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On isotopies of homeomorphisms of
Riemann surfaces’

By JoAN S. BIRMAN and HugH M. HILDEN

1. Introduction

Let X, X be orientable surfaces. Let (p, X, X) be a regular covering
space, possibly branched. A homeomorphism ¢g: X — X is said to be “fiber-
preserving” with respect to the triplet (p, X, X) if for every pair of points
», o' € X the condition p(x) = p(2’) implies pg(x) = pg(x’). If g is fiber-
preserving and isotopic to the identity map via an isotopy g,, then g is said
to be “fiber-isotopic to 1” if for every s € [0, 1] the homeomorphism g, is fiber-
preserving. This paper studies the relationship between isotopies and
fiber-isotopies of g. Our main results are:

THEOREM 1. Let (p, X, X) be a regular covering space, either branched
or unbranched, with a finite group of covering transformations and o finite
number of branch points. Let the covering transformations leave each
branch point fivzed. In the case of a branched covering, assume that X is not
homeomorphic to the closed sphere or closed torus. Let g: X — X be a fiber-
preserving homeomorphism of X which is isotopic to the identity map. Then
g 1s fiber-isotopic to the identity.

THEOREM 2. Let (p, X, X) be a regular covering space, either branched
or unbranched, with at most finitely many branch points. Let the group of
covering tramsformations be finite and solvable. Let g: X — X be a fiber-
preserving homeomorphism of X which is isotopic to the identity map. Let
g be the projection of g to X. Then g is also isotopic to the identity map.

Section 2 contains the proofs of Theorems 1 and 2. A special case of
Theorem 1 was established by the authors in an earlier paper [5], for the
particular case where X is a 2-sphere, and X is a 2-sheeted covering of X
with 2g + 2 branch points. The proof given here is considerably simpler
than the version in [5], and at the same time it holds in a much more general
situation.

In Section 3 we consider applications of Theorem 1 to mapping class

* The work of the first author was supported in part by NSF Grant GP-34324X. The
work of the second author was supported in part by NSF Grant GP-34059.
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groups of surfaces, that is the group 91(X) of all orientation-preserving
homeomorphisms of X — X modulo the subgroup of those homeomorphisms
which are isotopic to the identity map. Let T,, denote a Riemann surface
of genus g with n points removed. The groups 91(T,,) can be expected to
play an important role in understanding the topology of 3-manifolds, in
Teichmuller theory, and again in the theory of automorphism groups of
infinite groups. However for the cases g = 3 very little is known about
these groups. As a step in this direction, we investigate the subgroups
M,(T,,) of those elements in 9N (T,,) which can be represented by fiber-
preserving maps with respect to a particular covering (p, T,,,, X). It is shown
in Theorems 3 and 4 that the subgroups 9,(7T,, may be described alge-
braically as the normalizers of all elements of finite order in 91(T,,). To
apply this result, we restrict ourselves to k-sheeted cyclic coverings of the
sphere by the closed surface T,,. In this situation the covering will have »
branch points, where k, n, and ¢ are related by the formula 29 = (k—1)(n—2).
It is proved in Theorem 5 that for these coverings the group 9N, (T,,) is an
extension of a cyclic group of order k by the group 9(7,,,). Since genera-
tors and defining relations are known for the group 91(T5,,,) for every integer
n, we can use this result (which is constructive) to determine explicit pre-
sentations for all of the groups 9,(T,.. (This latter calculation is out-
lined in Section 5.)

For the special case ¢ = 2, k = 2, » = 6 it was shown in [5] that the
group N, (T, coincides with the full mapping class group O(7%,,). Theorem
6 shows that this situation was special indeed, and in fact if g = 3 all the
subgroups 9,(T,,,) are proper subgroups of IM(T,,).

In Section 4 we discuss and settle a conjecture (due to W. Magnus)
about Artin’s braid group B,. The braid group can be defined as that group
of automorphisms of a free group F, = {x,, +--, z,> of rank » which maps
every generator x; into a conjugate of itself, and preserves the product
@, «++ 2, [1]. Let k be any integer = 2, and let N, be the normal closure
in F, of the n elements «*, -+, *. Then the elements in B, induce a group
of automorphisms of F,/N,, which we denote by B,,. Theorem 7 shows
that B, is isomorphic to B, .. In other words, for every integer k& = 2 the
standard representation of the braid group B, acting on F', goes over to a
faithful representation of B, as a group of automorphism of the free product
Z, x «++ x Z, of m cyclic groups Z, of order k.

2. Isotopies and fiber-isotopies

In this section we will prove Theorems 1 and 2. The proofs will be via a
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sequence of Lemmas. These Lemmas are numbered to correspond to the
associated Theorem (e.g. Lemmas 1.1-1.6 are successive steps in the proof
of Theorem 1).

We may without loss of generality assume that X and X are Riemann
surfaces, that p is an analytic map, and that the covering transformations
are analytic homeomorphisms of X.

Theorem 1 relates to both branched and unbranched coverings. The
branched case will be treated first. Our object in Lemmas 1.1-1.5 will be to
reduce the branched case to the unbranched case. Hence in Lemmas 1.1-1.5
we assume that (p, X, X) is a regular covering, with finitely many branch
points and a finite group of covering transformations, and that each cover-
ing transformation leaves the branch points individually fixed. (This last
assumption is equivalent to the assumption that the preimage of a branch
point under p is a single point.) We will moreover assume, in Lemmas 1.1-1.5,
that X is not homeomorphic to T, T, T, or T.,. This allows us to use
two properties of X which are essential to the arguments which follow:

(i) The universal covering surface U of X is hyperbolic (see [13], p. 230)
and

(i) The center of = X is trivial (see [10], Cor. 4.5). The proof of
Theorem 1 for the case of branched coverings with X = T,, or T,, will be
treated later, separately. The theorem is false if X = T,, or T.,.

LEMMA 1.1* Let f be a mon-trivial analytic homeomorphism of X.
Suppose that f has a fived point, P. Let f, be the induced automorphism of
(X, P). Then f, leaves no element of w (X, P) fiwved except the identity.

Proof. Suppose there exists an element [v]en X, [v] =1, f(v) = .
Lift f to an analytic homeomorphism f: U — U. Since U is by hypothesis
hyperbolic, it follows that f is a Moebius transformation. We may assume
(by composing with a covering transformation if necessary) that there is a
point Pe U and lying over P such that f(P) = P. Since v is a P-based
loop, and f(v) = v, it follows that f(@) = Q@ where @ is the endpoint of the
lift of v beginning at P. But then f is a Moebius transformation with two
fixed points, which is impossible unless f = id. This implies that f = id. ||

LEMMA 1.2. Let g be a fiber-preserving homeomorphism of X — X which
s 1sotopic to the identity. Then g commutes with covering transformations.

Proof. Let t be a covering transformation, and consider » = gtg~'t .
Since g preserves fibers, it follows that gtg~' is a covering transformation,

* Lemma 1.1 was originally proved by J. Nielsen, Acta Math. 75, p. 39. However
Nielsen’s proof is very different from the proof given here.
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therefore » is also a covering transformation, and hence an analytic homeo-
morphism of X. Since p is 1-1 on the set of branch points, it follows that r
must leave each branch point fixed. Also g is isotopic to the identity, there-
fore tg~'t* is isotopic to the identity, therefore r is isotopic to the identity.
Thus = induces an inner automorphism on 7,(X). Since an inner auto-
morphism always leaves non-trivial elements fixed, it follows from Lemma
1.1 that » must be the identity. ||

Using Lemmas 1.1 and 1.2 we are now able to establish the first main
step in the proof of Theorem 1. Let P, ---, P, € X be the branch points,
and let P; be the preimage of P; under p.*

LEMMA 1.3. Let g be a fiber-preserving homeomorphism of X which is
isotopic to the identity map via an isotopy g,. Then:

(1) g(P;) = P; forevery t =1, +++, n.

(il) The orbit g,(P;) is homotopic to the constant curve in the group
(X, P).

Proof. Suppose g(P;) = P; for some ¢+ j. Let v be any P;-based loop
and let ¢ be any covering transformation. By Lemma 1.2:

1) 9(t@)) = tg()) -
Let 5 denote the path 8(s) = g,(P;) joining P; to P;. Then
2 7= RIMB™

where the homotopy taking v to Bg(v)5™" is defined by the isotopy g.(7(?)).
Applying ¢ to the homotopy in (2) and using (1) we obtain

3) () = B (ML) .
Now consider the P;-based loop (7). Just as in (2) we have:
@) t(v) = By(t())8™" -

Combining (3) and (4) we see that S7't(8), which is a closed loop based
at P; commutes with g(¢(v)). Since v was arbitrary, and g and ¢ are homeo-
morphisms, A7't(8) commutes with every element of 7,(X, P,). Since the
center of =,(X, P;) is trivial g7'¢(8) = 0. Thus:

B = tpB)
where the homotopy is a homotopy of curves from P; to P; keeping endpoints

fixed.
Now lift ¢ to a Moebius transformation ¢ of U. By composing with a

* By hypothesis the covering transformations leave the branch points individually fixed.
This implies that the preimage of each point P; is a single point.
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covering transformation if necessary we may assume #(P,) = P; for some
P; lying over P;. Since g = t(8) we also have #(P;) = P, where P, is the
unique endpoint of the lift of 8~' which begins at P;. Since P; = P;, it
follows that P; = P,. But then 7 has two fixed points, which is impossible.
Hence the assumption that P; = P; must be false.

To prove Statement (ii), we now take ¢ to be any non-trivial covering
transformation which leaves P; fixed. The homotopy in (3) is still satisfied.

Since g¢(v) is now a P;-based loop, the homotopy in (2) also gives:
(5) t(v) = By(t())s™

where B is now a closed loop based at P;. Combining (3) and (5), we see
that 87't(8) commutes with gt(7), therefore as above 57'¢(g) € center 7,(X, P,),
therefore g = t(B). But t is a non-trivial covering transformation, hence
by Lemma 1.1 it leaves no element of 7,(X, P;) fixed except the identity.
Hence g = 1.

LEMMA 1.4. Let P be a point in a p.l. manifold X without boundary.
Let B(s) be a curve in X homotopic to 0 in 7 (X, P). There is an isotopy
k, of X such that k, = k, = id, where k, has compact support and k(P) =
B(s).

Proof. The proof of this lemma follows from the simplicial approxima-
tion theorem and the 2-isotopy extension theorem (see page 154 of [6]).

Using Lemma 1.4, we can now improve Lemma 1.3 to:

LEMMA 1.5. Let g be a fiber-preserving homeomorphism of X which is
1sotopic to the identity map via an isotopy g,. Then there is another isotopy g,
of g with the identity such that g,(P;) = P; forevery i1 =1,---,nand 0 <s<1.

Proof. By Lemma 1.3, g(P,) = P, and B,(s) = g,(P) =1 in 7,(X, P).
By Lemma 1.4 there is an isotopy k, of X with k, = &k, = id and k,(P,) =
Bi(s). Let h, = k7'g,. Then h,(P) = P, for all se |0, 1] and &, is an isotopy
of g to id. Now consider the covering (p, X — P,, X — P,), and the homeo-
morphism ¢g| X — P,. By enumerating the Riemann surfaces that do not have
hyperbolic universal cover or fundamental group with trivial center we see
that X — P, satisfies the hypotheses about the cover. Since ,(P,) = P, for
all se[0, 1], we can restrict &, to X — P,.

Now repeat the argument for P, P, ---, P,. We finally achieve an
isotopy g, which has the desired properties. ||

We have now shown that if (P, X, X) is a branched covering, then
every homeomorphism ¢: X— X which is fiber-preserving and isotopic to
the identity map may without loss of generality be assumed to be fiber-
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preserving and isotopic to the identity with respect to the associated un-
branched covering space (P, X—- P, U --+ UP,,X—-P,U--- UP,). Our
next step in the proof of Theorem 1 applies to a larger class of spaces which,
by virtue of Lemma 1.5, include the branched coverings we have been
treating.

LEMMA 1.6. Let (q, Y,Y) be a regular, unbranched covering space,
where Y, Y are connected oriented 2-manifolds. Let g: Y—Y be fiber-
preserving and isotopic to the identity. Let the centralizer of q,m, Y in mY
be trivial. Then g is fiber-isotopic to the identity.

Proof. Since g is fiber-preserving it projects to g: Y — Y. Pick points
P and P such that ¢(P) = P. Let A(s) be the curve g,(P), where g, is
an isotopy of g with the identity, and let 8 be the projection of g. Let v
be a P-based loop, and let ¥ = q(v). We may define g,, an automorphism
of m(Y,P), by g.lv] =BgB~". If [v]eq.m(Y,P), we have q.[v] =
[v], since v = Bg(v)p~'. Thus we may assume that g,, restricted to
q.7.(Y, P), is the identity.

Now choose any aeq,7,(Y, P) and any Be (Y, P). Since the cover-
ing is regular we have BaB'eq,m (Y, P). Thus BaB™ = g.(BaB™") =
g9.(8)ag.(87"). It follows that B87'g.(8) is in the centralizer of ¢.7,(Y, P)
and is therefore trivial. Thus g, is the identity. Since Y is a surface, it
follows that g must be isotopic to the identity [11], and this isotopy lifts to
a fiber isotopy taking ¢ to the identity. ||

We are now ready to prove Theorem 1.

Proof. We first treat the case where the covering is unbranched, and
the base space X is not homeomorphic to T, T, Ts.or T, In this case
we need only verify that the conditions of Lemma 1.6 are satisfied, i.e. that
H = ¢q,7, X has a trivial centralizer in G = 7, X. Since X is a surface, the
group G is either a free group or a l-relator group. If free, G must have
rank > 2 (because X is not T, T., or T.,), hence any subgroup has trivial
centralizer. If G is a l-relator group, then G admits a presentation of the
following type:

G = <a1’ crty Qs bl, ) bs . aibia;lbfl = 1>

where m = 2 (because X is not T,,). Hence, by Corollary 4.5 of [10], we
know that G is centerless. Now, the subgroup H is of finite index in G,
hence H is also a surface group, hence H has a trivial center. Suppose
« € centralizer of H in G. Since H is centerless, either & = 1 or else we can
choose a to be a non-trivial coset representative of H in G. Since H has
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finite index in G, this implies that a finite power of « is in H. But every
power of a will commute with all elements in H, hence this is impossible,
hence a’ =1 for some integer . But by Theorem 4.12 of [10] the groups
G under consideration are torsion free, hence we can only have a = 1. Thus
Lemma 1.6 applies.

If X is homeomorphic to T, or T, the theorem is trivial since every
orientation preserving homeomorphism g: X — X is isotopic to 1. If X is
homeomorphic to T, the only orientation preserving homeomorphism of X,
not isotopic to 1, is the one that exchanges the missing points. Its’ lift must
also exchange the missing points, and so cannot be isotopic to the identity.
That leaves the case X = T,,.

As in the proof of Lemma 1.6, we may assume that g, restricted to
p,m X is the identity. But 7,X = Z¢ Z, and any automorphism of Z@ Z
whose restriction to a subgroup of finite index is the identity, is itself the
identity. Thus by [10] ¢ is isotopic to 1.

We turn now to the branched case. Lemma 1.5 shows that if X = T,,,,
Ty, Ty or T, we may replace the branched covering by the associated
unbranched covering. But then the argument given above, for unbranched
coverings, applies, and again Theorem 1 is true.

Since the cases X = T,, and T,, are excluded by hypothesis, all that
remains to complete the proof of Theorem 1 is to establish it for branched
coverings with X = T,, or T,,. A covering transformation of T,, is a
rotation. If it leaves a branch point fixed, it must be the identity, hence
this case is trivial. If there is a non-trivial covering transformation of 7,
it can have at most one fixed point, which we take to be the branch point at
the origin. The group of covering transformations is a finite group of
rotations and is therefore cyclic. The proof of the theorem follows from
the fact that any homeomorphism of T, is isotopic to the identity and the
isotopy can be lifted. ||

Theorem 1 cannot be extended to the sphere or torus. To see this
consider the two sheeted covering of the sphere by the sphere with two
branch points or by the torus with four branch points. In either case there
are fibre preserving homeomorphisms of X isotopic to the identity exchan-
ging branch points. Since the isotopies exchange branch points, they cannot
be isotopic to the identity via an isotopy fixing the branch points.

We would like to extend Theorem 1 to a more general result, which
holds for an arbitrary solvable group of covering transformations. In princi-
ple, solvable groups could be handled by factoring the covering into a
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sequence of cyclic coverings, but the difficulty which arises is that at some
intermediate stage the base space (which will become the covering space at
the next stage) might be T;, or T,,. To overcome this difficulty, we consider
a somewhat weaker result than the statement of Theorem 1, which is true
for the exceptional cases T,, and T, :

LEMMA 2.1. Let p: X — X be a regular branched covering of Riemann
surfaces with finitely many sheets, with at least one branch point, and with
X either the torus or sphere. Assume the group of covering transformations
leaves the branch points fized. Let g: X — X be a fibre preserving homeo-
morphism of X and let g: X— X be the projection of g. Then, if g s
isotopic to the identity, so is g.

Proof. If X = T,,, then X can only cover S* or P? hence X must also
be S, hence the lemma is trivial.

Now let X = T,,. We shall think of X as C modulo the group of
translations generated by 1 and 7. We can choose [0] as one of the branch
points. The covering transformations of X can be lifted to Moebius trans-
formations of C fixing 0 and leaving the lattice points of C invariant. The only
Moebius transformations that do this are multiples of 90° rotation about 0.
Thus X = C modulo the group of transformations generated by translations
by 1 and 7 and 90° rotation about 0, or the group of transformations gener-
ated by translations by 1 and 7 and 180° rotation about 0. In either case X
is the sphere and the Lemma is trivial.

Now we can prove Theorem 2 (stated in Section 1).

Proof. Suppose first that the group G of covering transformations is
cyclic of prime order. Then p must be 1-1 on the branch points, because
the number of elements in an orbit divides the number of elements in the
group of covering transformations. Thus every covering transformation
leaves the branch points fixed. Hence, if X = T,, or T,, the statement
follows from Theorem 1, while if X=T,, or T,, the statement follows from
Theorem 1, while if X = T, or T,, it follows from Lemma 2.1.

The proof in the more general case where G is solvable follows im-
mediately via an inductive argument from the case where G is cyclic of
prime order, using a factorization of the map p. ||

3. Mapping class groups of Riemann surfaces

For the remainder of this paper we will be concerned with applications

of Theorem 1 to the investigation of the mapping class group 9M(X) of a
Riemann surface X.
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Let (p, X, X) be a covering space, either branched or unbranched. The
“subgroup of the covering” is defined to be the subgroup p.m.X of 7, X (if
(p, X, X) is unbranched), or the corresponding subgroup for the associated
unbranched covering (if (p, X, X) is branched). A covering (p, X, X) is said to
be cyclic if the subgroup of the covering is normal in 7, X, and if the quotient
group is cyclic of finite order. If the covering is cyclic, the group of covering
transformations, 7, will be cyclic of finite order, %k, and will determine a
subgroup I of the mapping class group 91(X) which is again a cyclic
group of order k.

Conversely, let X be a closed, orientable surface; let [t] be any element
of finite order k in 9N(X); and let F be the cyclic subgroup of 9 (X) gener-
ated by [t]. By a theorem of J. Nielsen [8], the mapping class [t] can be
represented by a surface homeomorphism ¢ which has order k. Let X be the
quotient space of X defined by identifying points which are mapped into
each other by powers of ¢. Let p be the natural mapping p: X — X. Then
(p, X, X) is a eyclic covering. The covering will be branched if and only if
t has fixed points.

We restrict ourselves in this section to cyclic coverings for which the
covering space X is a closed orientable surface of genus g, denoted T,,.
Let 9,(T,,) denote the subgroup of 9M(T,, which is generated by isotopy
classes of fiber-preserving homeomorphisms of T,, Since every covering
transformation is fiber-preserving, the group ¥ is included (normally) in
M,(T,,0). Our first result in this section is to show that the subgroup
M,(T,,0) is precisely the normalizer of I in 9M(T,,). We conjecture that
this result generalizes to the case where J is any finite subgroup of 9N (X),
however the stronger result depends on a strong form of a theorem due to
Kravetz [7], which is, to the authors’ knowledge, an open question.

We begin with a proof of an extension of a theorem of J. Nielsen [8]
which is perhaps of interest in its own right.

THEOREM 3. Let [t], [h] € ONW(T,,) where [t] has finite order k. Suppose
that [h] belongs to the normalizer of [t], i.e.

[RI[E1[R]" = [EI° l1=s=k-1.

Then [h] and [t] can be represented by topological mappings h, t which
have the properties*

* The referee has pointed out that a similar result was established by E. Vogt in Lemma
3.1.2 of his PhD thesis, “Vierdimensionale Siefertsche Faserraume”, Univ. of Bochum, 1970,
for the case s =1. The proof given there is not the same as our proof. A similar result,
using a third method of proof, was also established more recently by D. Kaufman in her
PhD thesis, Princeton Univ., Sept. 1972.
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hth™ =t and t* = 1.

Proof. Since [t] has finite order in 9W(T,,.), by Nielsen’s theorem
[8] we know that [t] can be represented by a homeomorphism ¢: T, ,— T,
which has the property that ¢* = identity.

By Kravetz [7], t has a fixed point as a mapping of Teichmuller space,
and therefore ¢ can be chosen to be conformal, for some analytic structure
on T,,.

Let 2’ be any homeomorphism of T,, which represents the element [A].
We can without loss of generality assume that A’ is quasiconformal. Among
all quasiconformal mappings which are isotopic to A’, choose 2 to be the
unique quasiconformal mapping which has the smallest dilatation (see, for
example, [2]).

Since [hth~'] = [t*], we know that At is isotopic to ¢'h. Since multipli-
cation of a quasiconformal mapping by a conformal mapping does not alter
the dilatation, it follows that the dilatations of At and t*h are both equal
to the dilatation of 2. But then At and ¢°h are also extremal quasiconformal
mappings, and since by Teichmuller’s uniqueness theorem [2] there is pre-
cisely one extremal quasiconformal mapping in an isotopy class, it follows
that At = t°h.

THEOREM 4. The symmetric subgroups M, (T, are the normalizers of
the cyclic subgroups T generated by any element [t] of finite order in

M(T,,0)-

Proof. Let [t] e 9N(T,,,) be any element of finite order k. By Nielsen’s
theorem, [t] can be represented by t: T,,— T,, where t* = id. The homeo-
morphism ¢ can be used to define a covering space (p, T,,,, X): define X to
be the quotient space obtained by identifying points of T,, which are mapped
into one another by powers of ¢. The cyclic group T of order k& generated
by t will be the group of covering transformations.

Suppose that [2] € 91(T,,,) is in the normalizer of the cyclic group I of
order k generated by [t]. By Theorem 3, we know that [4] has a representa-
tive h which is in the normalizer of T. It follows that & is fiber-preserving
with respect to the covering (p, T,,, X), hence [h] € 9, (T,,). Conversely,
if [1] €9, (T,,), then [h] can be represented by a fiber-preserving homeo-
morphism h: T, ,— T,, Lett beany covering transformation. Then ht°h™
is also a covering transformation, therefore ht*h~' e T, therefore h is in the
normalizer of T, therefore [%] is in the normalizer of . ||

Our object now is to apply Theorem 4 to the study of the mapping class
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groups 9N(T,,). For our next result we restrict our attention to the case
where the base space X is the sphere. This restriction is not essential, how-
ever it simplifies matters because we have:

LEmMA 5.1. Let (p, T,,, To) be a cyclic branched covering. Let
®@, T,,., Ty,,) be the assoctated unbranched covering. Then every homeo-
morphism of T, lifts to a homeomorphism of T,,.. (Remark: the lift is
only unique up to covering transformations.)

Proof. A homeomorphism lifts if and only if it maps every closed curve
which lifts to a closed curve into a closed curve which lifts to a closed curve.
Since the covering is a k-sheeted cyclic covering, a closed curve lifts to a
closed curve if and only if it encircles a multiple of k& branch points. The
property of encircling k& branch points is preserved by every homeomorphism
of the punctured sphere. ||

(In the more general situation where X is an arbitrary surface, one
must modify Theorem 4 so that it relates to the subgroup of those elements
in X - Py, -+, P,) which can be represented by homeomorphisms which lift
to X).

THEOREM 5. Projecting fiber-preserving homeomorphisms induces an
1somorphism i between the groups N,(T, )T and DN(T,,,).

Proof. Choose any element [h] € 9W,(T,,). Let h be a representative
of [h], which we may choose to be fiber-preserving. Then % projects to
h = php~', where h necessarily maps the set of branch points into itself,
hence h represents a well-defined element [A] € 91(T,,,). Now suppose that
k' is a second fiber-preserving representative of [i], so that A and A’ are
isotopic. By Theorem 1 we may choose the isotopy %, to be fiber-preserving,
hence the projections h and h’ of % and h’ respectively are isotopic via the
isotopy h, = ph,p™', hence [h] = [R].

It is immediate that the projection of fiber-preserving homeomorphisms
from T,,to T,, induces a homomorphism from M, (T,,)/T to M(T,,.). We
denote this homomorphism by the symbol “3””. To see that the homomorphism
1 is onto, we note that by Lemma 5.1 every homeomorphism of T, — T;.
lifts. (However, if we are given h, its lift 4 is only defined up to an arbitrary
covering transformation.) Moreover, the homomorphism < is invertible be-
cause if h represents an element [k] € ON(T,,.), and if h is altered by an
isotopic deformation, then by the homotopy lifting property for covering
spaces this isotopy will lift to an isotopic deformation of the lift A of h.
Hence 7 is an isomorphism onto.
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Since defining relations for the groups 9(7,,) are not known if g = 3,
a natural question to ask is whether by a clever choice of a covering we
might not find a symmetric subgroup 9,(T,,) which coincides with all of
M(T,,)? It was shown in [5] that if g = 2, the symmetric subgroup for
k =2, n =6 coincides with all of 9N(7},,). Our next result says that for
cyelie coverings this won’t happen again:

THEOREM 6. If g = 3, there does mot exist any finite cyclic covering
with the property that M (T, coincides with IM(T,,o).

Proof. Suppose we could find such a covering. By Theorem 5, the
projection of fiber-preserving homeomorphisms would then induce a homo-
morphism from G, = 9N,(T,,) onto G, =M(Ts,,,), the kernel being the
finite cyclic group J°. This homomorphism induces a homomorphism from
the abelianized group G./[G,, Gi] onto G,/[G,, G,].

Now, it is shown in [4] that if ¢ = 3 the group G,/[G,, G,] has order 2
or 1. From the presentation for G, in Th. N9 [10], we find that G,/[G,, G.]
has order 2(n — 1) if n is even, or n — 1 if n is odd. Since n = 3, this
tells us that » = 3 is the only possible case where a homomorphism might
exist. However if n = 3 the group G, = 9(T,;) is a finite group. But by
Theorem 5: G, modulo the finite cyclic group & is isomorphic to G,. Since
G, is infinite for every g = 1, this is clearly impossible. ||

The possibility remains that if we relax the requirements on (p, X, X)
to admit coverings of other Riemann surfaces, or to admit all regular cover-
ings, or to admit non-regular coverings that we will have better luck.
(However we conjecture that all such efforts will fail.)

4. A theorem about Artin’s braid group

Our object now is to apply Theorem 1 to establish an interesting new
property of Artin’s braid group, B,. The reader is referred to Section 1 for
definitions of F, and N,. The braid group B, is defined to be that sub-

group of Aut F, which is generated by automorphisms o,, -+, 0,_,, where

O3t Ty — T 107
(8) Lip1 ™ &
Ty — Xy k+t, 1+ 1L k=1 -, 1.
For a review of the basic properties of B, see Section 3.7 of [10]. We observe
that every element in B, maps N, — N,. We will prove:

THEOREM 7. Let B, ,C Aut (F,/N,) be the group of automorphisms of
F,/N, which is induced by the action of B, on F,. Let ¥,:B,— B, be
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the natural homomorphism. Then ¥, is an isomorphism for every integer
k= 2.

Proof. In order for an automorphism of F', to be a braid automorphism,
it must satisfy two characteristic properties (see [1]): it must map each
generator x; of F', into a conjugate of itself or some other x;, and it must
map the product @, -+ - », into itself. Suppose first that ge B, N Inn F,.
Since the action of g is inner, it follows that @ must map the product
(@, «- w,) = T(@2, +++ x,) T for some TeF,, and since B(@ax, -+ x,) =
X%, » o+ ,, it follows that T must commute with xx, --+ 2,. Since F, is a
free group, this is possible only if T = (wx, -+ ®,)? for some integer .
One verifies by calculating, using the action given in equation (8), that the
automorphism ¢ = (0,0, --- 0,_,) and its powers have precisely this effect:

) 04y —— (X, + o ) (2,1, oo 2,) 7 1=1, 0,1,
Hence B, N Inn F', is the infinite cyclic group I generated by o. ||

We ask what happens to I under the homomorphism ¥,: B, — B,,,?
Clearly W,(I) is cyclic, so the only question is whether ¥,(¢) might have
finite order? Now, the group F,/N, is a free product of n cyclic groups of
order %k, hence by Theorem 4.1 of [10] each element in F,/N, has a unique
representation as a product of elements in the factors. Therefore W,(c?)
cannot possibly be 1 unless ¢*(x;), when freely reduced, contains symbols
of the form x}. But from equation (9) we see that o*(x;) contains no k™
powers, hence it follows that ¥,(6%) = 1. Thus we have proved:

LEMMA 7.1. ker W, contains no non-trivial inner automorphism of F,.

To proceed further, we place a geometrical interpretation on the groups
F, and N,. Let X be the complex plane E? and let (p, X, X) be a k-sheeted
cyclic covering, with » (interchangeable) branch points P,, ---, P,. Let
P,eX-P,U:--UP,) be a base point for 7 (X — P, U --- UP,). Then
the group F', can be interpreted as the fundamental group 7,(X—P,U -+ - UP,);
each x; is understood to be the homotopy class of a simple P,-based loop
enclosing precisely one branch point P;.

Let H be the subgroup of index k in F, consisting of all words of ex-
ponent sum k in x,, -+, ,. We can interpret H geometrically as the group
Psm(X — P, U +++ UP,), where § is the covering space projection of the
unbranched covering

®X-PU---UP,X-PU---UP,)
associated with the branched covering (p, X, X). The group N, is the normal
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closure in F, of the elements {x;j =1, ---, n}. We can identify HN N,
as the subgroup of 7,(X — P,U---UP,) consisting of those elements which
are represented by curves which lift to closed curves which are homotopically
trivial on X, but homotopically non-trivial on (X — P,U --- U P,). The
quotient group H/H N N, can then be identified geometrically as the funda-
mental group 7, X of the covering space in the branched covering (p, X, X).

To complete the proof of Theorem 7, we now note that every braid
automorphism can be induced by a topological mapping. This is easily
established by noting that each generator o; of B, can be induced by a
homeomorphism of E* which interchanges the branch points P; and P;,,,
and is the identity outside a small disc which includes P; and P;., but no
other P;. Suppose BekerV¥,, 8+ 1. Let b be a topological mapping of
(E*—P,U-++--UP, which induces the automorphism . Lift b to a
topological mapping b»: (X - P, ---, P,) > (X — P, -+, P,). This mapping
extends in an obvious way to a topological mapping b of the surface X, and
the mapping b induces an automorphism b,, which we recognize is precisely
¥.(B), of m;X. By hypothesis 8 e ker ¥,, therefore it follows that b, = 1.
By a classical result [11], this means that b is isotopic to the identity map.
Now, b is fiber-preserving (because it was the lift of the topological mapping
b) and isotopic to the identity, hence by Theorem 2 it must be fiber-isotopic
to the identity. This fiber-isotopy projects to an isotopy taking b to the
identity. But then the automorphism g induced by b on 7,(X — P,, ---, P,)
must be inner, hence by Lemma 7.1 it follows that 8 = 1. Thus ¥, is an
isomorphism.

5. Generators and relations for N, (7T,,,)

In concluding, we note that Theorem 5 is a constructive result, in that
it enables us to determine explicit presentations for the subgroups 9,(T,,,)
for the special case of cyclic branched coverings of the sphere. The method
used is exactly the same as that described in [5] for the special case of
2-sheeted coverings, and therefore we omit details and simply summarize
the results.

Choose generators x,, «--, x, for 7, T, ,, similar to those as described in
the proof of Lemma 7.1, but replacing the n-punctured complex plane by its
one point compactification, so that these generators now satisfy the single
relation 2.2, -+ ¢, = 1. The group =, T,,, is thus a free group of rank n — 1.
The covering space T,, will be a closed surface of genus g, where by a
well-known formula (see e.g. page 275 of [13]) the integers g, k, and n are
related by:
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(10) 29 = (k — )(n — 2) .

Let s; (1 =1, -+, n — 1) denote the isotopy class in 9(T,,,) of a simple
twist map which interchanges the branch points P; and P,., but is the
identity map outside of a small disc neighborhood which encloses P; and
P;.. and avoids all P; with j = 4, ¢ + 1. The group 9(7,,,) was studied
by W. Magnus in [9], and admits a presentation in terms of the generators
8y, ***, 8,1, With defining relations (2.1)-(2.4) of [5]. Let ¢, be the lift of s,
to 9N(T,,). (The meaning of ¢; as a product of standard twist generators of
IM(T,,0), as given for example in [5], will of course depend upon %, g and the
explicit choice of coset representatives for the subgroup of the covering.)
Then, using the method described in §4 of [5], it can be shown that
M,(T,,,) admits a presentation with generators ¢, ---,¢,_, and defining
relations:

(11) tit; = tit; =1, m—1;]i—j|=2
12) titorts = timtitin, i=1,.00,m —2
(13) (tity oo ety = 1

(14) (biby = tustuy oo bot)* = 1

(15) [ty = tysty s ooe bty 8] = 1.

We note that the presentation above depends only on the integers % and n,
while the interpretation of ¢; as a surface homeomorphism depends on the:
explicit definition of the covering projection.

Added in proof. It has recently come to our attention that a generalized
version of Theorem 1 has been obtained (by different methods) by W. J.
Harvey and C. MacLachlan. It will be reported in their forthcoming paper
“On mapping class groups and Teichmuller spaces”.
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