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GEODESICS WITH BOUNDED INTERSECTION NUMBER ON 
SURFACES ARE SPARSELY DISTRIBUTEDf 

JOAN S. BIRMAN a n d  CAROLINE SERIES 

INTRODUCTION 

LET M be a surface of  negative Euler characteristic, possibly with boundary, which is either 
compact or obtained from a compact surface by removing a finite set of points. Let D be the 
Poincar~ disc. Choose any representation of  M as U/I', where U _~ D is the universal covering 
space of M and F c Isom(D). Then the Poincar~ metric on D induces a metric of constant 
negative curvature on M and geodesics in U project to geodesics on M. A geodesic on M is 
said to be complete if it is either closed and smooth, or open and of  infinite length in both 
directions. Complete geodesics coincide with those which never intersect 0M. Note that if M 
is obtained from a compact surface by removing a finite number of  points to form cusps then 
a complete open geodesic on M might tend toward infinity along a cusp. 

In this paper we study the family G k of complete geodesics which have at most k 
transversal self-intersections, k i> 0. Our main results are: 

THEOREM I. For each k >, O, the set Sk of points of M which lie on a geodesic ]: ~ G k is 
nowhere dense and has Hausdorff dimension one. 

THEOREM II. Let T k ~_ (OD x t3D- diagonal) be the set of pairs of points which represent 
endpoints of geodesics in the Poincard disc D whose projection on M is in G k . Then T is nowhere 
dense and has Hausdorff dimension zero. 

THEOREM III. Let Uk be the set of tangent vectors in the unit tangent bundle Ti M which 
project onto tangents to geodesics in G k. Then U k is nowhere dense and has H ausdorff dimension 
one, with respect to any natural choice of raetric on T 1 M. (For example, the metric obtained by 

projection to TtM of the metric x/~l  2 + d  2 on TtD = D x S 1, where d 1 is the hyperbolic 
metric and d 2 is arc length on $1.) 

The geodesics in G o are simple. A moment's reflection will convince one that, trivially, 
incomplete simple geodesics cover M, hence the restriction of  Theorem I that geodesics be 
complete. 

Note that Theorem I is in striking contrast to the analogous situation in the Euclidean 
case. Let T be a torus represented as RZ/Z ~ Z .  The Euclidean metric on the universal 
covering space R 2 induces a metric of  curvature zero on T, and straight lines on R 2 project to 
geodesics on T. If I is a line on R 2, then its image on Twill always be complete and simple, and 
will be closed if and only if I has rational slope. Thus S O = T, in fact through each point x e T  
there are infinitely many complete simple geodesics of  both finite and infinite length. 
However, if one removes a point from T one obtains a surface of  negative Euler characteristic 
and Theorem I applies. 

Note also that So --- $1 - $2 - . . .  and that ~J Sk is a dense subset of M, in fact the 
k = t  

union of  all points which lie on a complete closed geodesic is dense in M. 
Theorem I answers a question of  Jorgensen [3] as to whether So has measure zero, and 

also Abikoff's question [3] as to whether S o is dense. 
A constant which depends only upon the choice of  a fundamental domain for the action 

of F will be said to be universal. The main work in proving Theorems I, II, III is to establish: 

f This paper is a substantial revision of [1]. 
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PROPOSITION 4.1. There exist universal constants L, C, ct > 0 and polynomials Pk (X) such 
that for each n ~ ~ there is a set F, of  simple geodesic arcs, each of length at most L, so that 
card(F,) < Pk(n) and so that 

s~ ~_ u { B ~ ( ~ ) / ~ F . } ,  ~ = ce  -~"  

where B~(y) is a tubular neighbourhood of  7 of  hyperbolic radius e > O. 
The key idea is to parameterize simple geodesic arcs by a finite set of  integers in such a way 

that two arcs with the same parameterization have lifts to the universal cover U G D which 
are exponentially close together. Our parameterization is not unlike the Dehn-Thurston 
parametrization for simple closed curves, see [2]. However, the Dehn-Thurston parameters 
are not appropriate for our work, because we are interested in the unique geodesic 
representative of  the isotopy class of a closed curve, whereas the Dehn-Thurs ton parameters 
require that one choose a representative which passes in a particular way through the regions 
of a pants-annuli decomposition of  the surface. Such representatives may be very far from 
being geodesics. 

In fact it is clear that there are a number of  different but related ways to parameterize 
simple closed curves. In an earlier version of  this paper the authors used yet another method 
which is uniquely adapted to the representation of  a curve as a shortest word in a given set of  
generators of  nl (M), [1]. 

Theorems I and II show that the points in S O are special points of M. A slight extension of 
a result of  Jorgensen [4] shows that some points in So are very special: 

THEOREM IV. Let ct, fl be closed simple geodesics on M which intersect exactly once, at 
x ~ M. Then infinitely many closed simple geodesics pass through x. 

Here is an outline of the paper. In §1 we establish some estimates which relate the 
Euclidean and hyperbolic metrics. These will be needed later in the paper. The next two 
sections, §2, §3, are directed at the proof  of  Proposition 4.1, which is established in ~4. In §5 
we prove Theorems I, II and III. In §6 we prove Theorem IV. The final section, §7, concerns 
open questions. 

This work was begun in 1981 when the first author was a Senior Science Faculty Fellow of  
the British National Research Council, grant number GR/BS 1901. The first author also 
acknowledges partial support from the U.S. National Science Foundation under grant 
number MCS 79-04715. 

The second author would like to thank the British Royal Society for financial help in 
completing the work of  this paper. 

§1. HYPERBOLIC GEOMETRY 

Through sections 1-4, M is a fixed compact Riemann surface of  curvature - 1 .  The 
universal cover U of  M is contained in the Poincar~ disc 

D = {zeCI  Izl < 1} 

with the hyperbolic metric ds = 21dz l /1-  Izl 2. The covering group F = nl (M) acts by 
isometries of D and p is the projection U ---, U/F = M. The hyperbolic length of  an arc ~, on M 
or D will be written l (7); d and d ndenote respectively the Euclidean and hyperbolic metrics on 
D and B e (P), B~n(P) are Euclidean and h__yperbolic balls of radius e in D centered on P • D. The 
Euclidean metric extends naturally to D. If ? is a complete geodesic in D we write 7 +, Y- for 
the endpoints of  ~ on 0D. The symbols B~ (y) and B~n(~,) denote Euclidean and hyperbolic e- 
tubular neighborhoods of  ~,. 

We shall need some simple estimates from hyperbolic geometry. 

LEMMA 1.1. (a) Suppose that P e D  and that dn(P, O) > n. Then, given L > 0, with L < n, 
there is a constant c > O, depending only on L, such that 

B~(P) ~ Bce-"(P). 
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(b) Suppose that ~ is a complete oeodesic in D. Let Q, P e y and let 3, + be the endpoint of 3, in the 
direction f iom Q to P. Suppose that dn(Q,O) < L' and dn(Q,P) > n. Then there exists c' > O, 
dependino only on L', such that d (P, 3, +) < c'e-*. 
(c) Let 3,, tl be complete geodesics in D with d (3, +, r 1 +) < e and d (3,-, r l-  ) < e. Let K c- D be 
compact. Then there exists a constant c"> O, depending only on K, such that ~l n K 

By,~(3, n r ) .  

Proof. (a) The proof  is given in [5]; we repeat it here for convenience. Choose Q ~ Bf(P) .  
Since dn(P,O) >-n, dH(Q,P) <_ L, it follows that dn(Q,O) ~ n - L .  Therefore d(Q,O)~ r 
= tanh( (n -L) /2 ) ,  because d(Q,O)= tanh(dn(Q,O)/2) for every Q~D, and tanhx is a 
monotonic increasing function. 

Now, the ball B~(P) is an off-center Euclidean ball, which is a convex set in both metrics, 
so the hyperbolic line joining P to Q lies inside B~(P) and hence outside B,(0). The formula 
relating the Euclidean and hyperbolic metrics then gives that 

d(e ,  Q) <~ (dn(P, Q)) <~ ~sech  

2L 2L 
e , _ L + e _ , + L + 2  < e,_ L (2LeL)e -". 

Therefore B~(P) c Be(P ) where ~ = ce-", c = 2Le z. 
(b) The hyperbolic map p which fixes the diameter through Q and which moves Q to 0 has 

a derivative bounded in terms of L' so that d (P, y+) < kd(pP, p3,+) for some k > 0. Thus 
without loss of generality we may assume that Q = 0. 

Let Po = P, P1, P2, • • • be points on 3, with dn(Pi, Pi+l) = 1 for each i, so that dn(P~, O) 
> n+i .  Applying part (a) with L = 1 we obtain d(P~, Pi+1) < ce-("+~) for i = 0, 1, 2 . . . . .  
Since 3,+ = lim Pi it follows that 

i ~ a D  

d(e,  3,+) < ~ d(Pi, P i+l )<c 'e -" .  
i=O 

(c) Let Yl and 3,2 be the geodesics whose endpoints lie at distance e from those of  3, and which 
are on either side of 3,. The tubular region T between Yl and 3'2 is geodesically convex so that 
~ /cT.  

Choose a disc D o of  radius r o, with centre 0, so that K c D o. Let l be the Euclidean 
perpendicular bisector of the arc y ~ D o. The centres of the circles defining 3,1 and 3'2 lie on 1, 
so by symmetry there is a Euclidean circle C~ through 7 +, 3,- and the two points 3,i c~ ~Do, 
i = 1,2. Choose C to be the one of C1, C2 making a maximum angle 0 with 7, and let C' be the 
circle through y +, 3,- making the same angle on the opposite side. The region S between C and 
C' is a hyperbolic tubular neighborhood of 3, and it is clear that its width di is a smooth 
function of  0 and hence ofe. Thus by the mean value theorem there is a constant c" > 0 so that 
t~ < C"~. 

Now clearly T c~ Do c S and hence r /~  K c T c~ K c S = B~,~ (3,), as required. 

§2. PARAMETRIZING GEODESIC ARCS 

In this section we develop a method for parametrizing finite geodesic arcs with a given 
number of self-intersections on the surface M. Our goal will be twofold. First, we will show 
that if 3,, 3,' are two arcs of  the same length n (see below) which have the same parameters, then 
3, and 3,' have lifts to the universal covering space U of  M which lie in the same sequence of  n 
copies of the fundamental domain. The precise statement of  this assertion is in Lemmas 2.1 
and 2.4. Secondly we produce the polynomial Pk (x) of  Proposition 4.1. This is accomplished 
in Lemma 2.5. 

We assume in this section and in sections 3 and 4 below that M is compact. The case when 
M is non-compact (i.e. has finitely many points removed) is treated separately, in §5. For 
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simplicity of exposition, we shall first consider simple arcs and then generalize to the case of 
arcs with at most k self-intersections. 

To begin, fix a fundamental domain R c U for the action of F on U. Assume R chosen so 
that the origin 0 of the Poincar6 disc D lies in R, and also so that the sides of R are a finite 
number of  geodesic arcs. 

Some technical difficulties occur in dealing with geodesics which either pass through 
vertices of  p(t~R) or have self-intersections on p(dR). Such geodesics we call exceptional 
relative to R. To avoid these difficulties we note that we can certainly choose three different 
fundamental regions so that any geodesic in Gk is non-exceptional relative to at least one of 
the regions. Thus it is enough to prove Proposition 4.1 for the non-exceptional geodesics 
relative to any given fundamental region. In this section, therefore, we parameterize only non- 
exceptional geodesics relative to R. 

Let A = { a l , . . . ,  a~ } denote the ordered set of oriented sides of R with anti-clockwise 
ordering, with some arbitrary but henceforth fixed initial side a~. A simple diagram on R is a 
collection of finitely many pairwise disjoint arcs joining pairs of distinct elements of A. We 
regard two simple diagrams as being identical if they agree up to isotopy supported on each 
side of R. For  a~, aj e A, i ~ j, let n~ denote the number of arcs joining a~ to aj. The length n 
of a simple diagram is Enij, 1 -< i < j -< m. 

Let Jo be the set of oriented simple non-exceptional geodesic arcs 7 on M such that 
t~7 ~_ p (~R). Choose y e Jo. Lifting the components of 7 c~ Int (pR) to R and taking closures 
one obtains a simple diagram on R. 

We refer to the components of y n Int(pR) as the segments of 7 and the points 
of 7 c~ p(t3R) as the partition points of 7. We label the partition points t o . . . .  , tn in the 
order in which they occur along 7 and we set 11711 = n. The partition points divide 7 
into subarcs 71 . . . . .  7n with 7joining t~_ ~ to t~. These subarcs are covered by subarcs 6~ in R, i 
= 1 , . . . , n .  

Our parametrization of elements of Jo will consist of two sets of data. The first is defined 
by a maphl : J0  ~ 2~ p, p = re (m-  1)/2, with hl(fi) = {n12,/'/13 . . . . .  nra_ 1,,. } which records 
for each pair of distinct sides a~, a~ of R the number of nij of segments which join a~ to aj. Our 
second set of data records information about the position of the initial and final points to, tn 
of 7. Let a (t~) be the element of A containing t~ and let j (t~) e N be the position of t~ among the 
partition points of 7 which lie along a(t~) counting in the anticlockwise direction round dR. 
Now define h2: Jo --} (A x Z) 2, h2(7) -~ (a(to),j(to) , a(t,),j(t~)). 

LEMMA 2.1. Suppose that 7, 7' e Jo and that hi (7) = hi (7'), h2 (7) = h2 (7'). Let to,. • . ,  t, 
and t'o . . . .  , t' n be the partition points ofT, 7',. Then a(t~) = a(t'i) for each i = 0 . . . . .  n. 

Proof Suppose that we are given any simple diagram on R with parameters (nlj)l <_ i <j <_ m 
and (a (t o ), j (to), a (tn), j (tn)) equal to the parameters of 7. Let the collection of  unoriented and 
unordered arcs on this diagram be {tSu, , . . . ,  6~, }. It is clear that we can find an isotopy in R 
supported on each side of R which moves the segments ~u, onto the segments 7i of 7. Notice 
that there is only one way to order the arcs incident on ai so that they are disjoint. Notice also, 
that since the arcs 7i link to form y, that excluding the initial and final points on a(to) and a(tn) 
the same number of arcs 6i is incident on any two paired sides of R. Moreover the relative 
position of the initial and final points of the diagram is specified by the value of h 2 (7)- There is 
a unique way to join up the arcs 6u,, . . . . .  6un so that the union of their images under p is 
simple. There is also a unique way to orient them from the initial point to the final point. Now 
this whole process could equally well have been carried out for 7'. Since h 1 (7) = hi (7'), h2 (7) 
= h2 (7'), the lemma follows. 

LEMMA 2.2. Let Jo(n) = {7~Jo: 11711 = n}. There is a polynomial Po(n) such that 

card {(h 1 (7), hE(V)): 7~Jo(n)} <- Po(n). 
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Proof. Observe that if 7•Jo(n) ,  then n is the sum of the entries in h1(7), so that in 
particular each individual term in hi (7) is bounded by n. Since there are (m(m - 1)/2) < m 2 
entries in hi (7), it follows that the number of  distinct arrays hi (7), 7 • Jo (n), is bounded by n m~. 
Also, there are at most n choices for j (to) and n for j (tn), and m choices for a(to) and a (tn), 
hence the number of  distinct arrays h2(7), 7•J(n) ,  is bounded by m2n 2. Therefore Po(n) 
= m2nm~+ 2 is an upper bound for the number of arcs 7 e J (n) with distinct parameters h l (7), 

h2 (7)- []  
We now generalize Lemmas 2.1 and 2.2 to non-exceptional geodesic arcs on M which 

have length n and have at most k self-intersections, k > 0. Let R and A be defined as before. A 
diaoram (no longer necessarily simple) on R is a collection of finitely many arcs in R, with each 
arc in the collection joining a pair of  distinct elements of  A, and any two arcs in the collection 
either disjoint or intersecting once, transversally, in the interior of  R. The diagram is an 
r-diaoram if there are r intersections between pairs of arcs of  the diagram. Two r-diagrams are 
identical if they agree up to isotopy supported on each component of A. By analogy with the 
set Jo defined earlier, let Jk be the set of oriented non-exceptional geodesic arcs on M which 
begin and end on p (dR), and which have at most k self-intersections. For  7 • Jk, define 11711, 
ti, a(ti), J(ti), hi j, ni, 7i, hi (7), h2(7) exactly as before. Then p-  1({71 . . . .  ,7n})is an r-diagram, 
r < k .  

Note that if 6p, 6~ are components of p -  ~ ({7~ . . . . .  7n }), then 6p, 6~ intersect once or not 
at all, because R ~ D and two geodesics in the Poincar6 disc are either disjoint or intersect 
once, transversally. If 6p c~ 6, ~ ~ ,  and if 6p joins a, a' e A and 6, joins b, b' • A, then we say 
the intersection is type 1 if a, a', b, b' are all distinct, in which case a, a' necessarily separate b, b' 
on dR. Otherwise, the intersection is type 2. An r-diagram on R is type 1 if all of  its 
intersections are type 1. The first step in generalizing Lemma 2.1 is: 

LEMMA 2.3. I f  7 ~ Jk, with h I (7) = (nl 2, n l 3, • • •, nm- 1. m), then there is a type 1 diagram in 
R having n~j arcsjoinin# ai to a~ for each 1 <- i < j < m, which is unique up to isotopy supported 
on each side a of  R. 

Proof. For each pair i, j with 1 < i < j < m construct n~j parallel arcs joining a~ to a~ in R. 

Let these be {a l , .  • •,  an }, n = ~, ni~. Choose al . . . .  an so that if ap joins a to a' and a~ 
j = 2 i = 1  

joins b to b', then ap c~ a,  is either one point or empty, with one point if and only if a, a' 
separate b, b' on dR. This gives the desired type 1 diagram. [--1 

The diagram {al . . . .  , an} constructed in Lemma 2.3 will not coincide with the diagram 
p-  1 ( {71 . . . . .  ?n } ) if7 contains type 2 intersections. We wish to compare these two diagrams. 
It is clear that one may be obtained from the other by permuting the relative positions of  the 
endpoints of the segments 6i = p -  1 (7i) on each side of  R. We claim that this permutation can 
be effected by a product of  at most k transpositions. 

Suppose that 6p intersects 6, with an intersection of type 2. Then 6p joins some pair of 
components a~, a~ of  A and 6~ joins a~, a~, where possiblyj = q. We say that the intersection 
occurs at ai i f j  ¢ q and at a~ i f j  = q and s = min (i,j). 

Suppose that there are ri intersections of type 2 which occur at a~. By moving the arcs 6 i 
slightly by isotopy if necessary, we may suppose that no two of these intersection points 
coincide and that they all lie at different distances from a~. Order these intersection points by 
their distance from a~. By transposing in turn the relative positions of  the endpoints on a~ of  
pairs of  adjacent segments 6~, 6k which intersect at a~, starting with the intersection closest to 
a~, we obtain a permutation rc~ of  the n~ points {61 . . . .  ,6n } c~ a~ which is a product of exactly 
rj transpositions, which uncrosses the 6~ intersecting at ai and which does not create any new 
intersections on the diagram. Letting n = rq orc 2 o . . .  o r~,, we obtain a permutation which 
uncrosses all the type 2 intersections and which is the product of  at most r I + r2 + • • • + r,, 
< k transpositions. 

In order to recover a curve from its diagram we need to add the permutation n to our list 
of  parameters. Let ~2n be the set of  permutations on the 2n symbols x l , . . . ,  x2,. For fixed 
7 • Jk (n) identify the 2n endpoints of  {61 . . . . .  fin } with the symbols xl . . . .  , x2n by using the 
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anticlockwise ordering on dR, beginning with a~. Let ha : Jk ~ ~-~2n be defined by h 3 (3?) = / t -  1 
where n is as described above. Let ,O be the image of .J  k in Z p x (A x Z) 2 x E2n under the map 
H = h 1 x h 2 x h a : J  k ~ l), H(y) = (n 1 2, n t 3, n23 . . . . .  n,._ 1, m, a(to),J(to), a ( t , ) , j  (t,), 7z-1). 

LEMMA 2.4. Suppose  that 3?, 7' • Jk,  with H(37) = H(37'). Le t  t o . . . . .  t, and t'o, . • •, t, '  be the 
part i t ion points  o f  3?, 37' respectively.  Then a(ti) = a(t' i) f o r  each i = 0 . . . .  , n. 

Proof.  By Lemma 2.3 there is a unique type 1 diagram determined by h~(37). By the 
discussion above, this diagram can be altered by the permutat ion h3(37 ) in a unique way to an 
r-diagram, r _< k, which covers 3?. By an argument  exactly like that used in the p roo f  o f  Lemma 
2.1, the data in h2(37) determines a unique order in which to join the components  to form a 
connected curve with the given initial and final points. Thus a( t~)= a(t{)  for each i 
= 0 , 1  . . . . .  n. [ ]  

LEMMA 2.5. Let  JR(n) = {3?•JR:  113711 : n} .  Then there is a polynomial  Pk(n) such that 

Card {H(3?):VeJk(n)}  < Pk(n). 

Proof.  T h e  p e r m u t a t i o n  h3(3?) is a p e r m u t a t i o n  o f  2n po in t s  wh ich  is a p roduc t  o f  at m o s t  k 
transpositions, hence there are at most  [ 2 n ( 2 n - 1 ) ]  k distinct ways to choose h3(37 ). By 
Lemmas  2.2 and 2.3 there are at most  Po(n) ways to choose h~(37)x h2(37 ). Hence Pk(3?) 
= (2n) 2t' Po(n) is a suitable bound.  [ ]  

§3. DISTANCE ESTIMATES 

We now show that  arcs with the same parametrizat ion lie exponentially close in M. 

LEMMA 3.1. There  ex is t s  a universal constant  ot > 0 so that 

1(37) >- ct 113711 

f o r  3? • Jk with II 3? II sufficiently large. 

Proof.  Let V denote the projection o f  the vertices o f  dR on M and let X be the set o f  
projections o f  the sides o f  dR. Let q be the maximum number  o f  elements o f  X which meet at 
any vertex v • V. Choose  e > 0 so that the hyperbolic discs B~ (v) o f  radius e about  v • V are 
disjoint and so that  any segment o f  any geodesic arc which does not  intersect ~ { B~ n (v) I v • V} 

has length at least e. 
Let 37 ~ Jk, V • V and consider a componen t  t o f  37 n B~ (v). Since both  t and the arcs in X 

are geodesics and since B~ n (v) is simply connected, t intersects each curve in X at most  once. 
Therefore at most  q - 1 consecutive segments o f  37 can intersect B~(v) .  Hence, in any q 
consecutive segments o f  37, at least one has length at least e, which gives the result. [ ]  

LEMMA 3.2. Le t  37, 3?' • Jk (2n + 1) and suppose  that H (37) = H (37'). Le t  6 = 37, 6' = 3?' denote  
the segments  o f  37 and 3?' lying be tween the part i t ion points  t~, t. + 1 and t'~, t'~ + 1. Le t  ~, ~' be lifts 
o f  3?, 37' so that the lifts ~, ¢~' o f  b, ~' lie in 1~. Then b' ~ B~e-. .(b) where c', ot > 0 are universal 

constants .  

Proof. Let ~, t i denote the lifts o f  the parti t ion points tl, t~ o f  7,3?. By Lemma 3.1, the 
tn), (tn+ 1, ten+ 1), and (tn+ 1,t2n+ 1) is o f  the pairs (to, t.), (t o, " ~ ~ r, ~, hyperbolic distance between each • ~ ~ r, 

at least an. 
By Lemma 2.4 tq and tq lie in the same element o f  A for q = 0, 2n + 1, and by 

construct ion t . ,  t'., t. +1, t~ + ~ • d R. It is easy to see by an inductive argument  that this forces 
tq, t~ to l ie in  the same side or v e r t e x o f t h e s a m e c o p y  of  R for q = 0, 2 n +  1. In particular 

d (to, to) -< L = diam R and dn('[2.+l,  t2.÷l)r' < L. 
By Lemma 1.1 (a) one sees that there is a universal constant  c > 0 so that d(to, t'o) <- ce - ~  
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and d(t'2~ + 1, ?2n + 1 ) < ce-  ~. Using part (b) one obtains 

d(~'+, ~ '+ ) _ c' e-~",d(~-,~ '-) <_ c, e -,~ 

for some other universal c' > O, where ~+,..., ~'- are the positive and negative endpoints 
of the extensions of ~, ~' to ~D. Finally the result follows from part (c) of the same Lemma. 

[] 

§4. PROOF OF PROPOSITION 4.1 

Proof Choose an arbitrary but henceforth fixed non-negative integer k. As remarked at 
the beginning of section 2, it is enough to prove the proposition for the set of geodesics in Gk 
which are non-exceptional relative to some given fundamental region R. We denote this set by 
(~k and the corresponding points on M by Sk. 

Recall that for each geodesic arc 2: •Jk  we defined a set of parameters which were 
described by a surjective map H: Jk --' f~. For co e f~, choose any 2: • H -  I (to) and define ]] co II 
= 112:11. For q • N  let f~(q) = {co•t2: l logl l  = q}, Fk(q, to) = {2:eH-X(og)12: c fl•Oz k and 
co•fl(q)}. For each weft(q) and Fk(q, co) ~ 0 pick some fixed representative 2:'•Fk(q, 09). 
Thus 2:' has length q, and parameters H(y') = co, and is a subarc of some non-exceptional 
complete geodesic fl' • (~k- 

Choose x • Sk. Then x • fl, where fie (~k. The complete geodesic fl is partitioned into 
infinitely many segments by p(dR). Let 6 be the segment which contains x (ifx • p(t3R) either 
choice will do) and let 2: be the segment 6 together with the n segments of fl on either side 
of 6. Thus 112:11 = 2n + 1. Then 2: c f l •dk ,  2:•Jk(2n + 1), and H(2:) = o9 et)(2n + 1). Therefore 
Fk(2n + 1, o9)¢ ~ .  Let 2:' be the representative of Fk(2n + 1, co) chosen earlier. Then 
H(2:') -- H(2:), so  112:' II -- 112: II -- 2n + 1. Let 6' be the central segment ofy'. Lift 2:, 2:' to geodesic 
arcs ~, ~' c D, chosen so that the lifts ~, ~' of 6, 6' lie in R-. By Lemma 3.2, there are universal 
constants c, ct > 0 so that 6 c Bcn¢-,.(6'). 

We have shown that any x e ~k lies on an arc 6 c Bcne-.(6'), where 6' is the central segment 
of the representative arc of Fk(2n + 1, 09) for some ogef~(2n + 1). Denote the collection 
of such 6' by F,. By Lemma 2.5, card (F~) is bounded by a polynomial Pk (n). This proves 
Proposition 4.1. 

§5. PROOFS OF THEOREMS I, II AND III 

Proof of Theorem I, M compact 

We first show that Sk is nowhere dense. Let V ___ M be open. By Proposition 4.1, for each n 
the set S k c~ V is covered by Pk(n) bands of length at most diam (R) and width 2ce -~.  Each 
band has hyperbolic area at most c'e -~n for some universal constant c', so the total area 
occupied by the bands is bounded by C'Pk(n)e - ~  which becomes arbitrarily small as n ~ oo. 
In particular V - S contain non-empty open sets, which proves the result. 

The proof that Sk has Hausdorff dimension one is similar. For 2: • F~, the tubular 
neighbourhood Bcne-,, (2:) is covered by (diam R)/(2ce -~'') balls of radius 2ce -~'' (see Fig. 1). 
Thus Sk is covered by at most C'Pk (n) e~" balls of radius 2ce- ~". Suppose the balls in this cover 

have radii rl . . . .  , r=. Then ~ r# ~< const. Pk(n)e*ne -~.  For any 6 > 1 the term on the right 
i = 1  

Fig. 1. 
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converges to zero as n --* ~ ,  so that the Hausdorff dimension of Sk < 1. Since Sk certainly 
contains one dimensional sets the other inequality is trivial. 

Extension to the non-compact case 

Suppose now that M is obtained from a compact surface by removing a finite set of points 
to form cusps. We set up our parameters as before, except that we must now allow geodesics 
which go to infinity in one of the cusps. We therefore add the vertices of R at infinity, which 
correspond to the cusps, to the collection of sides of R, and allow in our parameter diagrams 
strands which run from one side of R to a vertex at infinity, or which join two of these vertices. 
We record the numbers of  such strands in our parameter set. Notice that two strands which 
end at the same vertex at infinity necessarily meet at infinity, so that we do not need to record a 
permutation corresponding to type two intersections at the cusp. 

The proof  of Theorem I will work as before provided we have the distance estimate 3.1. 
Thus we need to consider strands which join adjacent sides of R that meet in a vertex at 
infinity. 

LEMMA 5.1. Let y be a geodesic on M containing a segment fl which joins two adjacent sides 
of R which meet in a vertex at infinity. Then fl contains a self-intersection point of y. 

Proof. Without loss of  generality, we may work in the upper half plane with the cusp C at 
oo and with the two sides of  R in question two vertical lines Lt, L 2 at distance 2 apart. Choose 
a lift ~ ofy  so that ~ intersects the strip between Lt and L2 exactly in a lift ~ of ft. Let Pi be the 
point ~ n Li; i = i, 2. Think of  L l, L 2 as chords of  the circle K centered on R whose upper 
half is i. Consider all the vertical chords of K spaced at distance 2, starting from Lt and L2. 
For  definiteness, suppose ImP~ _< ImP 2 and ReP1 < ReP2. It is clear that we can find 
chords MI, M 2 in ourse t  intersecting ~ in QI, Q2 so that Re Q1 < ReQ2 and Im QI >- Im P2, 
ImQ2 < I m P  2. Let fl' be the segment of ~ joining Q1 to Q2. Translating fl' by a suitable 
integer multiple of 2, we obtain an arc lying in the vertical strip between L 1 and L 2 which 
intersects ft. Since translation by 2 is an element of F = n~ (M), this arc projects to the same 
arc as fl' on M; hence we have found a self intersection point of ? on fl as required. 

COROLLARY 5.2. In a parameter diagram corresponding to a sub-arc of a geodesic y • Gk, the 
number of strands joining adjacent sides of R which meet at infinity is bounded by 4k. 

Proof. By the above Lemma, every such strand contains at least one self-intersection 
point of 7. Each intersection point corresponds to at most four strands in the diagram. (This 
allows for intersections at the endpoints of a strand. If several strands go through the same 
point we count multiplicities.) Since there are at most k self-intersection points on ?, we obtain 
the required bound. 

COROLLARY 5.3. (Length estimate.) The estimate of 3.1 still holds when M has cusps. 

Proof. This is an easy consequence of 5.2. 

Proof of Theorem II. Using the methods of Proposition 4.1 one can find a polynomial 
bound for the number of squares of side ce- ~" needed to cover T in dD x dD - diagonal. The 
result follows by the method of Theorem I. 

Proof of Theorem III. The universal cover of T~M is D x R, and the product metric on 
D x R projects to a natural metric onT1M. Use this metric onTxM. In the proof  of Theorem 1 
we actually showed that any u e Uk lies along a segment 6 of geodesic arc which is e close to 
one of the representative segments 6' not only in position, but also in direction. Therefore Uk 
is contained in the union of the e-tubular neighborhoods of the lifts of the representative 
segments 6' to T1M. The same reasoning as before now completes the proof. 
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~6. PROOF OF THEOREM IV 

If ? is a closed curve on M, let [?] denote its free homotopy class. Then the universal 
covering space projection p induces a map p,:  F --, free homotopy classes on M, as follows: if 
G e I "  has axis ~, define p,  (G) - [p(~)]. 

Let ~,/~, £ be lifts of ct, fl, x to D, chosen so that 8 r~ ~ = ~. Let A, B be the elements of F 
having axes ~,/~. Then p.  (A) -- [~t], p,  (B) = [fl]. Also, ift~ denotes a Dehn twist about a, then 
p , (AmB)  = [t~(fl)] for each me g. Note that t~(fl) is a simple closed curve for each rn6 Z 
because fl is a simple closed curve; also [t~(fl)] ~ [tk(fl)] if m :/: k. 

Let ~, be the axis o f A " B A " ,  n~ ~ .  Let ~. = p(~,). Jorgensen has shown in [4] that the 
smooth closed geodesics y, pass through x for each n6 ~. By construction, [y,] 
= p , (A"BA")  = p.(AEnB) -- [-t2"(fl)], and our proof is complete. [] 

§7. REMARKS 

There are many interesting open problems about the sets Sk and Gk. Here are just a few. 
7.1. The proof of Theorem I shows that St is a very "thin" set, that is the geodesics in Gk 

travel together for long distances as essentially parallel curves. One expects that the result 
"Hausdorff dimension 1" could be improved. 

7.2. One can study the growth function for the number of complete simple geodesics of 
length n or < n. In the case of the once-punctured torus one can easily show that the number 
of closed smooth simple geodesics of length n > 4 is 2q~ (n), where ~ is the Euler function. In 
fact the degree of the polynomial Po (n) bounding the number of  simple geodesics of length n 
is at most 6g + 2b - 6 where g is the genus and b the number of boundary components of M. It 
is not coincidental that this number is also the dimension of the Thurston parameterization 
of the space of measured geodesic laminations on M. This polynomial estimate is very crude 
as is apparent even from the example of the punctured torus above. In general the precise 
nature of the bound seems to be a very interesting number theoretic question. 

REFERENCES 

1. J. BmM^N and C. SERIES: "Simple curves have Hausdorff Dimension One", preprint, Warwick Univ., 1983, 
unpublished. 

2. A. FATHI, F. LAUDENBACH, V. POENARU et al: Travaux de Thurston sur los surfaces, Asterisque 66-67, 1979. 
3. T. JORGENSEN: Simple geodesics on Riemann surfaces. Proc. A.M.S. 86 (1982), 120-122. 
4. T. JORGENSEN: Closed geodesics on Riemann surfaces, Proc. A.M.S. 72 (1978), pp. 140--142. 
5. C. SERIES: The infinite word problem and limit sets in Fuchsian groups, Ergodic Theory and Dynamical Systems 1 

(1981), 337-360. 

TOP 24:2-H 


