifold
W have the same genus, then their associated symplectic Heegaard split-
tings are either isomorphic or become isomorphic after at most single
stabilization. In particular, if the genus of the Heegaard splitting is
greater than the rank of H1(W ; Z), then the symplectic Heegaard split-
tings are always isomorphic.

Proof. Let h̃, h̃′ be Heegaard gluing maps of genus g for the same
3-manifold. Let h, h′ be their images in Sp(2g, Z). By Theorem 4.8 we
know that the stable double cosets which characterize their stabilized
symplectic Heegaard splittings are in 1-1 correspondence with isomor-
phism classes of associated stabilized Heegaard pairs. Let (V ; B, B̄), (V ′; B′, B̄′)
be the Heegaard pairs determined by h = ρ2(h̃), h′ = ρ2(h̃′). The fact
that h̃, h̃′ determine the same 3-manifold W shows that there is a link-
ing isomorphism H → H ′ of their linked quotient groups. Theorem 5.15
then asserts that, if g > rankH1(W ; Z), then there is a Heegaard isomor-
phism (V ; B, B̄) → (V ′; B′, B̄′). In particular, the Heegaard splittings
are equivalent. By Theorem 5.18, every linked group H has a Heegaard
presentation of genus equal to the rank of H . Thus, at most a single
stabilization is required, and that only if the genus is minimal and the
Heegaard pairs are not isomorphic. Q.E.D.

§6. The classification problem for linked abelian groups

We have reduced the problem of classifying symplectic Heegaard
splittings to the problem of the classification of linked abelian groups.
It remains to find a system of invariants that will do the job, and that
is our goal in this section.

6.1. Direct sum decompositions

We begin by showing that the problem of finding a complete system
of invariants for a linked group (H, λ) reduces to the problem of studying
the invariants on the p-primary summands of the torsion subgroup T of
H .

Theorem 6.1 ([43]). Every linking form on T splits as a direct sum
of linkings associated to the p-primary summands of T , and two linking
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forms are equivalent if and only if the linkings on the summands are
equivalent.

Proof. Let x, y ∈ T where x has order m and y has order n. Then
λ(x, y) = λ(x, y + 0) = λ(x, y) + λ(x, 0), hence λ(x, 0) = 0. From this it
follows that nλ(x, y) = λ(x, ny) = λ(x, 0) = 0(mod 1) because ny = 0.
By the symmetry of linking numbers, we also have mλ(x, y) = 0(mod 1).
Therefore λ(x, y) = r

m = s
n (mod 1) for some integers r, s. This implies

that λ(x, y) = t
(m,n)(mod 1) for some integer t, where (m, n) is the

greatest common divisor of m and n. Thus if x, y have order pa, qb

where p, q are distinct primes, then λ(x, y) = 0. Thus the linking on
T splits into a direct sum of linkings on the p-primary summands, as
claimed. Q.E.D.

In view of Theorem 6.1, we may restrict our attention to a summand
T (pj) of T of prime power order pt

j , where pj ∈ {p1, p2, . . . , pk}, the set
of prime divisors of the largest torsion coefficient τt. This brings us,
immediately, to a very simple question: how do we find the linking
form on T (pj) from a symplectic Heegaard splitting? Our next result
addresses this issue.

Corollary 6.2. Let T be the torsion subgroup of H1(W ; Z). Let
Q(2) = ||qij || and P(2) = Diag(τ1, τ2, . . . , τt) be the matrices that are
given in Theorem 2.4.

(1) The t×t matrix Q(2)(P(2))−1 = ‖λ(yr, yj)‖ = || qij

τj
|| determines

a linking on H.
(2) The linking matrices that were studied by Seifert in [43] are

the direct sum of k distinct t × t matrices, one for each prime
divisor pd of τt. Each summand represents the restriction of
the linking in (1) to the cyclic summands of T whose order is
a fixed power of pd. The one that is associated to the prime pd

is a matrix of dimension at most t × t:

(21) λ(gid, gjd) = || τiτjqij

(pei,d

d )(pejd

d )τj

|| = || τiqij

(peid

d )(pejd

d )
||

Proof. (1) The easiest way to see that Q(2)(P(2))−1 is a linking on
H is from the geometry. The matrix Q(2) records the number of appear-
ances (algebraically) of each homology basis element bi in h(bj). The
curves which represent the bi’s bound discs Di in Ng, and the curves
which represent the h(bj)’s bounds discs D̄j in N̄g. The gij ’s are inter-
section numbers of h(bj) with Di or of bi with D̄j . Dividing by τj , inter-
section numbers go over to linking numbers. Note that the submatrix
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P(2)Q(2) is symmetric by (2), hence Q(2)(P(2))−1 is likewise symmetric,
as it must be because Q(2)(P(2))−1 is a linking.

(2) By Theorem 6.1, T is a direct sum of p-primary groups T (p1)⊕
· · · ⊕ T (pk). From this it follows that the linking on T also splits as a
direct sum of the linkings associated to T (p1), . . . , T (pk).

We focus on one such prime p = pd. By Theorem 2.2 the p-primary
group T (p) splits in a unique way as a direct sum of cyclic groups whose
orders are powers of p, moreover the powers of p which are involved occur
in a non-decreasing sequence, as in (4) of Theorem 2.2. The generators
of these groups are ordered in a corresponding way, as g1,d, g2,d, . . . , gt,d,
where distinct generators gi,d, gi+1,d may generate cyclic groups of the
same order, and where it is possible that the first q of these groups are
trivial. As in the statement of Theorem 2.2, the generators gi,d and yi are
related by (5). The expression on the right in (21) follows immediately.
There are k such matrices in all, where k is the number of distinct prime
divisors of τt. Q.E.D.

6.2. Classifying linked p-groups when p is odd. Solution
to Problem 2, odd p.

In this section we describe Seifert’s classification theorem for the
case when all of the torsion coefficients are odd. Seifert studied the
t × t matrix λ(gi, gj) in (21) belonging to a fixed prime p = pd. To
explain what he did, we start with the inequalities in (4), but restrict to
a subsequence of cyclic groups all of which have the same prime power
order. We simplify the notation, using the symbols

ε1 = · · · = ε1 < ε2 = · · · = ε2 < · · · < εr = εr = · · · εr

in place of the powers ei,d which appear in (21). The linking matrix then
divides into blocks whose size is determined by the number of times,
denoted ti, that a given power, say εi, is repeated. Among these, the
blocks that interest us are the square blocks whose diagonals are along
the main diagonal of the linking matrix. There will be r such blocks of
dimension t1, . . . , tr if r distinct powers pεi occur in the subgroups of T
that are cyclic with order a power of p:

(22)
∥∥λ(gi, gj)

∥∥ =

⎛
⎜⎜⎜⎜⎝

A1
pε1 ∗ · · · ∗
∗ A2

pε2 · · · ∗
...

...
. . .

...
∗ · · · · · · Ar

pεr

⎞
⎟⎟⎟⎟⎠

The stars relate to linking numbers that we shall not consider further.
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Theorem 6.3 ([43]). Two linkings of T (p) are equivalent if and
only if the corresponding box determinants |A1|, |A2|, . . . , |Ar| have the
same quadratic residue characters mod p.

Summarizing, we can now give the promised solution to Problem 2
in the case when T has no 2-torsion.

Theorem 6.4. (1) We are given the gluing map h̃ ∈ Γ̃g for a
Heegaard splitting of genus g of a 3-manifold W . Let

H = ρ2(h̃) =
(R P
S Q
)
∈ Sp(2g, Z).

(2) Use the methods described in the proof of Theorem II.9 of [34]
to find matrices U ,V such that UPV = P(1) = Diag(1, 1, . . . , 1, τ1, τ2,
. . . , τt, 0, . . . , 0).

(3) Use the methods described in the proof of Theorem 2.4 to find
the equivalent matrix H′.

(4) Let yi be a generator of the subgroup of order τi of T . Let p1 <
p2 < · · · < pk be the primes divisors of τ1, τ2, . . . , τt. Compute
the elements gij, using (5). Then compute the k symmetric
matrices

∥∥λ(gi, gj)
∥∥, using (21) above.

(5) Using the matrices
∥∥λ(gi, gj)

∥∥, determine the submatrices A1, . . . ,
Ar that are shown in (22) above. Here each block matrix Aq

belongs to a sequence (possibly of length 1) of cyclic subgroups
of T (p) of like prime power order. The matrix Aq might be
the identity matrix. Compute the quadratic residue characters
mod p of the determinants |A1|, |A2|, . . . , |Ar|. Repeat this for
each p.

(6) By Corollary 5.16 and Theorem 6.3, the rank r, the torsion
coefficients τ1, . . . , τt and the complete array of quadratic reside
characters mod p are the complete set of topological invariants
of the associated symplectic Heegaard splitting of W that is
determined by H.

6.3. Classifying linked p-groups, p = 2. Solution to Prob-
lem 2, p = 2.

If (H, λ) is a linked p-group, we have seen that H may be decom-
posed into orthogonal summands Bj , each of which is a free Zpj -module,
that is, a direct sum of some number rj of copies of Zpj ; rj is the rank of
Bj , and Bj is the jth block. The rj ’s are as usual invariants of H alone.
For odd p, the linking type of λ|Bj is an invariant of λ, and these types
(which are determined by a Legendre symbol) give a complete set of
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invariants. For p = 2, however, no such decomposition is possible; this
is due to the fact that the linking type of Bj is no longer an invariant.
Here is a typical example of the kind of thing that can happen.

Definition 6.5. An element x ∈ H is said to be primitive if it
generates a direct summand of H , or, equivalently, if x /∈ 2H . ‖

Example 6.6. Let H = Z2n−1 ⊕ Z2n ⊕ Z2n , so H has rank 3. Let

C =
(

0 1
1 0

)
and D =

(
2 1
1 2

)
,

and consider the two linking forms λ and λ′ on H whose matrices with
respect to the standard basis are

(23) (
1

2n−1
) ⊕ (

1
2n

C) and (
−3

2n−1
) ⊕ (

1
2n

D),

respectively, where ( 1
2n−1 ) and ( −3

2n−1 ) denote 1 × 1 matrices. We claim
that λ � λ′. Indeed, let �e = (e1, e2, e3) be the standard basis of H and
put

e′1 = e1 + 2e2 − 2e3, e′2 = e1 + e2, e′3 = e1 − e3.

Now, we have:

3e1 = −e′1+2e′2 +2e′3, 3e2 = e′1 +e′2−2e′3, 3e3 = −e′1+2e′2−e′3.

Since 3 is a unit in Z2n , it follows that �e′ = (e′1, e
′
2, e

′
3) is also a basis.

Now, observe that

λ(e′1, e
′
1) = λ(e1, e1) − 8λ(e2, e3) =

−3
2n−1

λ(e′2, e
′
2) = λ(e1, e1) =

2
2n

λ(e′3, e
′
3) = λ(e1, e1) =

2
2n

λ(e′1, e
′
2) = λ(e1, e1) − 2λ(e3, e2) = 0

λ(e′1, e
′
3) = λ(e1, e1) − 2λ(e3, e2) = 0

λ(e′2, e
′
3) = λ(e1, e1) − λ(e2, e3) =

1
2n

Thus λ with respect to the basis �e′ is equal to λ′ with respect to the
basis �e. But 1

2n C is not isomorphic to 1
2n D as a linking on Z2

2n when
n � 2. For example, λ(x, x) = 0 has no primitive solutions for the
second linking, whereas it does for the first. ‖



Symplectic Heegaard splittings and linked abelian groups 189

Our example shows that we must approach the case p = 2 in a
different manner. Burger (see [7]) reduced the classification of linked
p-groups to the classification of quadratic forms (more precisely, sym-
metric bilinear forms) over Zpn , and his procedure gives in theory at
least a complete set of invariants, but for p = 2 they are inconveniently
cumbersome. Our goal in this section is to reduce his invariants to a
simple, manageable set and to demonstrate how to calculate them. We
will proceed as follows:

• In §6.3.1 we show how to decompose a linking form (in a non-
canonical way) into a direct sum of 3 types of basic forms.

• In §6.3.2 we discuss a variant of the Burger’s numerical invari-
ants.

• Our variant of Burger’s invariants cannot achieve arbitrary val-
ues. To determine the values they can achieve, we calculate the
values of our numerical invariants on the basic forms. This cal-
culation will be the basis of the next step, given in §6.3.3.

• Finally, in §6.3.4 we show that all the information in Burger’s
numerical invariants is contained in a simpler set of mod 8
phase invariants together with the ranks of the various blocks.

The section ends with several examples.

6.3.1. Decomposing a linked abelian 2-group Strengthening a result
of Burger [7], Wall [47] showed how to decompose a linked abelian 2-
group into an orthogonal direct sum of certain basic linking forms. In
this section, we review this result and give a proof of Wall’s theorem
which builds on Burger’s original ideas and which is better suited for
computations.

Definition 6.7. The basic linking forms on a finite abelian 2-group
are the following

• The unary forms. These are the forms on Z2j for j ≥ 1 whose
matrices are

(
a
2j

)
for odd integers a.

• The two binary forms. These are the forms on (Z2j )2 for j ≥ 1
whose matrices are either 1

2j C or 1
2j D, where C and D were

defined in Example 6.6. ‖

We can now state Wall’s theorem.

Theorem 6.8 (Wall, [47]). Let (H, λ) be a linked abelian 2-group.
Then (H, λ) is isomorphic to an orthogonal direct sum (H1, λ1) ⊕ · · · ⊕
(Hn, λn), where the (Hi, λi) are basic linking forms.
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Proof. We will use the following well-known result about solving
congruences mod pk.

Lemma 6.9 (Hensel’s Lemma [35, Theorem 2.23]). Let f(x) be
a polynomial with integer coefficients, let p be a prime and let k ≥ 2
be an integer. Assume that the integer r is a solution to the equation
f(x) = 0 (mod pk−1), and moreover assume that f ′(r) �= 0 mod p. Then
f(r+tpk−1) = 0 (mod pk) for some (unique) integer t with 0 ≤ t ≤ p−1.

The proof of Theorem 6.8 begins with a lemma:

Lemma 6.10. Let H = Zpj ⊕ Zpj and let λ be the linking form
on H whose matrix with respect to the standard basis (e1, e2) for H is
1
2j ( 2m 1

1 2n ). Then (H, λ) is isomorphic to the linking form whose matrix
is 1

2j C if both m and n are odd and to the linking form whose matrix is
1
2j D otherwise.

Proof. Assume first that one of m and n (say m) is even. Observe
that if a is an integer, then since λ is defined by the matrix 1

2j ( 2m 1
1 2n ),

we have:

λ((1, a), (1, a)) = 2m + 2a2n + 2a = 2(na2 + a + m).

Now, since m is even it follows that a = 1 is a solution to the equation
na2 + a + m = 0 mod 2, so Hensel’s lemma implies that there is some
odd integer ã so that nã2 + ã+m = 0 mod 2j . Set �v = (1, a). Since λ is
nondegenerate, there is some �w ∈ H so that λ(�v, �w) = 1

2j . Let k be so
that λ(�w, �w) = 2k. The pair {�v, �w − k�v} is then a new basis, and with
respect to this basis λ has the matrix 1

2j ( 0 1
1 0 ), as desired.

Now assume that both m and n are odd. By the same argument as
in the previous paragraph (but solving na2 +a+m = 1 mod 2j), we can
assume that m = 1, so the matrix for λ is 1

2j ( 2 1
1 2n ). Set �v = (1, 0), and

for an arbitrary integer c define �wc = (c, 1 − 2c). Observe that

λ(�v, �wc) = 2c + (1 − 2c) = 1.

Moreover,

λ(�wc, �wc) = 2c2+2c(1−2c)+2n(1−2c)2 = 2((4n−1)c2+(1−4n)c+n).

Now, since n is odd it follows that c = 1 is a solution to

(4n − 1)c2 + (1 − 4n)c + n = 1 (mod 2),
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so Hensel’s lemma implies that there is some odd integer c̃ so that

(4n − 1)c̃2 + (1 − 4n)c̃ + n = 1 (mod 2j).

It follows that λ(�wc̃, �wc̃) = 2. Observe that since c̃ is odd the vectors
�v and �wc̃ form a basis, and with respect to this basis λ has the matrix
1
2j ( 2 1

1 2 ), as desired. Q.E.D.

We are ready to prove Theorem 6.8. For x ∈ H , define the order of
x to be the smallest nonnegative integer n so that 2nx = 0. Assume first
that there is some primitive x ∈ H of order j so that λ(x, x) = a

2j with
a odd. Construct a basis x = x1, x2, . . . , xN for H . Observe now that
for any 2 ≤ i ≤ N , we have λ(x, xi) = bi

2j for some integer bi. Since a is
odd, we can write bi = cia mod 2j for some integer ci. Set x′

i = xi − cix.
Observe that x = x1, x

′
2, . . . , x

′
N is a new basis for H , and that moreover

(H, λ) has an orthogonal direct sum decomposition

〈x〉 ⊕ 〈x′
2, . . . , x

′
N 〉.

Since λ restricted to 〈x〉 is the basic form with matrix
(

a
2j

)
, we are done

by induction.

We can therefore assume that for all x ∈ H , if j is the order of x
then λ(x, x) = 2n

2j for some integer n. Fixing some primitive x ∈ H of
order j and letting n be the integer with λ(x, x) = 2n

2j , the fact that λ

is non-singular implies that there is some y ∈ H so that λ(x, y) = 1
2j .

Necessarily y has order j, so we can write λ(y, y) = 2m
2j for some integer

m. Construct a basis x = z1, y = z2, z3, . . . , zN for H , and for 3 ≤ i ≤ N
write λ(x, zi) = hi

2j and λ(y, zi) = ki

2j . Since the matrix ( 2n 1
1 2m ) is

invertible mod 2j , we can find integers ai and bi so that(
2n 1
1 2m

)
·
(

ai

bi

)
=
(
−hi

−ki

)

mod 2j. For 3 ≤ i ≤ N , set z′i = zi + aix + biy, and observe that
λ(x, z′i) = λ(y, z′i) = 0. The linked group (H, λ) now has an orthogonal
direct sum decomposition

〈x, y〉 ⊕ 〈z′3, . . . , z′N〉.

Since λ restricted to 〈x, y〉 is the linking form with matrix ( 2n 1
1 2m ),

Lemma 6.10 says that it is one of the basic forms, and we are done by
induction. This completes the proof of Wall’s theorem. Q.E.D.
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6.3.2. Burger’s numerical invariants In [7], Burger constructs a com-
plete set of numerical invariants of a linked abelian p-group (H, λ). The
following formulation of Burger’s result was suggested by Fox in [13],
and is manifestly equivalent to Burger’s original formulation. Define the
degree of an abelian p-group to be the smallest nonnegative integer n so
that pnH = 0.

Definition 6.11. Let (H, λ) be a linked abelian p-group of degree
n, and let a = k

pn for some 0 ≤ k < pn. We then define Na(λ) to be the
number of solutions x ∈ H to the equation λ(x, x) = a. ‖

Theorem 6.12 (Burger, [7]). Fix an abelian p-group H of degree
n. Two linking forms λ and λ′ on H are then isomorphic if and only if
Na(λ) = Na(λ′) for all a = k

pn with 0 ≤ k < pn. ‖

We now confine ourselves to the case p = 2. Fix a linked abelian
2-group (H, λ) of degree n. We shall use the notation E(z) for e2πiz .
Also, to simplify our formulas we shall denote λ(x, x) by x2. Observe
now that if x ∈ H , then x2 = k

2n where k is an integer which is well-
defined mod 2n. Hence if b ∈ Z2n , then the expression bx2 = bk

2n is a
well-defined real number mod 1, so the number E(bx2) is well-defined.
The following definition therefore makes sense.

Definition 6.13. For b ∈ Z2n , define Γb(λ) :=
∑

x∈H E(bx2). ‖

Observe that we clearly have the identity

Γb(λ) =
2n−1∑
k=0

N k
pn

(λ)E(
bk

2n
).

In other words, the numbers Γb(λ) are the result of applying the discrete
Fourier transform (see [45]) to the numbers Na(λ). In particular, since
the discrete Fourier transform is invertible, it follows that the numbers
Γb(λ) for b ∈ Z2n also form a complete set of invariants for linking forms
on H . In fact, since Γ0(λ) =

∑
x∈H 1 = |H |, we only need Γb(λ) for

b �= 0.

However, there is a certain amount of redundancy among the Γb(λ).
Indeed, set θ = E(1/2n). Observe that θ is a (2n)th root of unity and
that the numbers Γb(λ) lie in Q(θ). If a is any odd integer, then θa is
another (2n)th root of unity, and θ 	→ θa defines a Galois automorphism
of Q(θ), which we will denote by ga. Consider a nonzero b ∈ Z2n . Write
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b = 2kb0, where b0 is odd and k < n. Since 2nx2 is an integer for all
x ∈ H , we have

Γb(λ) =
∑
x∈H

e
2πi(2kb0)(2nx2)

2n =
∑
x∈H

(
e

2πib0
2n

)2k+nx2

= gb0

(∑
x∈H

(
e

2πi
2n

)2k+nx2
)

= gb0

(∑
x∈H

E(2kx2)

)
= gb0(Γ2k(λ)).

We conclude that the set of all Γb(λ) for b ∈ Z2n can be calculated from
the set of all Γ2k(λ) for 0 ≤ k < n. This discussion is summarized in
the following definition and lemma.

Definition 6.14. Let λ be a linking form on H . For 0 ≤ k < n,
define Γk(λ) := Γ2k(λ). ‖

Lemma 6.15. The set of numbers Γk(λ) for 0 ≤ k < n form a
complete set of invariants for linking forms on H.

6.3.3. Calculating the numerical invariants for the basic forms By
Theorem 6.8, we can decompose any linked abelian group into a direct
sum of basic linking forms. The following lemma shows how this reduces
the calculation of the numbers Γk(λ) to the knowledge of the Γk(·) for
the basic forms.

Lemma 6.16. If (H, λ) is the orthogonal direct sum A1 ⊕ A2 with
linkings λi on Ai, then for 0 ≤ k < n we have Γk(λ) = Γk(λ1) · Γk(λ2).

Proof. For x = (x1, x2):

Γk(λ) =
∑
x∈H

E(2kx2) =
∑

x1∈A1

∑
x2∈A2

E(2k(x2
1 + x2

2))

=

( ∑
x1∈A1

E(2kx2
1)

)
·
( ∑

x2∈A2

E(2kx2
2)

)
= Γk(λ1) · Γk(λ2).

Q.E.D.

In the remainder of this section, we calculate the numbers Γk(·) for the
basic forms. Recall that C = ( 0 1

1 0 ) and D = ( 2 1
1 2 ). The calculation is

summarized in the following proposition.

Proposition 6.17. Define ρ = E(1/8) and

ε(a) =
{

1 mod 8 if a ≡ 1 mod 4
−1 mod 8 if a ≡ −1 mod 4
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Then for j ≥ 1 and k ≥ 0, we have

• Γk

(
a
2j

)
=

⎧⎪⎪⎨
⎪⎪⎩

2j if k � j
0 if k = j − 1
2

j+k+1
2 ρε(a) if j − k � 2 and is even

2
j+k+1

2 ρa if j − k � 2 and is odd.

• Γk

( C
2j

)
=
{

22j if k � j − 1
2j+k+1 if k < j − 1.

• Γk

(D
2j

)
=
{

22j if k � j − 1
(−1)j+k+12j+k+1 if k < j − 1.

Proof of Proposition 6.17 for
(

a
2j

)
. We begin with the case k ≥ j.

For these values of k, the number 2kx2 is an integer for all x ∈ H , so
E(2kx2) = 1 for all x ∈ H . This implies that

Γk

( a

2j

)
= |H | = 2j,

as desired.

The next step is to prove the following formula, which reduces the
remaining cases to the case a = 1 and k = 0:

(24) Γk

( a

2j

)
= 2kga

(
Γ0

(
1

2j−k

))
for k < j

We calculate:

Γk

( a

2j

)
=
∑

x mod 2j

E

(
2kax2

2j

)
= ga

( ∑
x mod 2j

E

(
x2

2j−k

))
.

Since E( x2

2j−k ) depends only on x mod 2j−k, this equals

ga

(
2k

∑
x mod 2j−k

E

(
x2

2j−k

))
= 2kga

(
Γ0

(
1

2j−k

))
,

as desired.

To simplify our notation, define Tk = Γ0( 1
2k ). We will prove that

(25) Tk =
{

0 if k = 1
2

k+1
2 ρ if k ≥ 2
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First, however, we observe that the proposition follows from Equations
(25) and (24). Indeed, for k = j − 1 this is immediate. For k < j − 1
with j − k odd, we have

Γk

( a

2j

)
= 2kga(2

j−k+1
2 ρ) = 2

j+k+1
2 ρa.

Finally, for k < j−1 with j−k even, using the fact that
√

2ρε(±1) = 1±i
we have

Γk

( a

2j

)
= 2kga(2

j−k+1
2 ρ) = 2

j+k
2 ga(

√
2ρ) = 2

j+k
2 ga(1 + i)

= 2
j+k
2 (1 + ia) = 2

j+k+1
2 ρε(a),

as desired.

The proof of Equation (25) will be by induction on k. The base
cases 1 ≤ k ≤ 3 are calculated as follows:

T1 = E(0) + E(
1
2
) = 1 − 1 = 0

T2 = E(0) + E(
1
4
) + E(

4
4
) + E(

9
4
) = 1 + i + 1 + i = 2(1 + i) = 2

√
2ρ

T3 = 2(E(0) + E(
1
8
) + E(

4
8
) + E(

1
8
)) = 2(1 + ρ − 1 + ρ) = 4ρ

Assume now that k ≥ 4. We must prove that Tk = 2Tk−2. To see this,
note first that 2k−1 + 1 is a square mod 2k. Indeed,

(2k−2 + 1)
2

= (2k−2)2 + 2k−1 + 1 ≡ 2k−1 + 1 mod 2k

when k � 4. Hence x2 	→ (2k−1 + 1)x2 defines a bijection of the set of
squares modulo 2k. This implies that

Tk =
∑

x mod 2k

E

(
x2

2k

)
=
∑

x mod 2k

E

(
(2k−1 + 1)x2

2k

)

=
∑

x mod 2k

E

(
x2

2k

)
E

(
x2

2

)
=
∑

x mod 2k

(−1)xE

(
x2

2k

)
,

and hence

2Tk =
∑

x mod 2k

E

(
x2

2k

)
+
∑

x mod 2k

(−1)xE

(
x2

2k

)

= 2
∑

even x mod 2k

E

(
x2

2k

)
.
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We conclude that

Tk =
∑

y mod 2k−1

E

(
(2y)2

2k

)
=

∑
y mod 2k−1

E

(
y2

2k−2

)

= 2
∑

y mod 2k−2

E

(
y2

2k−2

)
= 2Tk−2.

Q.E.D.

Proof of Proposition 6.17 for
( C

2j

)
. Here H consists of all pairs (x, y)

with x, y ∈ Z2j . We begin with the case k ≥ j − 1. For these values
of k, the number 2k(x, y)2 = 2k 2xy

2j is an integer for all (x, y) ∈ H , so
E(2k(x, y)2) = 1 for all (x, y) ∈ H . This implies that

Γk

( a

2j

)
= |H | = 22j ,

as desired.

The next step is to prove the following formula:

(26) Γk

(
C
2j

)
= 22k+2

∑
x,y mod 2j−k−1

E
( xy

2j−k−1

)
for k < j − 1

We calculate:

Γk

(
C
2j

)
=

∑
x,y mod 2j

E

(
2k(2xy)

2j

)
=

∑
x,y mod 2j

E
( xy

2j−k−1

)
.

Since E( xy
2j−k−1 ) depends only on x and y mod 2j−k−1, this equals

22k+2
∑

x,y mod 2j−k−1

E
( xy

2j−k−1

)
,

as desired.

Define
Uk =

∑
x,y mod 2k

E
(xy

2k

)
.

By Formula (26), to prove the proposition it is enough to prove that
Uk = 2k for k ≥ 0. The proof of this will be by induction on k. The
base cases k = 0, 1 are as follows:

U0 = E(0) = 1,

U1 = E(0) + E(0) + E(0) + E(
1
2
) = 1 + 1 + 1 − 1 = 2.
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Assume now that k ≥ 2. We will show that Uk = 4Uk−2. First, we first
fix some y with 0 ≤ y ≤ 2k. Write y as 2ry0 with y0 odd, and suppose
that y is not equal to 0 or 2k−1. This implies that r < k − 1 and that
2k−r+1 +1 is odd. Using the fact that in the following sum the numbers
xy0 are odd, we have

∑
odd x mod 2k

E
(xy

2k

)
=
∑

odd x

E

(
(2k−r−1 + 1)xy

2k

)

=
∑

odd x

E
(xy

2k

)
E

(
2k−r−1x · 2ry0

2k

)

=
∑

odd x

E
(xy

2k

)
E
(xy0

2

)
= −

∑
odd x

E
(xy

2k

)

Thus ∑
odd x

E
(xy

2k

)
= 0 for all y �= 0, 2k−1.

In particular, since k � 2, the number 2k−1 is even and hence

∑
odd x,odd y

E
(xy

2k

)
= 0.

Also,

∑
odd x,even y

E
(xy

2k

)
=
∑

odd x

(
E

(
x · 0
2k

)
+ E

(
x · 2k−1

2k

))
=
∑

odd x

(1 − 1)

= 0;

by symmetry, ∑
even x, odd y

E
(xy

2k

)
= 0.

We have thus shown that Uk is equal to

∑
even x, even y

E
(xy

2k

)
=

∑
x,y mod 2k−1

E

(
(2x)(2y)

2k

)
=

∑
x,y mod 2k−1

E
( xy

2k−2

)

= 4
∑

x,y mod 2k−2

E
( xy

2k−2

)
= 4Uk−2,

as desired. Q.E.D.
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Proof of Proposition 6.17 for
(D

2j

)
. The cases k ≥ j − 1 are identi-

cal to the analogous cases for
( C

2j

)
. For k < j − 1, we use Lemma 6.16

together with the isomorphism of Example 6.6 to conclude that

Γk

(
1

2j−1

)
Γk

(
C
2j

)
= Γk

(
−3

2j−1

)
Γk

(
D
2j

)
.

But by the previously proven cases of Proposition 6.17, we have

Γk

(
1

2j−1

)
Γk

( −3
2j−1

) =
{

1 if j − k is odd (since ε(−3) ≡ 1 mod 8)
ρ

ρ−3 = ρ4 = −1 if j − k is even.

The proposition follows. Q.E.D.

6.3.4. Reduction to the phase invariants By Theorem 6.8, Lemma
6.16, and Proposition 6.17, for any linked abelian group (H, λ) the in-
variants Γk(λ) are either equal to 0 or to (

√
2)mρϕ for some m ≥ 0 and

some ϕ ∈ Z8. The point of the following definition and theorem is that
the

√
2-term is purely an invariant of the abelian group H , and thus

is unnecessary for the classification of linking forms (the re-indexing is
done to simplify the formulas in Theorem 6.20.

Definition 6.18. Let (H, λ) be a linked abelian group of degree n.
Then for 1 ≤ k ≤ n the kth phase invariant ϕk(λ) ∈ Z8 ∪{∞} of (H, λ)
is defined to equal ∞ if Γk−1(λ) = 0 and to equal ϕ ∈ Z8 with

Γk−1(λ)
|Γk−1(λ)| = ρϕ

if Γk−1(λ) �= 0. The phase vector ϕ(λ) of λ is the vector (ϕn(λ), . . . , ϕ1(λ)).‖

Theorem 6.19. Fix a finite abelian group H of degree n. Then two
linking forms λ1 and λ2 on H are isomorphic if and only if ϕk(λ1) =
ϕk(λ2) for all 1 ≤ k ≤ n; i.e. if and only if λ1 and λ2 have identical
phase vectors.

Proof. Let rj be the ranks of the blocks Bj of H , and consider a
linking form λ on H . We must show that for 0 ≤ k < n the number
Γk(λ) is determined by the rj and the phase invariants of λ. First, we
have Γk(λ) = 0 if and only if ϕk(λ) = 0. We can thus assume that
Γk(λ) �= 0, so

Γk(λ) = (
√

2)pkρϕk+1(λ).

We must determine pk. By Theorem 6.8, we can write (H, λ) as an or-
thogonal direct sum of copies of the basic linking forms. Fixing such a
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decomposition, Lemma 6.16 and Proposition 6.17 say that the orthogo-
nal components of (H, λ) make the following contributions to pk :

• Every unary summand a
2j with j � k contributes 2j; binary

summands contribute 4j. Thus the block Bj contributes 2jrj

for all j � k.
• There are no unary summands when j = k+1, and each binary

summand contributes 4(k + 1); thus Bk+1 contributes 2(k +
1)rk+1 = 2jrj also.

• For j > k + 1, each unary summand contributes j + k + 1 and
each binary summand 2(j+k+1), so Bj contributes rj(j+k+1).

Adding these three sets of contributions gives us

pk =
∑

j�k+1

2jrj +
∑

j>k+1

(j + k + 1)rj ,

so pk is a function of the ranks rj alone, as desired. Q.E.D.

The computation of the phase invariants is facilitated by the follow-
ing result, whose proof is immediate from Lemma 6.16 and Proposition
6.17.

Theorem 6.20. The phase invariants are additive under direct
sums, and have the following values on the basic linking forms:

ϕk

( a

2j

)
=

⎧⎪⎪⎨
⎪⎪⎩

0 if k > j
∞ if k = j
ε(a) if k < j and k − j is odd
a if k < j and k − j is even

ϕk

(
C
2j

)
= 0, all k,

ϕk

(
D
2j

)
=
{

0 if k ≥ j
4(j + k) if k < j

Before doing some examples, we record a definition we will need
later.

Definition 6.21. A linking form λ on a free Z2n module is even if
λ(x, x) = 2k

2n for some integer k. Otherwise, is odd. We remark that λ is
even if and only if any orthogonal decomposition of it into basic forms
has no unary summands. ‖

Example 6.22. Let us test the method on the linkings of Exam-
ple 6.6.
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•
( C

2n

)
⊕
(

1
2n−1

)
gives ϕ = (0,∞, 1, 1, . . . ) since a = ε(a) = 1 and

ϕ
( C

2n

)
= 0.

•
( D

2n

)
⊕
( −3

2n−1

)
gives

ϕ = (0, 4, 0, 4, . . . ) + (0,∞, 1,−3, . . . ) = (0,∞, 1, 1, . . . ),

as desired. ‖

Example 6.23.
1
2n

⊕ 3
2n−1

�� 3
2n

⊕ 1
2n−1

. The reason is: ϕ of the left

hand side is ϕ = (∞, 1, 1, 1, . . . ) + (0,∞,−1, 3, . . . ) = (∞,∞, 0, 4, . . . ),
and ϕ of the right hand side is ϕ = (∞,−1, 3,−1, . . . )+(0,∞, 1, 1, . . . ) =
(∞,∞, 4, 0, . . . ). ‖

Example 6.24.

ϕ

(
1
2n

⊕ 3
2n−1

⊕ 5
2n−2

)
= (∞,∞, 0, 4, 0, . . . ) + (0, 0,∞, 1, 5, . . . )

= (∞,∞,∞, 5, 5, . . . ),

ϕ

(
3
2n

⊕ 5
2n−1

⊕ 1
2n−2

)
= (∞,−1, 3,−1, 3, . . . ) + (0,∞, 1, 5, 1, . . . )

+(0, 0,∞, 1, 1, . . . )
= (∞,∞,∞, 5, 5, . . . )

ϕ

(
5
2n

⊕ 1
2n−1

⊕ 3
2n−2

)
= (∞,∞,∞, 1, 1, . . . )

Therefore the first two forms are isomorphic, and the third form is dif-
ferent from the first two. ‖

Example 6.25. If Bj is odd for all j from 1 to n, then ϕ(λ) =
(∞,∞, . . . , ∞); in particular, the class of λ does not depend at all on
the particular form of the individual blocks Bj . ‖

6.4. Reidemeister’s invariants

As we have seen, the Seifert-Burger viewpoint gives us a family
of topological invariants of a 3-manifold that are associated to H =
H1(W, Z), yet are not determined by H . Moreover, their determination
depends crucially on whether there is, or is not, 2-torsion in H . We have
learned how to compute them from a symplectic Heegaard splitting.

In 1933, the year that [43] was published, a paper by Reidemeister
[40] also appeared. Moreover, there are remarks at the end of both [43]
and [40] pointing to the work of the other. In particular, Reidemeister
notes in his paper that Seifert’s invariants are more general than his, as
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they must be because a quick scan of Reidemeister’s paper [40] does not
reveal any dependence of his results on whether there is 2-torsion. We
describe Reidemeister’s invariants briefly.

Referring to Theorem 2.2 and using the notation adopted there,
Reidemeister defines the integers τi,j = τj/τi, where 1 ≤ i < j ≤ t. Let
Q(2) = (qij) be the t × t matrix in (8), where we defined the partial
normal form of Theorem 2.4. Let pim be a non-trivial prime factor of
the greatest common divisor of (τ1,2, τ2,3, . . . , τi,i+1). His invariants are
a set of symbols which he calls εim, defined as follows:

εim = 0 if pim divides qii,

= qii/pim if pim does not divide qii.(27)

Thus εim is defined for every non-trivial prime divisor of the greatest
common divisor of (τ1,2, τ2,3, . . . , τi,i+1), and for every i = 1, . . . , t − 1.
He proves that his symbols are well-defined, independent of the choice of
the representative H(2) within the double coset of H(2) in Γt, by proving
that remain unaltered under the changes which we described in §2.3.
The fact that they are undefined when the greatest common divisor of
(τ1,2, τ2,3, . . . , τi,i+1) is equal to 1 show that they do not change under
stabilization.

Remark 6.26. We remark that Reidemeister’s invariants are in-
variants of both the Heegaard splitting and of the stabilized Heegaard
splitting. Therefore, if one happened to be working with a manifold
which admitted two inequivalent Heegaard splittings, it would turn out
that their associated Reidemeister symbols would coincide. This illus-
trates the very subtle nature of the Heegaard splitting invariants that
are, ipso facto, encoded in the higher order representations of the map-
ping class group in the Johnson-Morita filtration. Any such Heegaard
splitting invariant is either a topological invariant (as is the case for Rei-
demeister’s invariant), or an invariant which vanishes after sufficiently
many stabilizations. We will uncover an example of the latter type in
the next section.

§7. The classification problem for minimal (unstabilized) sym-
plectic Heegaard splittings.

Referring the reader back to Remark 1.5, it is clear that knowledge
of a complete set of invariants of minimal symplectic Heegaard splittings,
and the ability to compute them, are of interest in their own right. This
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was our motivation when we posed Problems 4, 5 and 6 in §1.5. In this
section we will solve these problems.

Given two minimal Heegaard pairs with isomorphic linked quotient
groups Hi and canonical volumes ±θi, Theorem 5.20 tells us that the
pairs are isomorphic if and only if there is a volume preserving linking
isomorphism H1 → H2. By hypothesis there is a linking isomorphism h,
but it may not be volume preserving — deth may not equal ±1. Suppose
f : H1 → H1 is a linking automorphism, that is, an isometry, of H1.
Then hf is still a linking isomorphism, and det(hf) = deth ·det f . Thus
if deth �= ±1, we may hope to change it to ±1 by composing it with
some isometry of H1. This will be our approach, and it will give us a
complete set of invariants for minimal Heegaard pairs.

7.1. Statement of Results. Solutions to Problems 4, 5, 6.

Let (V ; B, B̄) be a minimal Heegaard pair with quotient H0. Choose
any dual complement A of B and let π : A → H0 be the projection. Let
H < H0 be the torsion subgroup with associated linking form λ, and set
F = π−1(H). We thus have a minimal presentation π : F → H . If ei

(i = 1, . . . , r) is a basis for F , put xi = π(ei). We define a linking matrix
for λ by choosing rational numbers λij which are congruent mod 1 to
λ(xi, xj) for each i, j, subject to the symmetry condition λij = λji; we
call such a choice a lifting of λ(xi, xj).

Though the linking matrix for λ depends on choices, we can extract
an invariant from it. The first step is the following theorem, which will
be proven in §7.2. Let τ be the smallest elementary divisor of H .

Theorem 7.1. The number |H | det(λij) is an integer, and its re-
duction modulo τ is a unit in Zτ which depends only on the isomorphism
class of (H, λ) and the isomorphism class of the presentation π : F → H.

This theorem was first proven (by different methods) in [2]. In some
cases, we can do better. We will need the following definition.

Definition 7.2. The linking on H is even if for all x ∈ H with
τx = 0, we have x2 ∈

(
2
τ

)
(here we have abbreviated x ·x to x2 and

(
2
τ

)
is the subgroup of Q/Z generated by 2

τ ). Otherwise the linking is odd.

Remark 7.3. See Lemma 7.18 below to relate this to the definition
of an even linking form on a 2-group defined in Definition 6.21.

We will prove the following refinement of Theorem 7.1 in §7.3.
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Theorem 7.4. Let τ = τ if λ is odd and 2τ if λ is even. Then
the reduction modulo τ of |H | det(λij) depends only on the isomorphism
class of (H, λ) and the isomorphism class of the presentation π : F → H.

At the end of §7.3 we give an example which shows that we have
indeed found a stronger invariant than the one that was given in [2].

Corollary 3.27 and Lemma 5.19 say that the reduction modulo τ
of |H | det(λij) is actually a well-defined invariant of (V ; B, B̄), which we
will denote by det(V ; B, B̄). Our next theorem say that it is a complete
invariant of minimal Heegaard pairs, solving Problem 4 of §1.5.

Theorem 7.5. Let (Vi; Bi, B̄i) (i = 1, 2) be minimal Heegaard
pairs with linked quotients (Hi, λi). Then the pairs are isomorphic if
and only if the linked quotients are isomorphic and det(V1; B1, B̄1) =
det(V2; B2, B̄2).

Theorem 7.5 will be proven in §7.4. With Theorem 7.5 in hand,
we will be able to count the number of isomorphism classes of minimal
Heegaard pairs with linked quotients (H, λ), solving Problem 5 of §1.5.
To make sense of that result, we will need the following lemma.

Lemma 7.6. Consider an integer n ∈ Zτ . Then n2 is well defined
mod τ .

Proof. We may assume that our linking is even, so τ = 2τ . Then
for a, b ∈ Z we have

(a + bτ)2 = a2 + 2abτ + b2τ2,

which equals a2 modulo 2τ since 2τ divides τ2. Hence knowledge of a
modulo τ sufficies to determine a2 modulo τ , as desired. Q.E.D.

Denote the group of units in Zτ by U. In light of Lemma 7.6, it
makes sense to define

√
1 = {x ∈ U | x2 = 1 modulo τ}.

Our result is the following; it will be proven in §7.4 as a byproduct of
the proof of Theorem 7.5.

Theorem 7.7. The number of isomorphism classes of distinct min-
imal Heegaard pairs with linked quotients (H, λ) is |U|

|
√

1| .

We close this chapter in §7.5 with a discussion of how our techniques
give normal forms for symplectic gluing matrices, in certain situations.
This was the problem that was posed in Problem 6 of §1.5.
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7.2. Proof of Invariance 1

This section contains the proof of Theorem 7.1. We will need several
definitions.

Let F be a free abelian group and R ⊂ F be a subgroup of equal
rank. If ϕ, ψ are orientations of F, R, then the inclusion map of R into
F has an integral determinant, and this determinant’s absolute value
is well known to be (F : R) = |F/R| (for example, choose a basis for
F as in Proposition 3.4). Thus, given either ϕ or ψ there is a unique
choice of the other so that this determinant is positive. Orientations
of F, R so chosen will be called compatible. Note that a change in the
sign of one orientation necessitates a change in the other also to maintain
compatibility. An orientation ϕ of F also induces a canonical orientation
ϕ∗ on the dual group F ∗ = Hom(F, Z): choose any basis {ei} of F with
e1 ∧ · · · ∧ er = ϕ, then use the dual basis of F ∗ to define ϕ∗.

If H is any finite group, its character group is the additive group
H∗ = Hom(H, Q/Z). It is well known that H∗ is isomorphic to H , but
not canonically so. This mirrors the relationship between a free (finitely
generated) abelian group F and its dual (in the following, the ∗ on a
finite group indicates its character group, but on a free group indicates
its dual). Also as in the free case, H∗∗ is canonically isomorphic to H .

Suppose that F
π−→ H is a presentation of H with kernel R; we

construct from it a canonical presentation of H∗ which we call the dual
presentation. The group F ∗ is a subgroup of F ∗ ⊗ Q = Hom(F, Q),
namely, all maps f : F → Q such that f(F ) ⊂ Z. The fact that H
is finite and hence rank R = rank F implies that R∗ is precisely the
subgroup of maps f ∈ F ∗ ⊗ Q such that f(R) ⊂ Z. Note that R∗ ⊃ F ∗

in F ∗ ⊗ Q. If f ∈ R∗, then f is a map of F into Q taking R into Z
and so induces a map of F/R = H to Q/Z. This element of H∗ we
denote by π∗(f); we have then that π∗ is a map R∗ → H∗. If v ∈ H∗,
i.e. v : F/R → Q/Z, we can lift v to a map f : F → Q since F is
free, and clearly f(R) ⊂ Z, so f ∈ R∗ and π∗(f) = v. This shows that

R∗ π∗
−→ H∗ is a presentation of H∗. The kernel of π∗ consists of all f

such that f(F ) ⊂ Z, that is, precisely F ∗. Note thus that the index
(R∗ : F ∗) = |H∗| = |H | = (F : R).

Just as a choice of symmetric isomorphism F → F ∗ is the same
as an “inner product” on F , so the choice of a symmetric isomorphism
H

λ−→ H∗ is the same as a linking on H : if we write x · y for the linking
of x, y, then x · y is defined to be λ(x)(y) ∈ Q/Z and conversely. The
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fact that λ is an isomorphism corresponds to the non-singularity of the
linking.

If H is a linked group and F
π−→ H is a presentation of H , consider

the diagram

0 −−−−→ R −−−−→ F −−−−→ H −−−−→ 0⏐⏐	K

⏐⏐	L

⏐⏐	λ

0 −−−−→ F ∗ −−−−→ R∗ −−−−→ H∗ −−−−→ 0.

The fact that F is free implies the existence of a map L making the
right square commute, and L induces K on R. We call L a lifting of λ,
and it is well defined up to the addition of a map X : F → F ∗. If now
we choose an orientation ϕ of F , it induces ϕ∗ on F ∗ and compatible
orientations ψ, ψ∗ on R, R∗; it is easy to see that ψ, ψ∗ are also dual
orientations. Furthermore, if F → H is minimal, then so is R∗ → H∗

and we get induced orientations θ, θ∗ on H, H∗.

A change in the sign of ϕ uniformly changes the sign of all the other
orientations. Thus the determinants det K, detL ∈ Z and detλ ∈ Zτ are
all well defined and independent of the orientations. Furthermore, detλ
depends only on λ and the presentation π. The connection between
these determinants and that of Theorem 7.1 is given by the following
lemma.

Lemma 7.8. a) detL ≡ detλ mod τ
b) detK = det L
c) If (λij) is a linking matrix as in Theorem 7.1, then it determines a

lifting L : F → R∗ and |H | det(λij) = detK = detL.

Proof. a) is proved in Lemma 3.23; b) follows from the commu-
tativity of the left square and the fact that the determinant of both
(compatibly oriented) R → F , F ∗ → R∗ is |H |. It remains to prove
c). Now the linking matrix (λij) is clearly just the matrix of a map
L : F → F ∗ ⊗Q in terms of the basis {ei} of F used to define (λij) and
its dual basis in F ∗ ⊗ Q, namely, L(ei) =

∑
j λije

∗
j . Put xi = π(ei) and

denote the linking in H by the inner product dot; if then s =
∑

αiei is
in R, we find

L(ei)(s) =
∑

j

λije
∗
j (s) =

∑
j

λijαj ≡mod 1

∑
(xi · xj)αj

= xi ·

⎛
⎝∑

j

αjxj

⎞
⎠ = xi · π(s) ≡ 0 mod 1.
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In other words, L(ei) takes R into Z for all i, that is, L(ei) ∈ R∗ for
all i, which means that L is actually a map from F to R∗. By its very
definition it is a lifting of λ. Let now s1, . . . , sr be a basis of R compatible
with e1, . . . , er of F , and let si =

∑
j Aijej ; thus det(Aij) = |H |. We

then find that
K(si) = L(si) =

∑
j,k

Aijλjke∗k,

and since K(si) is in F ∗, the matrix A · (λij) is integral and its deter-
minant is detK = det Adet(λij) = |H | det(λij). Q.E.D.

This lemma proves that |H | det(λij) is an integer whose mod τ re-
duction only depends on the isomorphism class of π : F → H and
the linking. The fact that it is a unit in Zτ follows from the fact that
λ : H → H∗ is an isomorphism.

7.3. Proof of Invariance 2

We can assume that the linking form is even. Let the notation be as
in the previous section. The first step is to prove that the lifts L which
come from the symmetric linking matrices are symmetric in the sense
that the induced map L∗ : R → F ∗ is the map K. Let the ei, the si,
and the matrix A be as in the proof of Lemma 7.8. We will determine
the matrix of L in terms of the bases {ei} of F and {s∗i } of R∗. Since
si =
∑

j Aijej , we have e∗j =
∑

i s∗i Aij so

L(ei) =
∑

j

λije
∗
j =
∑
j,k

λijAkjs
∗
k.

Thus the matrix of L is λAt, and in the dual bases si and e∗i the operator
L∗ has matrix Aλt. Since (λij) was chosen to be symmetric, we have
finally L∗ = Aλ, which is the matrix of K. Note that two symmetric
liftings of λ differ by a symmetric map F → F ∗.

Our goal is to prove that modulo 2τ the number det L is independent
of the choice of a symmetric lifting of λ. By Theorem 7.1 and the
fact that τ is even, (detL, 2τ) = 1 and hence the matrix of L has a
mod 2τ inverse, that is, there is an integral matrix L−1 such that LL−1 ≡
I mod 2τ . Any other symmetric lifting of L is of the form L+X where X
is a symmetric map F → F ∗. But note that R ⊂ τF and so F ∗ ⊂ τR∗;
hence X = τY for some map Y : F → R∗. Modulo 2τ we then have

det(L + X) ≡ detL · det(I + L−1X) = detL · det(I + τL−1Y ).
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Lemma 7.9. If A is any square matrix and τ > 1, then det(I +
τA) ≡ 1 + τTr(A) mod τ2, where Tr(A) is the trace of A.

Proof. In the expansion of det(1 + τA) only those monomials in-
volving at most one off-diagonal factor are non-zero mod τ2. A sin-
gle off-diagonal factor cannot occur, however, in any monomial, and so
det(1 + τA) ≡

∏
i(1 + τAii) mod τ2. The product is clearly equal to

1 + τ(
∑

Aii) mod τ2. Q.E.D.

This lemma shows that

det(L + X) ≡ detL + τ detL · Tr(L−1Y ) mod τ2.

But since detL ≡ 1 mod 2, it follows that τ detL ≡ τ mod 2τ . Hence
since 2τ |τ2, we have

det(L + X) ≡ detL + τTr(L−1Y ) mod 2τ.

Thus to prove the desired result it suffices to show that Tr(L−1Y ) ≡
0 mod 2. We must now take a closer look at the matrices L and X .

We choose the basis of F as in Proposition 3.4, so that si = miei

(i = 1, . . . , r) with m1 = τ and mi|mi+1. Let 2n be the highest power of
2 dividing τ (we notate this in the future by 2n ‖ τ) and suppose that
the same is true for m1 through mb; that is, mi

2n is odd for 1 � i � b
and even for i > b. Let (λij) be a (symmetric) linking matrix lifting
xi ·xj as before. The matrix A describing the basis {si} in terms of {ei}
is now the diagonal matrix Diag(mi), and so the matrix of L is of the
form (Lij) = (λij)At = (λijmj). We claim that Lij is even for i � b
and j > b. Indeed, since xi = π(ei) has order mi < mj we must have
λij = N

mi
for some integer N , and thus Lij = N

mi
mj = N

mj

mi
. But mj

mi

is even whenever i � b and j > b. If we divide the coordinate indices
into two blocks with 1 � i � b in the first block and i > b in the
second, then mod 2, the matrix L takes the form ( B 0

C D ). The fact that
detL ≡ 1 mod 2 implies that detB ≡ detD ≡ 1 mod 2.

Lemma 7.10. B is symmetric mod 2 and has zero diagonal mod 2.

Proof. If i < j, then Bij = N
mj

mi
. But 2n ‖ mi and 2n ‖ mj , so mj

mi

is odd and Bij ≡ N mod 2. On the other hand, Bji = λjimi = N
mi

mi =
N . Thus B is symmetric mod 2. Its diagonal term Bii is λiimi where
λ2

ii ≡ x2
i mod 1. Now xi is of order mi so mi

τ xi is of order τ , and mi

τ is
odd. Thus

(
mi

τ

)2
λii ≡

(
mi

τ xi

)2 mod 1, and the latter is in
(

2
τ

)
by the

assumption that λ is even, so we have
(

mi

τ

)2
λii = 2N

τ for some integer
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N . Multiplying by τ we get mi

τ (miλii) = mi

τ Bii ≡ 0 mod 2, which by
the oddness of mi

τ implies that Bii ≡ 0 mod 2. Q.E.D.

Lemma 7.11. Let X : F → F ∗ ⊂ R∗ be symmetric. Then its
matrix, written in the bases ei, s

∗
i , is congruent mod 2τ to a matrix of

the block form τ ( U 0
V 0 ), where U is symmetric.

Proof. In the bases ei, e
∗
i the matrix of X is

(
U V t

V W

)
where U and

W are symmetric, but in the bases ei, s
∗
i it is

(
U V
V t W

)
Diag(mi). Since

mi

τ is odd for i � b and even for i > b, the block form of Diag(mi) is
congruent mod 2τ to

(
τIb 0
0 0

)
where Ib is the identity matrix. Hence

X ≡mod 2τ ( τU 0
τV 0 ) = τ ( U 0

V 0 ). Q.E.D.

Recall the map Y = 1
τ X ; by the above it is congruent mod 2 to

( U 0
V 0 ). We now calculate

L−1Y ≡mod 2

(
B 0
C D

)−1(
U 0
V 0

)
≡
(

B−1 0
C′ D−1

)(
U 0
V 0

)

≡
(

B−1U 0
C′′ 0

)
,

where the precise calculation of the matrices C′, C′′ is unimportant to
us. We are interested only in Tr(L−1Y ) ≡ Tr(B−1U) mod 2, where B, U
are symmetric and B has zero diagonal.

Lemma 7.12. Let B be a nonsingular symmetric matrix over Z2

with zero diagonal; then its inverse has the same properties.

Proof. We may lift B to an integral matrix B̃ which is antisym-
metric, that is, B̃t = −B̃. Since det B̃ ≡ 1 mod 2, the matrix B̃−1 is
rational and antisymmetric and C̃ = B̃−1 · det B̃ is integral and anti-
symmetric. Reduced mod 2, it is also an inverse of B, since B̃ · C̃ =
det B̃I ≡ I mod 2. This proves the lemma. Q.E.D.

We can now see that the desired result follows from the above results
and the following:

Lemma 7.13. Let C, U be symmetric matrices over Z2 such that
C has zero diagonal; then Tr(CU) = 0.
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Proof. Tr(CU) =
∑

i,j CijUji. We split this sum into three parts:∑
i<j +

∑
i>j +

∑
i=j . Now

∑
i<j

CijUji =
∑
i<j

CjiUji by symmetry of C and U

=
∑
j<i

CijUji interchanging i, j;

thus
∑

i<j +
∑

i>j cancel over Z2. But the last summand is
∑

i CiiUii =
0 since Cii = 0 for all i. Q.E.D.

We close this section with an example showing that we have indeed
found a stronger invariant.

Example 7.14. Consider the matrices

U =
((

0 −15
−15 0

)
( 8 0

0 8 )(−2 0
0 −2

)
( 0 1

1 0 )

)
and V =

((
0 −5
−5 0

)
( 8 0

0 8 )(−2 0
0 −2

)
( 0 3

3 0 )

)
.

They are easily seen to be symplectic and thus define Heegaard pairs as
discussed in §4, namely (X2; F2,U(F2) or V(F2)). The quotient groups
are Z8 ⊕ Z8 in both cases, with respective linking matrices 1

8 ( 0 1
1 0 ) and

1
8 ( 0 3

3 0 ), which are even, so τ̄ = 16. Multiplication by 3 in Z2
8 gives an iso-

morphism between the two linkings, so the pairs are stably isomorphic;
furthermore, their determinants are both ≡ −1 mod τ(= 8). But these
pairs are not isomorphic, since their respective determinants mod τ̄ are
−1 mod 16 and −9 mod 16. ‖

7.4. Proof of Completeness and a Count.

We now prove Theorem 7.5, which says that our mod τ determi-
nantal invariant is a complete invariant of minimal Heegaard pairs. A
byproduct of our proof will be a proof of Theorem 7.7. As we observed
in §5, we can assume that the the Heegaard pairs in question have finite
quotients. Now, we have shown that our invariant is really an invariant
of the linked quotient together with its induced volume, and it is easy to
see that all such volumes occur. For a linked finite abelian group (H, λ)
with a volume θ, denote this determinantal invariant by det(λ, θ). Our
first order of business is determine which volumes on (H, λ) have the
same determinant, so fix a linked finite abelian group (H, λ) together
with a minimal presentation F → H , and let τ and τ be defined as
before. We begin with a lemma.
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Lemma 7.15. In the commutative diagram

F
π−−−−→ H

f

⏐⏐	 ⏐⏐	h

F ′ π′
−−−−→ H ′

let π, π′ be minimal presentations of the linked groups (H, λ) and (H ′, λ′),
and let h be a linking isomorphism (we do not assume that f is an iso-
morphism). Then if deth is measured with respect to the induced vol-
umes on H, H ′, we have det(λ, π) = (deth)2 det(λ′, π′) mod τ̄ .

Proof. Lemma 7.6 shows that the statement is meaningful. Let
now {ei}, {e′i} be bases of F, F ′ respectively, and (λ′

ij) be a linking
matrix for H ′ in the basis {e′i}. If f has matrix A, then the fact that
h is a linking isomorphism implies easily that Aλ′At is a linking matrix
for H in the basis {ei}. Hence

det(λ, π) ≡mod τ̄ |H | det(λij) = |H | detA2 det(λ′
ij)

≡mod τ̄ (det f)2 det(λ′, π′).

But by lemma 3.23 we have det f ≡ ± deth mod τ , so

(deth)2 ≡ (det f)2 mod τ̄ .

Q.E.D.

Corollary 7.16. Let h be an isometry of H; then (deth)2 ≡ 1 mod τ̄ .

This corollary restricts the determinant of an isometry to lie in
√

1.
The following is an immediate corollary of Lemma 7.15.

Lemma 7.17. For any volume θ on (H, λ), we have

det(λ, mθ) ≡ m2 det(λ, θ) mod τ̄

for any m in U.

In particular, det(λ, mθ) = det(λ, θ) if and only if m ∈
√

1. Observe
that this immediately implies Theorem 7.7 : the set of volumes is in
bijection with U/{±1}, and two volumes define isomorphic Heegaard
pairs if and only if they are in the same coset of U/

√
1.

We conclude that to prove Theorem 7.5, it is enough by Theorem
5.20 to prove that everything in

√
1 is the determinant of an isometry.
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We shall see that this problem can be solved in each p-component inde-
pendently and pieced together to get the general solution. As a technical
tool, we will need the following result.

Lemma 7.18. Let H be a linked group whose smallest elementary
divisor τ is even. Then the following statements are equivalent:

a) Every x ∈ H such that τx = 0 satisfies x2 ∈
(

2
τ

)
(here we have

abbreviated x ·x to x2 and
(

2
τ

)
is the subgroup of Q/Z generated by

2
τ ).

b) The lowest block of the 2-component of H is even (in the sense of
Definition 6.21).

Proof. Let {pi} be the primes dividing |H |, with p1 = 2, and let
τ =
∏

i pni

i (some of the ni’s may be zero here, but n1 > 0). The group
H splits as an orthogonal direct sum of its pi components Hi, and every
x ∈ H can be written uniquely as x =

∑
i xi with xi ∈ Hi. If xi has

order pri

i then x has order
∏

i pri

i . Thus if τx = 0 we must have ri � ni

for all i. Furthermore, x2 =
∑

i x2
i and

x2
i ∈
(

1
pri

i

)
⊂
(

1
pni

i

)
=
(

Mi

τ

)

where Mi =
∏

i�=j p
nj

j . For odd primes (i.e. i > 1), the number Mi

is even and so x2
i ∈
(

2
τ

)
, but for i = 1 the number Mi is odd. Hence

x2 ∈
(

2
τ

)
for all x satisfying τx = 0 if and only if x2

1 ∈
(

2
τ

)
for all x1 ∈ H1

satisfying 2n1x1 = 0. The lowest block B1 of H1 consists of elements all
of which satisfy 2n1x1 = 0; their self linkings x2

1 are in
(

1
2n1

)
, and are

in
(

2
τ

)
if and only if they are in

(
2

2n1

)
. Thus in this case B1 must be

even. Conversely, suppose B1 is even. The group H1 splits orthogonally
into blocks B1⊕B2⊕· · ·⊕Bk where each Bi is a free Z2si -module, with
n1 = s1 < s2 < · · · < sk. If x1 ∈ H1, write x1 =

∑k
i=1 yi, with yi ∈ Bi.

We then have 2n1x1 = 0 if and only if 2n1yi = 0 for all i, which is true if
and only if yi ∈ 2si−n1Bi for all i. Then x2

1 =
∑

y2
i (by orthogonality)

and

y2
i ∈
(

22(si−n1)

2n1

)
=
(

2si−n1

2n1

)
⊂
(

2
2n1

)
for all i > 1;

but y2
1 ∈
(

2
2n1

)
also since B1 is even. This concludes the proof. Q.E.D.

Lemma 7.19. ΛrH is naturally isomorphic to the direct sum of
ΛrHp over all p which divide τ . If θ is an orientation (volume) on H
then its projection θp in ΛrHp is an orientation (volume) on Hp.
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Proof. The tensor power Hr splits into the direct sum Hr
p over

all p since Hp ⊗ Hq = 0 if p �= q. Likewise, the kernel of Hr → ΛrH
splits into its p-component parts, and so we get a natural direct sum
ΛrH =

⊕
all p ΛrHp. But if p � τ then rank Hp < r and so ΛrHp = 0,

proving the first statement. Note that ΛrHp is precisely the p-component
of ΛrH , which is � Zpn if pn is the largest power of p dividing τ . If
now θ ∈ ΛrH , we may write θ =

∑
p|τ θp. Thus if θ generates ΛrH ,

then θp must generate ΛrHp. Finally, if θ is determined up to sign, so
is θp. Q.E.D.

Suppose now that h : H → H is an isometry. Hence h takes each
p-component into itself, so h splits into a direct sum of maps hp on Hp;
conversely the maps hp define h on H . Furthermore, the action of h on
ΛrH is just multiplication by deth mod τ and hence the action of hp

on ΛrHp is also multiplication by deth. But it is also multiplication by
det hp mod pn (where pn ‖ τ), since ΛrHp � Zpn ; in other words:

Lemma 7.20. If h is an endomorphism of H, then dethp ≡ deth mod pn

for every p dividing τ , where pn ‖ τ . Thus dethp is determined by deth.
Conversely deth is determined by the values of dethp (the proof of this
is by the Chinese Remainder Theorem).

If H has linking λ then, by virtue of the orthogonality of distinct
primary components, λ splits into the direct sum of linkings λp on Hp.
Thus h is an isometry of H if and only if hp is so for each p. Let now
τ =
∏

i pni

i .

Lemma 7.21.
√

1 mod τ splits into the direct product of the groups√
1 mod pni

i .

Proof. Observe that e ∈
√

1 mod τ means that e ∈ Zτ and e2 ≡
1 mod τ̄ . This means that e2 ≡ 1 mod pn̄i

i , where n̄i = ni if pi is odd
or if pi = 2 and λ is odd, but n̄i = ni + 1 if pi = 2 and λ is even,
which by Lemma 7.18 is true if and only if λ2 is even. Hence e reduced
mod pni

i is in
√

1 mod pni

i . Conversely let ei ∈
√

1 mod pn̄i

i , that is
ei ∈ Zp

ni
i

be such that e2
i ≡ 1 mod pn̄i

i ; by the Chinese Remainder
Theorem again, there is a unique e ∈ Zτ such that e ≡ ei mod pni

i , and
we find e2 ≡ e2

i ≡ 1 mod pn̄i

i which implies e2 ≡ 1 mod τ̄ . Q.E.D.

Corollary 7.22. An element a ∈
√

1 mod τ is the determinant
of an isometry of (H, λ) if and only if its reduction mod pni

i is the
determinant of an isometry of (Hpi , λpi).

We have now reduced the proof of Theorem 7.5 to the proof of:
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Lemma 7.23. Let H be a linked p-group with τ = pn and e ∈√
1mod pn. Then there is an isometry of H with determinant e.

Proof. If λ is odd, by [7] the linked group H has an orthogonal
splitting of the form (x)⊕H0, where (x) is the cyclic subgroup generated
by an element x of order pn satisfying x2 = u

pn with p � u. The map h

which takes x to ex and which is the identity on H0 is then an isometry
and its determinant is clearly e. So now let p = 2 and λ be even. In this
case,

√
1 consists of all e mod 2n such that e2 ≡ 1 mod 2n+1. There are

four square roots of 1 mod 2n+1 (when n � 2), namely ±1 and 2n±1, but
mod 2n these give only two distinct elements ±1 in

√
1. Thus we must

simply exhibit an isometry with determinant −1 mod 2n. By Lemma
7.18, the even nature of λ implies that the 2n-block of H is even. By
the classification of linked 2-groups in §6.3, the linked group H has an
orthogonal splitting of the form Q⊕H0, where Q ∼= Z2n ⊕Z2n , generated
by let us say x, y of order 2n, and where Q has a linking matrix equal to
one of 1

2n ( 0 1
1 0 ) or 1

2n ( 2 1
1 2 ) mod 1. Clearly interchanging x and y is an

isometry on either form, and extending by the identity on H0 gives an
isometry of H with determinant ≡ −1 mod 2n. This proves the lemma
and concludes the proof of Theorem 7.5. Q.E.D.

7.5. Problem 6

In Theorem 2.4 we found a partial normal form for the double coset
associated to a symplectic matrix H, and in §2.3 we investigated its
non-uniqueness. We raised the question of whether the submatrix Q(2)

could be diagonalized. In fact, the following is true:

Proposition 7.24. Let W be a 3-manifold which is defined by a
Heegaard splitting. Let H = H1(W ; Z) and let T be the torsion subgroup
of H. Let t be the rank of T , so that T is a direct sum of cyclic groups
of order τ1, . . . , τt, where each τi divides τi+1. Assume that every τi is
odd. Then T is an abelian group with a linking, and there is a choice
of basis for T such that the linking form for T is represented by a t × t
diagonal matrix.

Proof. Consider, initially, a fixed p-primary component T (p) of T
and its splitting T (p) = T1⊕· · ·⊕Tν into cyclic groups Tj of prime power
order pej . The Tj ’s may be collected into subsets consisting of groups
of like order. Keeping notation adopted earlier, consider a typical such
subset Tρ+1, . . . , Tρ+k containing all cyclic summands of T (p) of order
pμ+1. Let gρ+1, . . . , gρ+k generate these summands. Define a new linking
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λ′ on Tρ+j (j = 1, . . . , k) by the rule:

(28) λ′(gρ+i, gρ+j) =

⎧⎪⎨
⎪⎩

|Aρ+1|
peρ+1 mod 1 if i = j = 1

1
peρ+1 mod 1 if i = j = 2, . . . , k

0 if i �= j.

There is an induced linking λ′ on T (p) obtained by direct summing the
linkings on all of the cyclic summands, and thus an induced linking on T
obtained by taking the orthogonal direct sum of all the p-primary sum-
mands. We will also denote this by λ′. By Theorem 6.3, the linking on
T is determined entirely by the quadratic residue characters of linkings
on the p-primary summands of T . It follows that (T, λ′) is equivalent as
a linked group to (T, λ).

To complete the proof we need only note that by Theorem 2.2 the
generators gij of the cyclic summands of prime power order determine
the generators yi of the cyclic summands of order τ1, . . . , τt. This follows
from (5) of Theorem 2.2. Therefore there is a t × t matrix which also
defines λ′, and λ′ is equivalent to λ. The proof is complete. Q.E.D.

Remark 7.25. One might be tempted to think that Proposition 7.24
implies that there is a matrix in the same double coset as the matrix
H′ in (7) of Theorem 2.4 in which the blocks P(2),Q(2) are both di-
agonal. Suppose we could prove that. Then for each j = 1, . . . , t
choose rj , sj so that rjqj − τjsj = 1. Define R(3) = Diag(r1, . . . , rt)
and S(3) = Diag(s1, . . . , st). With these choices it is easy to verify that(

R(3) P(2)

S(3) Q(3)

)
is symplectic. If so, that would imply that R(2) and S(2)

also are diagonal. However, while we have learned that there is a change
in basis for T in which Q(2) is diagonal, we do not know whether this
change in basis preserves the diagonal form of the matrix P(2). There-
fore we do not know whether it is possible to find a representative of
the double coset in which all four blocks are diagonal. Proposition 7.24
tells us that there is no reason to rule this out. The discussion in §2.3
also tells us that it might be possible. On the other hand, the fact that
such a diagonalization cannot always be achieved when there is 2-torsion
tells us that the proof would have to be deeper than the work we have
already done. ‖

Example 7.26. In spite of the difficulties noted in Remark 7.25,
we are able to construct a very large class of examples for which all
four blocks are diagonal, even when there is 2-torsion. We construct our
examples in stages:
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• First, consider the case where our 3-manifold W (hp,q) is a lens
space of type (p, q). Then W (hp,q) admits a genus 1 Heegaard
splitting with gluing map that we call hp,q, where p is the
order of π1(W (hp,q)). The symplectic image of hp,q will be
( r p

s q ), where rq − ps = ±1.
• Next, consider the case when our 3-manifold W (h̃) is the con-

nect sum of g lens spaces of types (p1, q1), . . . , (pg, qg), so that it
admits a Heegaard splitting of genus g. Think of the Heegaard
surface as the connect sum of g tori. The restriction of the
gluing map h̃ to the ith handle will be hpi,qi , so that the sym-
plectic image of the gluing map will be M =

(
R P
S Q

)
, where P =

diag(p1, . . . , pg), R = diag(r1, . . . , rg), S = diag(s1, . . . , sg),
Q = diag(q1, . . . , qg).

• Finally, consider the class of 3-manifolds W (f̃ h̃) of Heegaard
genus g which are defined by the gluing map f̃ h̃, where f̃ is any
element in kernel of the homomorphism ρ(2) : Γ̃g → Sp(2g, Z).
The fact that f̃ has trivial image in Sp(2g, Z) shows that
the symplectic image of the gluing map for W (f̃ h̃) will still
be M . Thus we obtain an example for every element in the
Torelli group, i.e. the kernel of ρ(2), for every choice of integers
(p1, q1), . . . , (pg, qg). ‖

§8. Postscript : Remarks on higher invariants

In this section, we make a few comments about the search for in-
variants of Heegaard splittings coming from the action of the mapping
class group on the higher nilpotent quotients of the surface group (i.e.
the higher terms in the Johnson-Morita filtration). In this paper, our
invariants have come from 3 sources:

(1) The abelian group H1(W ) of the 3-manifold W .
(2) The linking form on the torsion subgroup of H1(W ).
(3) The presentation of H1(W ) arising from the Heegaard splitting.

With regard to (1), It is easy to see that there is a natural general-
ization. The classical Van Kampen Theorem shows that the Heegaard
gluing map h̃ determines a canonical presentation for G = π1(W ) which
arises via the action of h on π. This action determines in a natural way
a presentation for G/G(k), the kth quotient group in the lower central
series for G. We do not know of systematic studies of these invariants
of the fundamental groups of closed, orientable 3-manifolds.
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With regard to (2) and (3), if π1 is the fundamental group of the
Heegaard surface (which in this section we will consider to be a surface
with 1 boundary component corresponding to a disc fixed by the gluing
map – this will make π1 a free group), then H1(W ) is the quotient
of the abelian group π1/π

(2)
1 by the two lagrangians arising from the

handlebodies. The obvious generalization of this is a quotient of the
free nilpotent group π1/π

(k)
1 . Since it is unclear what the appropriate

generalization of the linking form to this situation would be, one’s first
impulse might be to search for presentation invariants.

Now, it is easy to see that the quotient of π1/π
(k)
1 by one of the

“nilpotent lagrangians” is another free nilpotent group. Our presenta-
tion is thus a surjection π : N1 → N2, where N1 is a free nilpotent group.
The invariants of presentations of abelian groups arise from the fact that
automorphisms of the presented group may not lift to automorphisms of
the free abelian group. Unfortunately, the following theorem says that
no further obstructions exist:

Theorem 8.1. Let π : N1 → N2 be a surjection between finitely
generated nilpotent groups, where N1 is a free nilpotent group. Also, let
φ be an automorphism of N2. Then φ may be lifted to an automorphism
of N1 if and only if the induced automorphism φ∗ of Nab

2 can be lifted
to an automorphism of Nab

1 .

The key to proving Theorem 8.1 is the following criterion for an
endomorphism of a nilpotent group to be an automorphism. It is surely
known to the experts, but we were unable to find an appropriate refer-
ence.

Theorem 8.2. Let N be a finitely generated nilpotent group and let
ψ : N → N be an endomorphism. Then ψ is an isomorphism if and
only if the induced map ψ∗ : Nab → Nab is an isomorphism.

Proof. The forward implication being trivial, we prove the back-
ward implication. The proof will be by induction on the degree n of
nilpotency. If n = 1, then N is abelian and there is nothing to prove.
Assume, therefore, that n > 1 and that the theorem is true for all smaller
n. We begin by observing that since finitely generated nilpotent groups
are Hopfian, it is enough to prove that ψ is surjective. Letting

N = N (1) � N (2) � · · · � N (n) � N (n+1) = 1
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be the lower central series of N , we have an induced commutative dia-
gram

1 −−−−→ N (n) −−−−→ N −−−−→ N/N (n) −−−−→ 1⏐⏐	ψ

⏐⏐	ψ

⏐⏐	
1 −−−−→ N (n) −−−−→ N −−−−→ N/N (n) −−−−→ 1

Since N/N (n) is an (n−1)-step nilpotent group, the inductive hypothesis
implies that the induced endomorphism of N/N (n) is an isomorphism.
The five lemma therefore says that to prove that the map

ψ : N −→ N

is surjective, it is enough to prove that the map

ψ : N (n) −→ N (n)

is surjective. Now, N (n) is generated by commutators of weight n in
the elements of N . Let β be a bracket arrangement of weight n and let
β(g1, . . . , gn) ∈ N (n) with gi ∈ N be some commutator of weight n. Since
ψ induces an isomorphism of N/N (n), we can find some g̃1, . . . , g̃n ∈ N
and h1, . . . , hn ∈ N (n) so that

ψ(g̃i) = gihi

for all i. Hence ψ maps β(g̃1, . . . , g̃n) to β(g1h1, . . . , gnhn). However,
since N (n) is central we have that

β(g1h1, . . . , gnhn) = β(g1, . . . , gn),

so we conclude that β(g1, . . . , gn) is in ψ(N (n)), as desired. Q.E.D.

We now prove Theorem 8.1.

Proof of Theorem 8.1. Let {g1, . . . , gk} be a free nilpotent gener-
ating set for N1, and let ρ be an automorphism of Nab

1 lifting φ∗. Also,
let gi ∈ Nab

1 be the image of gi. Now, pick any lift hi ∈ N1 of ρ(gi). Ob-
serve that by assumption π(hi) and φ(π(gi)) are equal modulo [N2, N2].
Since the restricted map π : [N1, N1] → [N2, N2] is easily seen to be
surjective, we can find some ki ∈ [N1, N1] so that π(hiki) = φ(π(gi)).
Since N1 is a free nilpotent group, the mapping

gi 	→ hiki
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induces an endomorphism φ̃ of N1 which by construction lifts φ. More-
over, Theorem 8.2 implies that φ̃ is actually an automorphism, as de-
sired. Q.E.D.

Remark 8.3. Theorem 8.1 does not destroy all hope for finding
invariants of presentations, as there may be obstructions to lifting auto-
morphisms to automorphisms which arise “geometrically”. However, it
makes the search for obstructions much more subtle. Moreover, we note
that in [23] Y. Moriah and M. Lustig used the presentation of π1(W )
arising from a Heegaard splitting to prove that certain Heegaard split-
tings of Seifert fibered spaces are in fact inequivalent. Their subsequent
efforts to generalize what they did [24] show that the problem is difficult,
and the final word has not been said on invariants of Heegaard splittings
that arise from the associated presentation of π1(W ). ‖
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