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ABSTRACT. Let IC(n) be the group of orientation-preserving self-
homeomorphisms of a closed oriented surface Bd U of genus n, and let
H(n) be the subgroup of those elements which induce the identity on
H,(Bd U; Z). To each element h € J((n) we associate a 3-manifold M (k)
which is defined by a Heegaard splitting. It is shown that for each & € I((n)
there is a representation p of ¥{(n) into Z/2Z such that if k € H(n), then
the p-invariant p(M (h)) is equal to the p-invariant p(M (kh)) if and only if
k € kernel p. Thus, properties of the 4-manifolds which a given 3-manifold
bounds are related to group-theoretical structure in the group of
homeomorphisms of a 2-manifold. The kernels of the homomorphisms from
H(n) onto Z/2Z are studied and are shown to constitute a complete
conjugacy class of subgroups of JC(n). The class has nontrivial finite order.

1. Introduction. It is well known that any closed, oriented 3-manifold
admits a representation by a Heegaard splitting, i.e. as the union of two
cubes-with-handles identified along their boundaries. Since the identification
space is uniquely determined by the specification of a homeomorphism from
the boundary of one handlebody to the boundary of the other, it is possible to
translate many questions about the topology of 3-manifolds into algebraic
questions about the group JC(n) of orientation-preserving homeomorphisms
of a closed oriented surface of genus n. In particular, one might expect that
correspondences would exist between structures in the class of oriented
3-manifolds and structures in the groups JC(n), n =0, 1, 2, . . .. The purpose
of this paper is to exhibit just such a correspondence, as it arises in
connection with the study of the p-invariant of Z/2Z-homology spheres.

The main results of this paper are contained in Theorems 8, 9, and 11. We
review these now. For each genus n > 0, let U = U(n) denote an oriented
cube-with-handles of genus n, and let — U denote the same handlebody with
its orientation reversed. The group J((n) is the group of orientation preserv-
ing homeomorphism of Bd U onto itself. Let H(n) denote the subgroup
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284 J. S. BIRMAN AND R. CRAGGS

consisting of those homeomorphisms that induce the identity on
H\(Bd U; Z). For h € 3((n), let M (h) denote the 3-manifold defined as the
disjoint union of U and — U with the identification i#(x) = x where i is the
“identity” function from Bd U to Bd(— V).

If M (h) is a Z/2Z-homology sphere, there is an invariant p(M (h)) of the
oriented homeomorphism type of M (k). It is due to Eells and Kuiper (see
[EK] and [HNK, §7]). The p-invariant takes the values j/8,j =0, 1,...,7 in
Q/Z. For Z-homology spheres it is either 0 or 3, and for the 3-sphere it is 0.
We will prove the following results about the p-invariant.

1. If by and h, are elements of JC(n), n > 1, such that M(hh,) is a
Z /2Z-homology sphere, there i 1s a homomorphism p,,_, from H(n) onto the
additive group of order 2, {0, 3} (mod 1), defined by

Py (K) = p(M (hkhy)) = p(M (hshy))  (mod 1),k € K(n).

2. Let K, 5, denote ker p,, ;. Consider the collection £(n) of groups ¥,
as h, and A, range over all possible elements of J((n) for which M (h,h,) is a
Z/2Z-homology sphere. Then £(n) is a complete conjugacy class of
subgroups of J((n). The class £(n) has nontrivial finite order, and bounds are
given by 2" < |2(n)| < m? where m is the order of the symplectic group
Sp(2n, Z/2Z).

3. Define C(n) = N K,,;, where the intersection is taken over all possible
subgroups K, , . Then C(n) is a normal subgroup of I((n), and the p-
invariant has an algebraic interpretation (explained in §4) in terms of the
sequence of factor groups (3C(n)/C(n),n =0,1,2,...).

Each of the assertions above clearly implies the corresponding assertion
with JC(n) replaced by the quotient group M(n) obtained by factoring out
homeomorphisms isotopic to the identity. This is so because first, the
homeomorphisms factored out belong to H(n) and second, changing one of
the homeomorphisms by an isotopy does not change the oriented
homeomorphism type of the manifold defined by it.

Let ﬁC(n) denote the subgroup of IC(n) consisting of those
homeomorphisms that induce the identity on H,(Bd U; Z/2Z). 1t is natural
to conjecture that the “Z/2Z-regularity” exhibited by H(n) in effecting
changes in the p-invariant might generalize to a corresponding regularity for
‘JC(n) only in this case one might expect to find representations onto Z/8Z or
Z/4Z. But it is just not so, not even for n = 1! The formulas given by
Hirzebruch [HNK, §7] for the p-invariants of lens spaces reveal quickly that
such representations do not exist.

The results here have interest in several directions. First, from a purely
group theoretical point of view, they give us a multitude of examples of
index-2 subgroups of K (n). Second, from the point of view of invariants of
3-manifolds, the techniques used to reveal the index-2 subgroups of I (n)
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suggest a new general means to obtain invariants for 3-manifolds through
representations of subgroups of JC(n). Third, the main results described in 1
above suggest a method for investigating the existence or nonexistence of
index-8 homotopy 3-spheres. It will be seen that a necessary and sufficient
condition for the existence of index-8 homotopy 3-spheres is that for some n
and any kA € 3((n) such that M (h) is the 3-sphere, there exist an element
k € J(n) such that k does not belong to the group Ky, (which has index 2
in ¥(n)) and such that =,(M (kh)) = 1.

ACKNOWLEDGEMENT. We were led to the result in Theorem 8 when W. B.
R. Lickorish suggested to us that the group JC(n) ought to exhibit some kind
of Z/2Z regularity in effecting changes in the p-invariant. Conversations with
Walter Neumann were helpful in bringing Theorem 8 to its full generality.
Walter Neumann also offered helpful suggestions regarding the proof of
Theorem 9.

Some of the work done here was done while the second author was a
sabbatical visitor at the Science Institute of the University of Iceland. He
wishes to thank Halldér I. Eliasson and the Science Institute for support and
hospitality during that visit.

2. Symplectic matrices, Heegaard splittings, map pairs, and triadic 4-mani-
folds. In this section we introduce notation, set down conventions, and
develop the basic tools which will be used in §3 to prove our main results.

FIGURE 2.1

2.1 NotaTION AND CONVENTIONS. The following symbols and expressions
will be used:
~ a general symbol for equivalence;



286 J. S. BIRMAN AND R. CRAGGS

= equivalence for oriented manifolds, always means an orientation
preserving homeomorphism;

Z the ring of integers;

Q the field of rational numbers;

2 the 3-sphere with some fixed orientation;

U= U(n) a fixed, oriented handlebody of genus n» > 0 imbedded in a
standard manner in = (see Figure 2.1);

W, ..., Wy, standard basis for «,(Bd U) (see Figure 2.1) and also for
H\(Bd U; Z) and H,(Bd U; Z/2Z). The context will distinguish these from
each other.

JC = J(n) the group of orientation-preserving self-homeomorphisms of
Bd U.

SC SC(n) the group automorphisms of H,(Bd U; Z) induced by I(C.

G = 5C(n) the group of automorphisms of H,(Bd U; Z/2Z) induced by
IC.

n  the natural homomorphism from JC onto f}C

¢ the natural homomorphism from % onto .

K = K(n) kernelq.

% = J(n) the subgroup of homeomorphisms in JC that extend to U.

¥ = %(n) theimage of  under .

% = %(n) the image of ¥ under en.

h,hy,t,t,  elements of IC(n).

fifi... elements of F(n).

k,ky, ... elements of K (n).

I the n X nidentity matrix.

0 then X nzero matrix.

J the 2n X 2n matrix || _9 .

F(W) the 2n X 2n matrix ||} || over Z or Z/2Z where Wis an n X n
symmetric matrix.

D(U) the 2n X 2n matrix ||V 9| over Z or Z/2Z where U is a
unimodular n X n matrix.

Other symbols will be defined later, as they are introduced. The genus
symbol n will sometimes be dropped to simplify notation.

Manifolds and surfaces are compact, oriented, and, unless something is
said otherwise, closed. If M is a manifold, then —M denotes the same
manifold with opposite orientation. All maps, manifolds, etc. are piecewise
linear. Equivalence between manifolds or tuples of manifolds always means
an orientation-preserving homeomorphism. If M and M’ are manifolds, not
necessarily disjoint, then M + M’ will denote the disjoint union of M and
M.

2.2 THE SyMpLECTIC GROUP. We have chosen a standard basis w,, . . . , w,,
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for o ;(Bd U) as illustrated in Figure 2.1. In terms of this basis, the group
a,(Bd U) admits a presentation with the single defining relation

(w n+1 n_-l-]j) =

We further regard Hl(Bd U, Z) and H (Bd U; Z/2Z) as the free abelian
group on these same generators and its tensor product with Z/2Z. The
context will always distinguish these uses. Let L(h) denote the matrix repre-
senting n(h), h € I(n), with the convention that the (i, j)th entry in L(h) is
the coefficient of «; in n(h)(w;). The elements of H,(Bd U) can then be
regarded as row vectors and the action of JC as right matrix multiplication.
Note that in Figure 2.1 orientations are chosen so that the homology
intersection form I (w;, ) is represented by the matrix J. A 2n X 2n matrix L
over Z or Z/2Z is symplectic if

) LIL'=J

where equality is taken over Z or Z/2Z as appropriate. The sets of symplectic
matrices form the symplectic groups Sp(2n, Z) and Sp(2n, Z/2Z). 1t follows
from [Nw, p. 132, Theorem VII.21] that Sp(2n, Z/2Z) is the mod 2 reduction
of Sp(2n, Z). Condition (1) is clearly necessary in order that a matrix L
correspond to an element of J((n), for it expresses the condition that an
orientation-preserving homeomorphism of Bd U must preserve the homology
intersection form. It was proved by Nielsen (see [MKS, Theorem N 13]) that
condition (1) is suff1c1ent in order that L represent an element of 3C Thus we
may identify 9C(n) with the symplectic group Sp(2n, Z) and ‘JC(n) with
Sp(2n, Z/2Z). Beware! The representation n: I((n) — Sp(2n, Z) is an anti-
homomorphism; hence the order in compositions must be reversed.

We will have to use certain properties of the groups J(n) and & %(n). These
are summarized by the following lemma:

Lemma 1. )% (n) = {|I§ gll € Sp2n, 2)}, F(n) = {II5 gl €
Sp(2n, Z/2Z)}.

(ii) For any f € F(n), there exist n X n matrices U, S, S* with U unimodu-
lar and S and S* symmetric such that L(f) = F(S)D(U) = D(U)F(S*).

Proor. See [Br, EH, §2] for a proof of (i) in the case of "}"(n) and for a
proof of (ii). The proof of (i) in the case of %(n) goes as follows: One can
follow the argument in [Br, EH] to verify that each matrix ||§ §|l in
Sp(2n, Z/2Z) has a decomposition F(S)D (U) (over Z/2Z) as described in
(i)). Now S is the mod 2 reduction of a symmetric matrix S over Z whose
entries are 0’s and 1’s. By Lemma VIL.8 of [Nw] the matrix U is the mod 2
reduction of a unimodular matrix U over Z. But then, [|§ 3|l is the mod 2
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reduction of the matrix ||§ §ll = F (S)D(U), and the fact that [|§ $|| repre-
sents an element of %(n) follows from the special case of (i) quoted from
[Br, EH]. [J

2.3 HEEGAARD SPLITTINGS. A Heegaard splitting of genus n of a closed,
oriented 3-manifold is a representation of that manifold as U +, (—U)
where h € IC(n), i: Bd U— Bd(— U) is the identity map, and the identifi-
cation is defined by the rule ih(x) = x for all x € Bd U. This Heegaard
splitting is defined uniquely by the surface mapping A, and will accordingly
be denoted by the symbol S(#). The manifold which it defines will be
denoted by M (k).

Two Heegaard splittings S (4) and S (#’) of the same genus 7 are defined to
be equivalent if there exist elements f, and f, in () such that
() W = k.
That is,  and &’ must belong to the same double coset of I((n) modulo F(n).
Condition (2) states algebraically the geometric condition that there is an
equivalence from M (k) to M (k') that restricts to an equivalence from Bd U
onto itself. Note that isotopic changes in 4 do not alter the equivalence class
of a Heegaard splitting S (%); hence the splitting S'(h) is determined up to
equivalence if instead of A one specifies just the induced automorphism 4, on
7,(Bd U). This follows from the fact that each automorphism of = (Bd U) is
induced by a unique isotopy class of homeomorphisms of Bd U (see [N1]).
Consider then, for each n > 1, the automorphisms, = s{” of 7(Bd U) that is
given with respect to the standard basis by:

Sy = 5, > w07, 1< j<n,

(€)

W, n+1<j<2n

Let s be an element of IC(n) that induces the automorphism s,. Then S(s) is
a standard Heegaard splitting of the 3-sphere Z since each curve w7},
n+1< j<2nboundsadiskin 3 — U.

We now wish to describe, in map language, a method for taking sums of
Heegaard splittings which is consistent with the usual notion of connected
sums for manifolds. Let D (n) be a disk in Bd U(n). For a pair (m, n) we
form the boundary sum U(m) #, U(n) and identify it with U(m + n) as
follows: Choose an orientation-reversing homeomorphism g: D (m)— D (n)
and take U(m) #, U(n) to be the identification space U(m) +, U (n). Now
identify U(m) #, U(n) with U(m + n) by some orientation-preserving
homeomorphism g’. Given two Heegaard splittings S (k) and S (#") of genus
m and n respectively we may, without changing the equivalence classes of
S (h) and S (h"), isotopically modify 4 and 4’ so that they are the identity on
D (m) and D (n) respectively. The homeomorphism g’ now specifies a unique
homeomorphism & # A’ in 3C(m + n) corresponding to the homeomorphism
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of Bd(U(m) #, U(n)) that is defined by restrictions of # and A’. The sum
S (h) # S(K) is defined to be the Heegaard splitting S(h # 4’). The mani-
fold M(h # h’) then automatically defines the connected sum
M(h) # M(R).

The homeomorphism 4 # A’ in S(h # h’) depends upon the choices of g,
g’ and the isotopies used to modify 4 and /', but the double coset of 2 # k' in
JC(m + n) modulo F(m + n) is independent of these choices. Thus the
construction above leads to a Heegaard splitting S'(h # h’) that is unique up
to the equivalence defined in (2).

Specializing the operation above leads to stabilization of a Heegaard
splitting by the convention S(k)— S(h # s) = S(h # s5). Note that
M (h # 5) is homeomorphic to M (k). The sum operation will be used in a
second way: to form the sum of a map h € J((n) with id € J((1) and so
describe a “canonical extension” of an element of J((n) to an element of
IH(n + ).

Our next task will be to interpret certain topological properties of a
manifold M (k) that are exhibited in the symplectic groups by means of the
matrix (k) = L(h) and its mod 2 reduction. The first result follows from a
simple application of the Mayer-Vietoris sequence:

LeMMA 2. Let h € I(n) and let L(h) be given by the symplectic matrix
|3 Sl with respect to the standard basis.

Then M (h) is a Z-homology sphere if and only if P is unimodular over Z, and
M (h) is a Z/2Z-homology sphere if and only if P (mod 2) is unimodular over
Z/27. O

The second result which we will need is proved in §3 of [Br, EH]. We
repeat the proof here because it is brief and because it illustrates a technique
that will be used repeatedly later.

LEMMA 3. Let h and I’ be elements of I (n), and suppose that M (h) and
M (R’) are Z/2Z-homology spheres.

Then there are elements f, and f, in % (n) such that the splitting S (f,i’f)) is
equivalent to S (W) and L(f,h'f,) = L(h) (mod 2).

Moreover, if M (h) and M (k') are both Z-homology spheres, then f, and f,
can be chosen so that L(f,h'f;) = L(h).

Proor. Consider first the special case of the lemma where # = s and where
M (k') is a Z-homology sphere. Let L(#") = ||} || By Lemma 2, the matrix P
is unimodular. Also, as a consequence of the symplectic condition (1), the
matrices P'R and QP' are symmetric. Let L, and L, be elements of Sp(2n, Z)
defined by

L =F(—PR)D(—P~') and L,=F(-P~'Q).
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Then L,L(h")L, has the form ||_9 5”, and (1) now implies that X = I. Since,
by Lemma 1, L, and L, belong to %(n), we may find elements f, and f, in
%(n) such that L, = L(f), i = 1, 2. Then we have L(f,hf,) = L(s) as prom-
ised. The equivalence of S(#’) and S (f,/'f,) follows from the definition of
equivalence (2).

Next we change the special case by allowing A to be any element of IC(n)
that defines a Z-homology sphere M (k). From the special case we can find f;,
Jo fs fo in F(n) such that L(fihfy) = L(feh'fs) = L(s). But then
L7 fs fsY) = L(h) so we can take f, and f, to be fsf;”! and f;f;
respectively to obtain the desired equivalence.

The case for Z/2Z-homology spheres is done in an entirely similar manner.
We first locate the appropriate matrices over Z/2Z, since in this case we only
know that det P is odd, and then we use Lemma 1 to lift these matrices back
to elements of % (n).

2.4 MaP PAIRs AND 4-MANIFOLDS. The map pair theory described below
comes from applying the first author’s mapping class formalism (see [Br, EH])
to rewrite a generalized Heegaard theory developed by the second author (see
[Cr, HS] and [Cr, FH)).

A map pair is an element (h,, h;) € IC X IC. Each map pair defines a triple
of 3-manifolds (M (h;), M (h,), M (hsh; ")) which will be called the funda-
mental triple for the map pair (h,, h;). We will show, in the next paragraph,
how to associate a 4-manifold N = N (h,, h;) with the map pair (h,, h;) so
that Bd N is the disjoint union — M (h;) + M (h) + M (h3h; ).

S
X

-Muy)| B M(nhz*)
LY

FIGURE 2.2
Form three copies N,, N,, N; of the 4-manifold U X [—1, 1], and let
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eg:UX[-1,1]>N, j=123,
denote the corresponding identity maps. Orient the N;’s so that U— U X 1
—% N, is an orientation-preserving homeomorphism of U into Bd N; for
J =1, 2 and is an orientation-reversing homeomorphism for j = 3. Define an
equivalence relation ~ on the points in the 3-manifolds ¢;(Bd U) X [—1, 1])
by e(x, 1) = ey(hy(x), — 1), e(x, — 1) = e5(h3(x), — 1), ey)x, ) =
es(hshy'(x), 1), x €BA U, t€[0,1]. Set N=(N,+ N, + N;)/~, the
disjoint union of the N;’s modulo ~. See Figure 2.2. Then N is an oriented
4-manifold, and its oriented boundary is naturally identified with — M (h;) +
M (hy)) + M (hsh; ") as indicated in Figure 2.2. We say that N is the 4-mani-
fold associated with (hy, A5).
For a 4-manifold N let ¢, denote the homology intersection form

oy: Hy(N)/Torsion X H,(N)/Torsion — Z,

and let r denote the signature of ¢,. Recall that the p-invariant was described
in the introduction. (The reader is directed to [EK], [HNK], [GA], [Gd], [CS]
for more information about the p-invariant and its computation.) Two
properties of the p-invariant that we will use here are,

() p(M # M)=p(M)+ p(M’) (mod 1), and
©) p(=M) = —p(M) (mod 1).
For the 4-manifold N = N (h,, h;) the relationship between the signature 7 of

¢@n and the p-invariants of the boundary components of N is expressed by the
following lemma:

LEMMA 4. Let N = N (h,, h;) be the 4-manifold associated with the map pair
(hy, h3). Suppose that @y has even type, i.e. the quadratic values @y( B, B) are
all even, and suppose that M(hs), M(hy), and M (hsh;') are all 7/2Z-
homology spheres.

Then the signature T of @y, satisfies the congruence,

6) — n(M(hy)) + p(M(hy)) + p(M (hsh;')) = —1/16 (mod 1). O

Proor. It is first necessary to verify that H,(N; Z/2Z) = 0. Since each
1-cycle is homologous to a boundary cycle, this follows from the fact that the
boundary components of N are Z/2Z-homology spheres. Now drilling holes
in N to reduce the number of boundary components to one does not change
either the form ¢y or the fact that H,(N) has no 2-torsion. The boundary of
the drilled 4-manifold is equivalent to the connected sum of the boundary
components of N. By the definition of the p-invariant (see [EK] or [HNK, §7])
the p-invariant of the boundary of the drilled manifold is —7/16 (mod 1).
Now apply equations (4) and (5) to get the congruence (6). []

Two map pairs (h,, h3) and (h3, h3) are defined to be equivalent if there are
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elements f;, f5, f; in the group ¥ such that

(7) ’b, =.!/"hjfh J = 2’ 3.

This provides that Aj(h5)~! = f;hsh; ;1. From condition (2) on the equiva-
lence of Heegaard splittings, we find that equivalent map pairs (h,, #;) and
(hy, h3) define equivalent Heegaard splittings of the corresponding manifolds
in the fundamental triples (M (h;), M (hy), M (h3h; ")) and
(M (B3), M (B3, M (hy(hy)~"). Moreover, these equivalences are interdepen-
dent. Algebraically, this definition of equivalence says that 4; and A4}, j = 2, 3,
must lie in the same double coset of modulo ¥ and there must be a common
right coset representative in the two equivalences.

A little reflection should convince the reader that map pairs (h,, 4;) and
(h5, h3) are equivalent if and only if the 4-tuples (N, N,, N,, N;) and
(N’, N{, N;, N3) are equivalent where N = N (h,, h;) and N’ = N(h), h3).
Thus our rather peculiar definition of equivalence in (7) will turn out to be
exactly the one that is needed to preserve the signature formula (6) and thus
to obtain information about the p-invariants of the manifolds in a funda-
mental triple.

An obvious problem arises about how to represent conveniently the
bilinear form ¢, and thus calculate its signature and type. With the goal of
representing ¢y in mind, we introduce two natural definitions. Let (,, /,) be
a map pair. Then (n(h,), n(h;)) is defined to be an abelianized map pair and
(en(hy), en(hy)) to be the mod 2 reduction of the abelianized map pair. The
equivalence relation (7) goes over in a natural way to equivalence relations on
abelianized map pairs and their mod 2 reductions: Instead of double cosets of

I mod ¥, equlvalence classes are represented by double cosets of 9 mod &
and of 9 mod &.

LeMMA 5. Let (hy, h;) be a map pair with associated 4-manifold N. Suppose
that H\(M (h3); Z) = 0
(i) The map pair (h,, h;) is equivalent to a map pair (h3, h3) whose abeliani-
zation has the normal form:
R,
noop 153l

@® (L(R), L(h3)) =

(ii) For the normal form (8), the submatrix PR, is a symmetric matrix and it
represents the bilinear form @y . i, which is equivalent to @y.

(iii) If further, H(M (h,); Z) = 0, then (h,, h;) is equivalent to a map pair
(h¥, h¥) whose abelianization has the normal form

© won,zos) =17 I 12, o

where W is a symmetric matrix such that — W represents the bilinear form
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on(hE, hY) ~ @y. Moreover, H (M (h;, h;'); Z) = 0 if and only if det W =

*1.

PRroOF. Since by hypothesis H\(M (h;); Z) = 0, we may, by Lemma 3, find
an equivalent splitting S (h3) for M (h;) such that L(h3) has the normal form
given in (8). Now, there exist f, f; € & such that h; = f3h, f,. Define hj to be
h, f,. Then (h5, h3) =~ (hy, h;) by condition (7), and (L(h3), L(h3)) has the
normal form (8) promised by the lemma. This establishes (i).

The matrix PR, is symmetric because L(h3) is symplectic, and hence
satisfies (1). The 4-manifolds N = N(hy, h;) and N’ = N(hy, h3) are
homeomorphic under an orientation-preserving homeomorphism, so ¢y =
@y Thus to establish (ii) it is enough to show that P;R, represents ¢y.. We
first identify ¢y. with a linking form for M (h3). Let 8: Bd U—Int U be a
homeomorphism that translates points of Bd U along the fibers of a collar on
Bd U in U. Let B denote the subgroup of H,(Bd U; Z) generated by the set
{h3"(w4,): i < n). Now regard U as the first handlebody in M (h3) = U
+ ;- (— U) and consider the linking form

L:BXB—Z,  L(B B)=1k(8,(B) B),

where 1k denotes linking number over Z in M (h3). Linking numbers are well
defined in M (h3) since H,(M (h3); Z) = 0. Moreover the bilinear form L is
symmetric because linking numbers are symmetric in 3-manifolds. In the next
paragraph we relate L with gy. by identifying a handle decomposition for N.
Consider the submanifold (N + N3)/~ in N’. It is homeomorphic, by an
orientation-preserving homeomorphism, to M (h3) X [0, 1] where M (h3) X
[0, 1] is oriented so that Bd(M (h3) X [0, 1)) = M(h3) X 1 U — M (h3) X 0.
This homeomorphism sends the component of Bd N’ identified with — M (h3)
to — M (h;) X 0. The homeomorphism may be presumed to preserve the sides
of M (h,) in the correspondence and to send (Bd U) X 0 in (N{ + N3)/~ to
(BdU) X1 in M(h3) X [0, 1] so that (x, 0) —(x, 1). Choose a complete
system of meridianal disks D,, ..., D, in U and thicken these disks slightly
to disjoint 3-balls C}, . . ., C, that are regular neighborhoods of the disks D;
in U. Let C, denote the 3-ball (U \ U C,). Now regard the disks D,, ..., D,
and the 3-balls Cy, . .., C, as sitting in the O-section of the 4-manifold N;.
Then N;= U{C; X[—1,1]/0< i< n}, and N’ has a handle decom-
position as the sum of M(h;) X [0, 1] (identified with (N[ + N3)/~), n
2-handles, C, X [—1,1},..., C, X [—1, 1], and one 3-handle, Cy X [—1, 1].
Each of the disks D, is an attaching disk for the 2-handle C; X [—1, 1]. Its
boundary is attached to M (h;) X 1 as h; '(Bd D,) X 1, where h; '(Bd D)) is
considered to be a subset of the first side of M (h3). Associate with each
h;\(Bd D;) the homology class 8, € H,(Bd U; Z) of a 1-cycle that is repre-
sented by some orientation of A, '(Bd D;). Now {B,, ..., B,} is a free basis
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for the subgroup B of H,(Bd U; Z). Also H,(N; Z) is free on n generators,
and a free basis for H,(N; Z) can be constructed by orienting each D; and
capping it off with a relative 2-cycle in M (h3) X [0, 1]. By choosing the
orientations properly we can identify the intersection numbers of pairs of
these 2-cycles with the values of L on the corresponding pairs of elements in
{Bss ..., B,). Thus L is equivalent to py..

To complete the verification of (ii) we show that the matrix P;R, represents
the linking form L. Now L(h; ') is given by

o -
P R

R, S|

P, O

so B is freely generated by the elements,

n n
:Bj = h2_‘l(wn+j) = 2 —pyw; + _21 Tik Wi 4 e
i=

i=]

The matrix | L(B;, B,)|| represents L, and the (j, k)th entry of this matrix is
given by,

lk(o*(ﬁj)’ Bk) = 11((0*(2 —pyw; t 2’:7‘*’&;.)» PRI IE DD rikwi+n)
= ~(0,(Z pym), Zrasten) = = 2 pIK(04(0) S rawren)

== 2 Pg"'iklk(a*(‘*’i), wi+n) = - 2 Pij"ik(_ )= ‘21 DiiTix-

But 27, p,r; is the (Jj, k)th entry in the matrix P;R,, so P;R, represents L,
and hence ¢y, and the verification of (ii) is now complete.

Consider (iii). Suppose that H,(M(hy); Z) = 0. Then by Lemma 2, the
matrix P, in L(h3) is unimodular. We may then find unimodular matrices ¥,
¥, such that V,P,V, = — I. From equation (1) it follows that V,Q,(V5)~ ! is
symmetric. We may thus define the abelian map pair equivalence:

LD (V) )E(res () ) = ¥ &

D(V,)L(hz)D(Vx')="—01 6"

The symplectic condition (1) now implies that W is symmetric and that
S =1, and we have the desired normal form at the abelian level. Since 7:
% — 9 is surjective, we can lift the matrices D (—) and F(—) to elements of
9 and so convert the equivalence to an equivalence (hy, h3) =~ (hy, h;) SO
that (L(h3), L(h3)) has the normal form just described.

By (7), S (hshy ") =~ S (hy(h5)~"). Moreover
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sy =sorneft 1% -l o
By part (ii) of this lemma, — W = (—I)'W represents the form @y s ss) < P-
It follows from Lemma 2 that

Hy (M (hshs"); Z) = H, (M (h3(h$)7"); Z) = 0

if and only if det W = + 1. This completes the proof of the lemma. [J

Lemma 5 tells us how to obtain information about ¢, from the abeliani-
zation of a map pair. Our next lemma completes the picture by relating
equivalence of abelianized map pairs to equivalence of the associated bilinear
forms. :

LEMMA 6. Let (hy, hs) and (h5, hs) be map pairs with associated 4-manifolds N
and N'. Suppose that M (h,) and M (h3) are Z-homology spheres.

(i) If the abelianized map pairs (n(h,), 1(hs)) and (q(h3), n(h3)) are equiva-
lent, then the forms ¢y and ¢}, are equivalent. Moreover, if M(h,), M (hs),
M (1), M (%) are all Z-homology spheres then the converse holds: The equiva-
lence of @y and @y implies the equivalence of (n(hy), 1(h3)) and (n(hy), n(h3)).

(i) If the mod 2 reductions (en(h,), en(h;)) and (en(hy), en(h3)) are equiva-
lent, then the mod 2 reductions of @y and ¢y. are equivalent and thus @y and
@y are either both of even type or both of odd type. [

PROOF. Suppose first that (n(h,), n(h;)) and (n(h3), n(h3)) are equivalent.
By Lemma 5 we may suppose that (L(h5), L(h3)) has the normal form (8), so
that ¢y, is represented by PjR,. The equivalence of (n(hy), n(h;)) and
(n(hy), n(h3)) implies the existence of elements f,j = 1,2, 3 in % such that

L(#) = L(fi)L(B)L(f), J=2,3.

But then (f,4, f,, f3h3 f,) is equivalent to (hy, hy), so by part (ii) of Lemma 5,
P}R, also represents ¢, and we conclude that gy and @y are equivalent.

Suppose that M (h;) and M (h3) are Z-homology spheres. Then by part (ii)
of Lemma 5 we may suppose that (L(4,), L(h;)) has the normal form (9), and
(L(H,), L(h%)) has this same normal form with W’ in place of W. Then — W
and — W’ represent the bilinear forms ¢y and ¢y. If ¢y and ¢ are
equivalent, then for some unimodular matrix U we have W’ = UWU". But
then

(L(R;), L(h3)) = (D (U*)L(h)D (U), D(U*)L(h3)D (U))

s0 (L(h,), L(hs)) and (L(h5), L(h3)) are equivalent as desired.

The proof of (iii) is similar and is obtained by reducing mod 2 in Lemma 5
and the first two parts of the lemma. The final assertion in (iii) follows from
the fact that when ¢y and gy are equivalent, g, has an odd quadratic value
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on (B, B) for some B if and only if ¢y has an odd quadratic value @y (8’, 8°)
for some 8’. [J

2.5 A TecunicAL LEMMA ABoUT MAP PAIRs. The lemma proved below
translates into map pair language a weak version of the fact that 3-manifolds
bound parallelizable 4-manifolds.

LEMMA 7. Let S(h) be a Heegaard splitting of even genus for a Z/2Z-
homology sphere M (h).

Then there exists a map pair (h, h') with the following properties:

(i) The bilinear form @y for the 4-manifold N = N (h, ") has even type.

(i) In the fundamental triple (M (h’), M (h), M (W' h™"Y)) for (h, k') the mani-
Jolds are all three Z/2Z-homology spheres and in addition M(W'h™") is the
3-sphere.

Proor. We will prove the lemma by first constructing a map pair (h, h,)
with a nice fundamental triple so that @y, , has even type and so that
L(hy) = L(h) (mod 2). We will then make some substitutions to obtain the
desired map pair (h, #’).

Let W be the n X n matrix which is the direct sum of n/2 copies of the
2 X 2 matrix ||{ §||. Consider the symplectic matrices

=W I 0 I =7-1r =l I O
@r=(|2 512 i) = | 1l

Choose maps ks, hs such that Ly = L(h;) and Ls = L(hs). Since W is
unimodular, Lemma 2 shows that M (k) and M (hs) are Z-homology spheres.
From Lemma 3 we may further assume that the lift A5 has been chosen so
that M (h;) is the 3-sphere. Next, define a lift A, of L, by h, = hsh,. Then
L(h,) = L;Ls = L, so (by a second application of Lemma 2) the manifold
M (h) is also a Z-homology sphere.

By Lemma 5, the bilinear form gy, ,,, is represented by the matrix — W
and since W has even diagonal entries this form has even type.

By Lemma 3, there are elements f,, f, in F(n) such that L(f,h,f,) = L(h)
(mod 2). Define hy = f,h;f, and h) = h,f,. Then (hy, h)) and (hs, h,) are
equivalent map pairs so the manifolds in the fundamental triples are equiva-
lent and the associated bilinear forms are equivalent (Lemma 6). Define
K = hyhg 'h. Then, since L(hg) = L(k) (mod 2), it follows that L(#) = L(h)
(mod 2).

The mod 2 reductions of (L(%), L(h)) and (L(h,), L(h,)) are now seen to
be equivalent. Therefore, by Lemma 6, the bilinear form ¢, for N = N (h, k')
has even type. Now L(h") = L(h,) (mod 2), so by Lemma 2 and our previous
observations, M (k') is a Z/2Z-homology sphere. Finally, #’h~! = h h;!, and
since S(hhy ")~ S(hhy") we find that M(W'h~") = M(hhy") = M (hs).
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But hs was chosen so that M (hs) is the 3-sphere; thus M (A'h~") is the
3-sphere. [J

3. Representations of K onto Z/2Z. This section contains the main results
of the paper. It studies how the p-invariant for 3-manifolds implies group
theoretic properties of the class of groups {J((n),n =0, 1,2, ... }. In §4 the
reverse problem will be studied: how topological invariants of 3-manifolds
can be obtained from group theoretic properties of the class {JC(n)}.

Consider a Heegaard splitting S(hyh;) of a Z/2Z-homology sphere
M (hyh,) where h; and h, are elements of 3 = J((n). From Lemma 2 we
know that if S(h) is another Heegaard splitting of genus » such that
L(h") = L(hyh,), then M (k') is also a Z/2Z-homology sphere. But L(h") =
L(hyh,) if and only if ' = h,kh, for some k € H(n). Thus, for k € K(n), we
can ask about the change in the p-invariant, u(M (h,kh,)) — p(M (hyh,)). We
will show in Theorem 8 that this change is quite regular and that it leads to
representations of ¥ (n) onto Z/2Z for n > 2.

3.1 MAIN THEOREM. A finite sequence <h,, ..., k> of maps in I((n) will
be said to be admissible if M (h, - - + h;) is a Z/2Z-homology sphere. We will
be interested chiefly in the case p =2 and we have chosen the term
“sequence” to diminish confusion with map pairs. Note that if {A,, > is an
admissible sequence, then <{h,, k, h,) is also an admissible sequence for each
k € K (n) (Lemma 2).

THEOREM 8. For an admissible sequence {hy, hy) in 30(n), n > 2, let p, , be
the set function from K.(n) to Q/Z defined by the rule,

(10) Py () = p(M (hkhy)) = p(M(hy))  (mod 1), k € H(n).

These set functions have the following properties:

(1) Each function p,  is a homomorphism from K (n) onto the additive group
{0, 1} (mod ) ~ Z/2Z

(1) If <hy hy) and {t,, t,> are admissible sequences with L(t)= L(h)
(mod 2),i = 1,2, then p, , = p,,,.

(iii) Let ‘JC,, -, denote Kernel Phh,- Let £(n) denote the collection of groups
{‘JC,, 4} @S (hz, h,> ranges over all admtss:ble sequences of length 2 in 3((n).
T7zen B(n) is a complete conjugacy class(*) of subgroups of I(n).

Proor. The proof of Theorem 8 is long and is divided into several parts.
We will first consider the special case where A, = id and ¢, = id. We will
establish (i) and (ii), and instead of (iii) we will show that the groups ¥, , are
conjugates of each other by elements of % (n). With these results we will then
establish the theorem in the general case.

(%) Finite upper and lower bounds on the order of £(n) will be given in Theorem 9.
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Special case (h, = id, t, = id). The key to dealing with this case is to first
establish that (i) holds for the special set functions. The trick used in the
proof of Lemma 7 to turn one nice map pair into another one will be
instrumental in establishing (ii). To simplify notation in this case we will
replace h, and ¢, by A and ¢.

Consider then elements 4 and ¢ in 3((n) such that L(h) = L(¢) (mod 2)
and such that M (k) is a Z/2Z-homology sphere. Let k € H(n). If n is odd,
we immediately replace, A, t, k, by h # s, ¢ # sO, and k # id as indicated
in §2.3. Because stabilization by s corresponds to the formation of the
connected sum of a manifold with =, we have M (h # s) = M(h) and
M((k # id)(h # sM)) = M((kh) # s") = M(kh). Similar equivalences
hold for ¢. Thus the values of p4,(k) and p;4 (k) remain unchanged, and we
may assume that » is even.

By Lemma 7 there is a map pair (h, A’) such that M (k') is a Z/2Z-
homology 3-sphere, M (h’h™") is the 3-sphere, and the bilinear form gy )
has even type. At this point we apply. the trick from Lemma 7 and define
¢ =HKh™'t to obtain another map pair (z,¢). Note that ¢+~ = A~
Because L(h) = L(f) (mod 2), it follows that L(h") = L(#') (mod 2). Thus
from Lemma 2, M (¢) is a Z/2Z-homology sphere. By definition M (#'t™") is
the 3-sphere, and by Lemma 6, the form gy, , has even type.

Consider the modified map pairs (kk, ") and (kt, ') obtained by replacing
h and ¢ by kh and kt. The abelianizations of the new map pairs are identical
with the old ones so by another application of Lemma 6, we find that the
bilinear forms @y 4y and @y s are equivalent as are the forms @y, -, and
PNy 10 particular, then, the signatures must coincide for @y, and
vy and similarly for oy, ) and @y, The signature formula (6) of
Lemma 4 then gives the congruences:

= B(M(B) + p(M(K)) + p(M(HR™"))
= — p(M (kb)) + p(M () + p(M (KR~ %)) (mod 1)
and
— B(M(5) + p(M(£)) + p(M(r17Y)
(12) = —p(M (k) + p(M(2)) + p(M(£t7'k"))  (mod 1).

Because M (h’h™") is the 3-sphere, whose p-invariant is 0, and because #'¢ ! is
defined to be equal to #’A~!, (11) and (12) simplify to,

a3) (M) = (M) = p(MFR%)  (mod 1)
and
a9 p(Mk)) - p(M@) = p(MERRTY)  (mod 1),



3-MANIFOLDS AND CERTAIN STRUCTURAL PROPERTIES 299

Comparison of the two congruences now reveals that py,(k) = pg,(k).
Assertion (ii) has now been verified.

Because M (h'h ") is the 3-sphere, Lemma 2 shows that M (WA~ %Y is a
Z-homology sphere and thus p(M (F’h~'k~")) is either O or 1. The image of
the set function p,, is therefore contained in {0, 1} (mod 1), and the second
part of assertion (i) has been verified.

To show that p,y, is a homomorphism we must show that p,;, converts
products in K into sums in {0, 3} (mod 1). Let , and k, be elements in %K.
Then

Pian(kaky) = p(M (kokih)) — p(M (kyh))
+(M (k) = f(M(B)  (mod 1)

= pig (k) + Pign(ky)-

But L(k,h) = L(h) so by (i) we have p;q . 4(ky) = pigs(k); thus pig ,(koky)
= pian(ky) + pig (k) as required.

To complete the special case, it remains to establish surjectivity of p;4, and
to establish the conjugacy of the subgroups X4, in IC by elements of F.
Given that {id, #) is admissible, there are, by Lemma 3, elements f; and f, in
% such that L(h) = L(f,sf;) (mod 2). Thus p;y; = piq,y;,- By making use of
the equivalence condition (2) we can rewrite (10) as

Pidy,s, (k) = M(M (f5 ks )) - m(M(f:5))
"= p,(M ( fz"kfzs)) - p(M(s)).

Because ¥ is a normal subgroup of IC, it follows that

@16) Piasss, (K) = pias (S5 'Kf2)-

This shows that p,y, . is the composition of p;4 ; with the restriction to ¥ of
the inner automorphism of JC which sends each element x to f,”'xf,. The
relation between the subgroups X,y ;,; and ¥, , is now given by

a7 Keasr, = LT oS5

The groups J,, are thus all conjugates of Ky, by elements of F. To
establish that p;4, is in general surjective it is now sufficient to establish that
Piq, s is surjective.

We first show that for each value of n > 2, there is an element ¢ € I such
that M () is a Z-homology sphere with p(M (¢)) = 1. We first establish this
for n = 2. By [Sf, TR] the spherical dodecahedral space is the 2-fold covering
over 2 branched over the torus knot of type (3, 5). By [Pc] this space is
defined by a Heegaard splitting S(#) of genus 2. By [HNK], p(M(9) = 3.
Since M (¢) is a Z-homology sphere, this takes care of the case n = 2. For
n > 2, stabilize S(£) to S (¢t # s # - - - # sM) to obtain the desired .

(15)



300 J. S. BIRMAN AND R. CRAGGS

Continuing the proof of surjectivity, we observe next that by Lemma 3,
there is an element ¥’ € J((n) with S (#) ~ S (¢) such that L(¢') = L(s). Thus
there is some k € K such that ¢ = ks. By (2), we have M(t') = M(?) so
Pia, (k) = p(M(Ks)) = p(M(s)) = p(M () =0 =1 (mod 1), and we con-
clude that p,4 , is surjective.

This completes the special case of the theorem.

General case. (i) Consider the general set function p,_, . Rewriting (10) we
obtain

Py, (K) = M(M (hokhy l)hzhl) — p(M(hhy))  (mod 1)

= Pig g, (hokhy ).

Thus p,,, is the composition of p;qy, Wwith the restriction of the inner
automorphism: x — h,xh; !. The normality of ¥ in IC implies as in the
special case that p, , is a homomorphism and that, since p;q 4, is surjective,
Ph,h, 1S surjective.

(ii) The verification of (ii) will be based on several inversion formulas
which we now give. First, for any & € 9((n), the manifold M(h~") is
equivalent to — M (h); that is, the obvious homeomorphism from M (A~1) to
M (h) is orientation reversing. By (5) we have,

19 (M) = p(-M(h)) = —p(M ()  (mod1)
and

(18)

Pria(k) = p(M (hK)) = p(M (h))
—n(M(k™h7Y) + p(M (A7)
= —pigp-1(k)  (mod 1)

The last equality follows from the fact that squares map to O under p.
Combining (18) and (20), we obtain the more general inversion formula,

Ph,,h,(k) = pid,hzh,(hzkhz_ l)
1) = _Ph;‘h{',id(hzkh{l)
— P15 (K) (mod 1).

Let {h,, h;) and (t,, t,) be admissible sequences with L(h,) = L(¢) (mod 2),
i = 1, 2. Note first that L(h,h,) = L(h,t,) (mod 2) so by (18) and the special
case, we find that p, , = p, ,.By (21) we have

(20)

Pryty, = T Pr;\ a5t and Proe, = TPt

The same application of the special case as the one we just made now shows
that p,-1 -1 = p,-1 -1 and by transitivity we have thatp, , = p, ;.
(iii) Observe that equation (18) implies that
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(22) K, = b2 ' (Hiapdhy b= hohy.

Note that in (22) the map A, can be an arbitrary element of JC; however
h = hyh, is subject to the restriction that M (%) be a Z/2Z-homology sphere.
From (17) and (22) it now follows that the collection of groups £(n) is given
by,

(23) R(n) = { () (Hig, )(f5 'h,) /1y € X, f, € F}

and this is clearly a complete conjugacy class of subgroups of JC.

This completes the proof of Theorem 8. [J

3.2 Bounds on the order of £(n). Theorem 8 will allow us to compute, in
Theorem 9, upper and lower bounds on the order of £(n). Before giving the
proof of Theorem 9 we review in the next three paragraphs some material on
twist maps, knot surgeries, and the Arf invariant of a knot. This is for the
purpose of obtaining a lower bound for |2 (n)|.

Let R be a simple closed curve in Bd U that separates Bd U, and let ¢ be a
twist map of Bd U about R. For some annulus 4 C Bd U and R C Bd 4 the
map severs Bd U along R, then twists 4 holding (Bd 4) \ R fixed so that R is
rotated a full revolution, and finally reattaches the two sides of R in Bd U by
the identity map. Note that since R separates Bd U we have ¢t € H(n). Let h
be an arbitrary element in %(n). Then ¢ transforms M (k) to a new 3-manifold
M (th). Lickorish observed [LK] that up to an orientation-preserving
homeomorphism, M (th) results from M (h) by a knot surgery. If W(R) is a
tubular neighborhood of R with W (R) N Bd U an annulus, then this surgery
has the following description: Let R’ result from one of the two curves in
W(R) N Bd U by twisting once about a meridian in Bd W(R). (The
direction of the twist is not important to us here.) Remove W (R) from M (h)
and reattach Bd W(R) to Bd (M (h)\Int W(R)) so that a meridian in
Bd W(R) is taken to the curve R’.

Results due to Gonzalez-Acuna [GA, Theorem 4] and Gordon
[Gd, Theorem 2] show that if M (k) is a Z-homology sphere, then the
manifold M (th), obtained by the knot surgery described above, is a Z/2Z-
homology sphere and its p-invariant is given by

(24 p(M(th)) = p(M () + ay(R)  (mod 1)
where ay,,,(R) denotes the Arf invariant of the knot R (to be described
below).

If R is afly knot in a Z-homology sphere M (h), then the Arf invariant of R
in M(h) is defined as follows (see [Sf, TR]): The curve R bounds an
orientable surface Q in M (k). Let 0 * and Q ~ be disjoint, parallel copies of
Q slightly to either side of Q. There is a quadratic linking form x,:
H(Q:Z/2Z) > Z/2Z given by x,(B) =1k(B*, 7) (mod2) where Ik
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denotes linking number and 8* and B~ are the parallel copies of 8in Q*
and Q7. Letyy, ..., ¥ a;,. .., @, be a symplectic basis for H,(Q; Z/2Z);
ie. I(y» ) =1I(a; ) =0 (mod2) and I(y,a)=§; (mod2) where I
denotes intersection number. Then the Arf invariant a,,(R) of R is given by

(25) aym(R) =$ w (mod 1).

THEOREM 9. Upper and lower bounds on |2 (n)| are given by,

o <IB(n)l = 4 2(n)(n+l)/2 Hl (21 + 1)

where p is an integer,p > 1.

ProoF. According to equation (23), the group I(n) acts on £(n) by
conjugation. Suppose that g € kernel(en). By equation (22) we have

(26) —I%hzh g=g"'"h'%y i 28 = %hzgg"h.’

By Theorem 8, part (iii), the groups ¥, -1, and &, _, coincide; hence the
action of g is trivial. Thus J((n) acts on £(n), so that 9C(n) has a repre-
sentation as a group of permutations of the set B(n) By Theorem 8, part (iii),
this action is transitive; hence |2 (n)| divides |50(n)| = 2°II"_ ;2 + 1)(2 — 1)
(see [Nw, p. 125]).

Let 9¢, ¢ 9C be the stabilizer of K, ; € £(n). Then |C(n)| = 191 /196, . Let
%o =F N sFs”!, and let Jo be the i 1mage of %, under en. If f € %, then we
may find f’ € %, such that f = sf'~'s 7!, i.e. fof’ = 5. Since 4, = K,y for
each f € %, equation (17) now implies

@7 SHia of ' = K1 = Hiagr = Hig, o
Thus %,  9G,, and |2 (n)| divides €1 /1%, . Since

n
Iq}-bl:lGL(”’ Z/ZZ)[ = 2(m(n=1/2 H (2:' -1
i=1
it follows that |2 (n)| divides 2"+ D/2[[2_ (27 + 1), This establishes the upper
bound in Theorem 9.

We will establish the lower bound by showing that the number of distinct
groups of the form Ky, is at least 2". In the verification of (iii) in Theorem 8
we noted that each group Xy, has the form ¥, for some f € F(n).
Consider the collection of matrices { W, = diag(e,()), . . - , &,(J))/&() = O or
1}. There are 2" matrices in this collection. Let these be indexed so that for
J < nwe have g(j) = §;. Thus W, = 0. Set f, = id. For each 1 < j < n, the
symplectic matrix F(W) is equal to L(f) for a twist map f; that performs a
twist about a meridian correspondmg to w,, ;. Forj > n, we find that W} is a
sum of the elementary matrices W), i < n. Thus we may lift F(W)) to % (n) so
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that F(W)) = L(f) where f; is the composition of the elementary twists f,
i<n, correspondmg to the decomposmon of W,.
Notice that F(W,)F(— W,) = F(W,) (mod 2) for some p such that W, —
W, = W, (mod 2). The equality
Piags = PidgYfs
follows now from (ii) in Theorem 8. We claim that p, s = Piags if and only if

Piags = Pig,s- Suppose that p;4 Jgs 7 Piags- Then there is an element k € H(n)
such that,

(28) w(M(kfs)) - B(M(f9)) = w(M(Kis) ~ 1(M(fs)  (mod 1).

Replacing M (h) by M (fh) for f € %(n) does not change the p-invariant
since by (2) the splittings S (#) and S (f7) are equivalent. Because of this (28)
implies,

w(M((57%) 5 s)) = w(M(£7Ys))
p(M((57%)s)) — (M () (mod 1).

Setting k' = f;~ ‘kj;, we find that &’ belongs to one of the subgroups ¥, 5 s
Ha, s but not the other. The entire argument may now be turned around to
show the reverse implication.

From the preceding paragraph we see that to show that the 2" subgroups
K. are distinct, it is sufficient to show that ¥, e 7 Kig, o J # 0. To show
this we will make use of the Arf invariant in the way previously described.
We will describe a simple closed curve R; in Bd U(n) that separates Bd U(n)
so that ay(R)) = 0 but ap,(;(R)) = 3. It k; is an associated twist about R;,
then it will follows from (24) that p,y (k) = 0 but p;4 ‘&,(kj) =1 showing that
the two subgroups above are not equal.

Consider W, = diag(e,(}), - - -, &,())), j > 1. By renumbering the basic
elements we may assume that ¢,(j) = 1. We will define R; to be the boundary
of a surface Q; in Bd U(n). Rather than specifying Q; directly, we will first
specify a symplectic basis {v, a} for the first homology of Q; and then use
this basis to recover the surface. We consider two cases:

(e5()) = 0). In this case set y = w, + @, 5, and @ = w; + w,, ,. The linking
form x for Bd U(n) can be determined visually for y and a. We have,
x(y) = 1and x(a) = 0in M(s), x(v) = 1 and x(a) = 1 in M (f;s). Let R,; and

i be a pair of simple closed curves in Bd U(#n) which intersect geometrically
in a single piercing point and which are geometric representatives for the
classes y and a. Let Q; be a regular neighborhood of R; U R,; in Bd U(n),
and take R, to be Bd Q;. Formula (25) now shows that aM(s)(R) =0 and

apgs(Ry) =3

(29)
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(e()) = 1). This case proceeds exactly as before except that here y is
defined to be w, rather than w, + w,,,. [J

REMARK. We were able to prove a little bit more; however we were unable
to determine the precise order of £(n) for arbitrary n. We showed that the
lower bound is strict. Also, we showed that the orbit of ¥, ; under ¥ contains
precisely 2" elements. This followed from a somewhat lengthy argument, too
complicated to include in this manuscript. As a consequence, it follows that
|E(n)| divides 2" IT7_,(2° + 1).

3.3 Some further remarks. The results in Theorem 8 suggest a possible
means to find homotopy 3-spheres with p-invariant 3. The method might be
described as fixing the surgery while changing the manifold that it takes place
in. Begin with a fixed element k € H(n) such that p ;(k) = 3. Then look for
a sequence of maps h,, ..., h;, ... in J(n) such that the sum of the ranks
of m(M(hs)) and «,(M (hks)) is a decreasing function of i. If such a
sequence could be found then eventually both M (k;s) and M (h;ks) would be
homotopy 3-spheres. By (ii) in Theorem 8 each Py s(K) = 3 so one of the two
eventual homotopy spheres M (k;s) or M (h;ks) would have p-invariant 1.

4. Normal subgroups of JC(n) and topological invariants of 3-manifolds. The
properties exhibited by our family of groups %hz,h. have an interesting
relationship to a more general phenomenon which will be described in this
section.

We would like to place an equivalence relation on maps in JC(n) such that
h~t if and only if M(h) = M(f) (recall = means oriented equivalence).
This may be accomplished by translating the classical Reidemeister-Singer
theorem (see [Rd, ZT], [Sg], also [Cr, NP)) into an algebraic statement about
the groups I(n).

LeMMA 10. Let h and t be elements of JC(n). Then the manifolds M (h) and
M (¢) are equivalent if and only if there exists an integer p > 0 and elements f,
and fy in 3C(n + p) such that if ¥ = b # ps® € H(n + p)and t’ = t # psV
€ I(n + p), then t’ = f,h'f,.

Proor. Replacing # and ¢ by A’ and ¢ is the algebraic analogue of the
stabilization process used by Reidemeister and Singer (see §2.3). The
condition ¢ = f,h’f, asserts that S(h’) and S(#') are equivalent Heegaard
splittings (see §2.3). [

For h € J((n), we will refer to the collection of maps

{(fZ)(h #ps('))(f, )/P = 0’ 1’ 2s LEOR ’fl’fZ € g(n +p)}

as the stable double coset (mod %) defined by h. If A € I((n) and ¢t € IC(m),
we define A to be equivalent to t, written s ~ ¢, if the stable double cosets of A
and ¢ intersect nontrivially. This places an equivalence relation on elements in
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the collection of groups {J((n)/n =0, 1, 2, ...} such that if [#] denotes the
equivalence class of 4, then M (h) = M (¢) if and only if [#] = [¢].

Recall that in §2.3 we described a procedure for “extending” a map
b € ¥(n) to a (nonunique) map b’ = b # id € ¥ (n + 1). Suppose now,
that for each n =0, 1, 2, ..., we are given a subgroup B(n) of J(n). The
class of groups {B(n)/n =0, 1, 2,...} will be said to have the nested
extension property if for any b € B(n), and any extension b = b # id to any
element of IC(n + 1), we have b’ € B(n + 1). Examples of classes of
subgroups with this property are the collections {F(n)} and {H(n)} defined
in §2.1. Another example is the collection of subgroups of the groups J(n)
generated by all twists about separating curves.

Let {8(n)/n=0,1, 2,...} be any class of groups which has the nested
extension property and for which B(n) < H(n) for each n. Consider the
quotient groups JC(n)/B(n) and the natural homomorphism

@t () = I(m) /B(n).

The stable double coset of an element A € J((n) is mapped into a well-
defined stable double coset in IC(n)/B(n) because the nested extension
property insures that if b € ker ¢,, then any extension b’ = b # id of b is in
ker ¢, - It therefore makes sense to speak of the equivalence relation ~ ¢
which is induced on elements of IC(n)/B(n) by the relation ~in IC(n),
n=0,1,2...,and of equivalence classes [A], in J((n)/B(n) under the
relation ~ . Moreover, it is immediate that invariants of a class [A], are
topological invariants of M (k).

An example, is perhaps, in order. Consider the collection of groups
{H(n)/n=0,1,2,...}. Then I(n) = H(n)/K(n), and corresponding to
¢, is the natural map

7: ](n) > H(n)

in the notation of §2.1. Let & € J((n), and suppose that n(k) is represented
by the symplectic matrix

-] 3}

One may show without difficulty that the elementary invariants of the
submatrix P are invariants of [A],; these are of course topological invariants
of M (h) because P is a relation matrix for H,(M(h); Z). In the case when
H(M(h); Z) is torsion-free, the equivalence class of 4 can be seen to be
completely determined by the elementary invariants (the proof is a little
complicated); however if torsion is present, more subtle invariants may be
found for [4], (see [Rd, HI], [Sf, V1], and [Br, EH, §4)).
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We now study the analogous situation as it arises in connection with our
groups X, ;.

Let C(n) = N ¥, ;, where the intersection is taken over the finite set £(n)
defined in §3, or equivalently the intersection is taken over all admissible
sequences {h,, h,>. Since £(n) is a complete conjugacy class of subgroups of
H(n), the group C(n) is normal in I((n), also the collection {C(n)/n =0, 1,
2,...} satisfies the nested extension property. Thus we have natural
homomorphisms

Y, H(n) > H(n)/C(m), n=0,1,2,...,
and any invariants of [A], are topological invariants of M (k). We remark that
the homomorphism % factors through v, (because C(n) C K (n)); hence

invariants of [A], include all invariants of [A],. Even more, we have the
following theorem:

THEOREM 11. Let h € 3H(n) and t € I (m). Suppose that M (h) and M (?)
are Z/2Z-homology spheres and that [h], = [1],.
Then p(M (B)) = p(M (2)).

Proor. Since [#], = [f],, we may find integersp, ¢ > Owithn + p = n +
g and maps f; and f, in %(n + p) such that if ' = h # ps and ¢ =
t # gsD, then

\bn+p(t’) = ‘Pn+p(f2hlfl )‘
Thus f,'f, = kt’ for some k € ker ¢,,,, = C(n + p). Since k € C(n + p) =

N XKy (n + p) we have that k € K, (n + p); hence p(M(kt)) =
p(M(2)). Also

w(M (k) = p(M (K1) = p(M(K)).
Therefore p(M () = p(M(h')). Since M(h) = M(h') and M) = M(¢)

our proof is complete. []
A partial converse to Theorem 11 holds.

PROPOSITION 12. Let {D(n)} be any class of nested normal subgroups of the
groups J((n) with the two properties

PLO(n)C H(n),n=0,1,2,....

P2. If [h); = [t];, where §,: IC(n) — FC(n)/D(n) and where M (h) and M (1)
are Z/2Z-homology spheres, then u(M (b)) = p(M (1))

Then ®(n) C C(n)forn=0,1,2,....

Proor. Let k € D(n) and let (hy h,) be an admissible sequence of
elements of J((n). By hypothesis p(M (h,kh,)) = p(M (hh,)); hence k €
K4, (n). This holds for any admissible sequence <A, h,); therefore k € C(n)
and we have D(n) C C(n). [
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ReMARK. Invariants of [A], are, of course, well defined for all manifolds
M (h), not just for the class of Z /2Z-homology spheres. We conjecture that, if
M (h) and M (¢) are not Z/2Z-homology spheres, then [A], = [¢]; if and only
if [h], =[#],, where 7 is the canonical homomorphism from J((n) to
J(n)/H(n) and §, is the canonical homomorphism from IC(n) to
I (n)/D(n).

The groups C(n) are not given explicitly by our construction. The propo-
sition below exhibits some nontrivial elements in these groups and gives
upper bounds for the orders of the groups C(n) in the groups IC(n).

PROPOSITION 13. For each n > 2, let H?(n) denote the subgroup of K(n)
consisting of elements that can be expressed in the form

k= ()" (kg=1)" -+ - (k)" mod[ H(n), ()]

where k,, . . . , k, are elements of K(n).

Then K*(n) is a nontrivial subgroup of K (n), even when homeomorphisms
isotopic to the identity are factored out.

Also, the order of C(n) in K(n) is bounded above by 2™ where m is the order
of the group Sp(2n, Z/2Z).

PRrOOF. It is clear from the nature of Z/2Z that H?*(n) belongs to each
%hz,h. =ker p, . That H*(n) contains nontrivial elements, even when
isotopy classes are factored out, follows from the fact that ¥ (n)/Isotopy
contains no elements of finite order (Equation 6.2, page 49 of [Nl, ST]).

From Theorem 8, the group C(n) is the intersection of fewer than m?
subgroups of H(n), each having index 2 in H(n). Therefore by a theorem due
to Poincaré (see [Kr, p. 62]), C(n) itself has index not greater than 2™, []

One would expect that more detailed knowledge about C(n) would lead to
a better understanding of the p-invariant. One would also expect that other
nested sequences of normal subgroups of J((n) would yield new topological
invariants of 3-manifolds.

There is an intriguing question suggested by the fact that quotient group
JC(n)/Isotopy is a residually finite group (see [Gr]). Consider the set of all
classes {{®B;(n)}: i € I} of nested normal subgroups of the groups I(n)
subject to the restriction that the index of each B,(n) in IC(n) always be finite.
Let ¢,,: J(n)—> I(n)/B;(n) be the natural homomorphism for each
subgroup.

Question. If M (h) & M (f), does there exist some i € I such that [Alg,, #
[1,.?

K’hother possible line of study is suggested by the “additive” structure in
the collection of groups {JC(n)}. Suppose that for some nested normal class
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of subgroups {®B(n)}, it is possible to identify, in some natural way, the factor
groups J3((n)/®B(n) with subgroups G, of an abelian group G. Then the
addition defined in §2.3 allows us to look for another characteristic in the
nesting, namely that the equivalence classes satisfy [7 # k'], = [h], + [/'],.
This condition would provide a topological invariant for 3-manifolds which
expressed the invariant for a connected sum of manifolds as the sum of the
invariants for the components. This might be useful, for example, in attemp-
ting to get at finer invariants of homology cobordism classes of Z-homology
spheres than the p-invariant.
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