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Abstract

Aramayona and Leininger have provided a “finite rigid subset” X(Σ) of the curve complex C (Σ) of a
surface Σ = Σn

g , characterized by the fact that any simplicial injection X(Σ) → C (Σ) is induced by a
unique element of the mapping class group Mod(Σ). In this paper we prove that, in the case of the sphere
with n ≥ 5 marked points, the reduced homology class of the finite rigid set of Aramayona and Leininger
is a Mod(Σ)-module generator for the reduced homology of the curve complex C (Σ), answering in the
affirmative a question posed in [1]. For the surface Σ = Σn

g with g ≥ 3 and n ∈ {0, 1}we find that the finite
rigid set X(Σ) of Aramayona and Leininger contains a proper subcomplex X(Σ) whose reduced homology
class is a Mod(Σ)-module generator for the reduced homology of C (Σ) but which is not itself rigid.

1 Introduction and Statement of Results

Let Σn
g be the surface with genus g ≥ 0 and n ≥ 0 marked points. The mapping class group Mod(Σn

g) is the
group

Mod(Σn
g) = Homeo+(Σn

g)
/

Homeo0(Σn
g)

where Homeo+(Σn
g) is the group of orientation preserving self-homeomorphisms of the surface Σn

g which
permute the marked points and Homeo0(Σn

g) is the path component of Homeo+(Σn
g) containing the iden-

tity map.

Let V ⊂ Σn
g be the set of marked points. An essential curve γ in Σn

g is a simple closed curve in Σn
g − V such

that any disk in Σn
g bounded by γ must contain at least two marked points. The isotopy class of γ is its

orbit under the action of Homeo0(Σn
g). A curve system is a non-empty set of isotopy classes of essential

curves which have pairwise disjoint representatives and a sub curve system of a curve system is any non-
empty subset of a curve system. The curve complex C = C (Σn

g) is the simplicial complex whose vertices
correspond to isotopy classes of essential curves in Σn

g and whose k-simplices correspond to curve systems
with k + 1 curves. Henceforth we will abuse notation by not distinguishing between essential curves and
their isotopy classes. In the cases of the sporadic surfaces of low complexity, Σ4

0, Σ0
1 and Σ1

1, it is customary
to include simplices for sets of essential curves with pairwise minimal intersection, but we will not do this
here. Hence for our purposes C (Σ4

0), C (Σ0
1) and C (Σ1

1) will be disconnected complexes of dimension 0.
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The curve complex plays dual geometric and homological roles for the structure of the mapping class group.
On the one hand we have results in the vein of Ivanov [8], which retrieve the mapping class group as the
set of simplicial isomorphisms of the curve complex and other related simplicial complexes. On the other
hand we have the work of Harer [5] which shows that the single non-trivial reduced homology group of the
curve complex is the dualizing module for the mapping class group, thereby linking its group homology
and cohomology. One should not be too surprised at these dual functions for the curve complex, as the
curve complex was originally proposed by Harvey [6] as an analog for the mapping class group of the
spherical building at infinity for nonuniform lattices in semi-simple Lie groups.

Recent work of Aramayona and Leininger [1] advanced the Ivanov side of the picture by giving a finite
rigid subset X(Σ) in the curve complex with the property that any simplicial injection of their set into the
curve complex is induced by a unique mapping class. In this paper we relate the work in [1] to the Harer
side of that picture by relating the finite rigid set X(Σ) of Aramayona and Leininger to a homologically
non-trivial sphere X(Σ) in the curve complex whose orbit under the action of the mapping class group
generates the reduced homology of the curve complex. First, we focus on the sphere with n marked points.
In Proposition 25 we find, for each n ≥ 5, an explicit set of curves on Σn

0 whose associated vertices in C (Σn
0 )

determine an essential simplicial sphere in C (Σn
0 ). The information in Proposition 25 will allow us to prove

our first main result in §3.2:

Theorem 1. Assume that n ≥ 5. Then the finite rigid set X(Σn
0 ) ⊂ C (Σn

0 ) given in [1] is precisely the essential
(n− 4)-sphere X(Σn

0 ) ⊂ C (Σn
0 ) whose reduced homology class is determined in Proposition 25 of this paper to be

a Mod(Σn
0 )-module generator of the reduced homology of the curve complex. This answers Question 2 of [1] in the

affirmative for n ≥ 5.

Given the suprising coincidence of our essential sphere and the finite rigid set of Aramayona and Leininger
for the surface Σn

0 , and the fact that X(Σ6
0) = X(Σ0

2) = X(Σ0
2), one might be tempted to conjecture that

homologically non-trivial spheres in the curve complex are always finite rigid sets. Attempting to test our
conjecture in the cases Σ0

g, g ≥ 3 we learned that it is not true. In Proposition 31 we construct essential
spheres X(Σ0

g) and X(Σ1
g) in C (Σ0

g) and C (Σ1
g) respectively. Our second main result, proved in §4.2 is:

Theorem 2. Let g ≥ 3 and n ∈ {0, 1} or g = 2 and n = 1. Then the essential (2g− 2)-sphere X(Σn
g) ⊂ C (Σn

g)

that is determined in Proposition 31 (i) represents a Mod(Σn
0 )-module generator for the reduced homology of C (Σn

g),
(ii) is a proper subset of X(Σn

g), but (iii) is not rigid.

Modified versions of Theorems 1 and 2 hold for the sporadic surfaces Σ4
0, Σ0

1 and Σ1
1. See §4.3 for the precise

statements.

While Theorem 2 rules out the possibility that homologically non-trivial spheres in the curve complex must
be rigid, we have the following suggestive corollary:

Corollary 3. Suppose g = 0 and n ≥ 5 or g ≥ 2 and n ∈ {0, 1}. Let X(Σn
g) ⊂ C (Σn

g) be the finite rigid set given
in [1]. Then the inclusion map i : X(Σn

g)→ C (Σn
g) induces a homomorphism i∗ : H̃∗(X(Σn

g))→ H̃∗(C (Σn
g)) with

non-trivial image.

Proof. In both cases the inclusion map j : X → C factors through the inclusion map i : X→ C and induces
a homomorphism j∗ : H̃∗(X)→ H̃∗(C ) with non-trivial image.

Question 4. Suppose 3g + n ≥ 5. Does the inclusion map i : X(Σn
g)→ C (Σn

g) of the finite rigid set given in
[1] induce a homomorphism i∗ : H̃∗(X(Σn

g))→ H̃∗(C (Σn
g)) with non-trivial image?

.
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Here is a guide to the paper. We begin, in §2 , with a review of the necessary background. The associahedron
will enter into this review because it concisely describes the simplicial structure of the spheres in the curve
complex which we demonstrate to be homologically non-trivial. We introduce it in §2.1.

Our new work begins in §3, where we restrict our discussion to surfaces of genus 0 with n ≥ 4 marked
points and give a finite Mod-module resolution of the Steinberg module (the reduced homology of the curve
complex) using the the cellular chain complex of the arc complex relative to the arc complex at infinity. The
last two terms of this resolution give a Mod-module presentation of this homology group which we use to
give a single class whose orbit under the mapping class group generates the entire relative homology group.
In §3.1 we use Harer’s homotopy equivalence from §2.2 to convert our non-trivial class in the homology of
the arc complex relative to the arc complex at infinity to a class in the homology of the curve complex. We
then simplify our representative of this class. In Proposition 25 we give, explicitly, a finite subset X of the
curve complex C the orbit of whose homology class under the action of the mapping class group generates
the reduced homology of the curve complex. In §3.2 we find that the simplified representative is precisely
the finite rigid set of Aramayona and Leininger, proving Theorem 1.

In §4 we consider the same situation when g ≥ 1 and n ∈ {0, 1}. This situation was already treated in
[2], however we are now able to simplify the results given there drastically. We give, in Proposition 31,
an explicit simplified homologically non-trivial sphere in the curve complex the orbit of whose homology
class under the action of the mapping class group generates the reduced homology of the curve complex.
We establish that it is a proper subset of the finite rigid set of Aramayona and Leininger. In §4.2 we prove
Theorem 2, by showing that it is not a finite rigid set.

Modified versions of Theorems 1 and 2, for sporadic surfaces, are discussed and proved in §4.3.

2 Review of the Background

Our results in §3 and §4 will concern the surfaces Σn
0 where n ≥ 4 and Σn

g where g ≥ 1 and n ∈ {0, 1}.
However, many of the results that we review in this section apply in greater generality so we provide the
stronger statements and more general definitions when possible.

2.1 The curve complex, arc complex and associahedron

Let n ≥ 4 or g ≥ 1 and set

τ =


n− 4, g = 0
2g− 2, g ≥ 1 and n = 0
2g + n− 3, g ≥ 1 and n ≥ 1

. (1)

By the work of Harer we have the following theorem:

Known Result 5 ([5, Theorem 3.5]). Assume n ≥ 4 or g ≥ 1. The curve complex C (Σn
g) has the homotopy type

of a countably infinite wedge sum of spheres of dimension τ thus

C (Σn
g) ' ∨∞Sτ .

where τ is as in (1).

In particular the reduced homology H̃∗(C (Σn
g); Z) of the curve complex is non-trivial only in dimension τ

where we get
H̃τ(C (Σn

g); Z) ∼= ⊕∞Z.

3



The dualizing module of a duality group Γ of cohomological dimension d is a Γ-module D such that for any
Γ-module A and any k ∈ Z we have

Hk(Γ; A) ∼= Hd−k(Γ; A⊗Z D)

where A ⊗Z D has the diagonal module structure. (See [3, VIII.10] for a general introduction to duality
groups.)

In particular if Γ is any torsion free finite index subgroup of the mapping class group Mod(Σn
g) where n ≥ 4

or g ≥ 1 then by the work of Harer [5, Theorem 4.1] the dualizing module of Γ is the Steinberg module

St = St(Σn
g) := H̃τ(C (Σn

g); Z).

We view this as motivation for a careful study of the homotopy type of the curve complex.

To help us in this study, it will be convenient to introduce a closely related complex, the “arc complex” of
a surface with marked points. Let Σn

g be the surface with genus g ≥ 0 and n ≥ 1 marked points and let
V ⊂ Σn

g be the set of marked points. An arc in Σn
g is either the unoriented image of a properly embedded

path in Σn
g joining two points of V which is disjoint from V except at its endpoints or else the image of an

unoriented simple loop in Σn
g based at a point in V disjoint from V except at its basepoint. An essential arc

in Σn
g is an arc which does not bound an embedded disk in Σn

g whose interior is disjoint from V. We will
say that two arcs are disjoint if they are disjoint except possibly at their endpoints. The isotopy class of an
essential arc is its orbit under the elements of Homeo0(Σn

g) which fix the marked points pointwise. An arc
system is a set of isotopy classes of arcs with pairwise disjoint representatives and a sub arc system of an arc
system is any non-empty subset of the arc system. The arc complex A = A (Σn

g) is the simplicial complex
whose vertices are isotopy classes of essential arcs and whose k-simplices correspond to arc systems with
k + 1 isotopy classes of arcs. Observe that a maximal arc system gives a triangulation of the surface Σn

g with
n vertices so by euler characteristic it will have 6g + 3n− 6 arcs. Therefore we have

dim(A (Σn
g)) = 6g + 3n− 7.

The arc complex has a very nice property:

Known Result 6 ([7]). If n ≥ 2 or if both g ≥ 1 and n ≥ 1 then A (Σn
g) is contractible.

An arc system fills the surface Σn
g if the arcs in the arc system cut the surface into disks with at most one

marked point in their interior. The arc complex at infinity A∞ = A∞(Σn
g) is the union of all simplices of A (Σn

g)

whose corresponding arc systems do not fill the surface. One may also alternatively describe A∞(Σn
g) as the

subset of points in A (Σn
g) with infinite stabilizers under the action of Mod(Σn

g).

Now suppose that g = 0 and n ≥ 4 or g ≥ 1 and n = 1 and let τ be as in equation (1). Then at least τ + 2
arcs are needed to fill the surface Σn

g thus A∞(Σn
g) contains the entire τ-skeleton of A (Σn

g). If on the other
hand we have g ≥ 1 and n ≥ 2 then at least τ + 1 arcs are needed to fill the surface which implies that
A∞(Σn

g) contains the (τ − 1)-skeleton of A (Σn
g) but not the entire τ-skeleton of A (Σn

g). This fact renders
an essential part of our argument given in §2.3 applicable only to the cases where g = 0 and n ≥ 4 or g ≥ 1
and n = 1.

We now introduce a simplicial complex which we will later embed in the curve complex as a homologically
non-trivial sphere. Let m ≥ 3. The associahedron Km is a convex polytope homeomorphic to the closed
(m − 2)-ball. Its boundary ∂Km is a cell complex homeomorphic to the (m − 3)-sphere. The dual of the
cell complex ∂Km is a simplicial complex Dm which is again homeomorphic to the (m− 3)-sphere. Here we
provide a convenient description of Dm taken from [4, Corollary 2.7].
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Let Γ be a graph. A tube is any proper non-empty subset of the vertices of Γ whose induced subgraph in Γ
is connected. Let t1 and t2 be two tubes of Γ. We say that t1 and t2 are nested if t1 ⊂ t2 or t2 ⊂ t1. The tubes
t1 and t2 overlap if t1 ∩ t2 6= ∅ and t1 and t2 are not nested. Tubes t1 and t2 are adjacent if t1 ∩ t2 = ∅ and
t1 ∪ t2 is a tube. Two tubes in Γ are compatible if they do not overlap and are not adjacent.

Definition 7. Let D(Γ) be the simplicial complex with a vertex for each tube of Γ and a k-simplex for each
set of k + 1 pairwise compatible tubes in Γ.

Definition 8. The dual Dm of the boundary (m− 3)-sphere of the associahedron Km is the simplicial com-
plex D(Λm−1) where Λm−1 is the path graph with m− 1 vertices given in Figure 1.

1 2 3
· · ·

m− 2 m− 1

Figure 1: A path graph Λm−1 with vertex set {1, 2, · · · , m− 1}.

Example 9. D5 is the simplicial complex homeomorphic to S2 depicted in Figure 2.

Figure 2: The simplicial complex D5 is the dual of the boundary of the associahedron K5

The curious reader will discover that the literature on the combinatorics of simplicial complexes is filled
with references to the associahedron. In particular, the reader may wish to compare Figure 2 below with
Figure 10 of [2], which illustrates the role that the associahedron will play in this paper. Indeed, it is used to
describe both the finite rigid subsets sets of C (Σ6

0) and of C (Σ0
2), illustrating the well-known isomorphism

between these two complexes [10].

2.2 Maps between simplicial complexes

In the discussion that follows we will encounter a number of maps between simplicial complexes which
are not simplicial maps, but are nonetheless very well-behaved piecewise linear maps. For example we
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will describe below a continuous map from the arc complex at infinity A∞(Σn
g) to the curve complex C (Σn

g)

which induces a homotopy equivalence (see Known Result 17). Here we develop some convenient language
and observations for working with these maps.

If X is a simplicial complex with vertex set X0 we will specify a general point p ∈ X as a linear combination

p = ∑
v∈X0

pvv

where for all v ∈ X0 we have 0 ≤ pv ≤ 1 and ∑v∈X0 pv = 1. For a point p ∈ X the support of p is the set

supp p = {v ∈ X0|pv > 0}

and for a subset U ⊂ X we set supp U =
⋃

p∈U supp p. Our simplicial complexes will all be finite dimen-
sional so we will have dim X = maxp∈X | supp p|. Conversely, given a set S ⊂ X0 we will define the span of
S to be the set

span S = {p ∈ X| supp p ⊂ S}.

Definition 10 (Interpolability). Let X and Y be simplicial complexes with vertex sets X0 and Y0 respectively.
Let f 0 : X0 → Y be a function. We say that f 0 is interpolable if for any simplex σ of X there is some simplex
η of Y such that for every vertex v of σ we have f 0(v) ∈ η.

Note that it suffices to verify the condition of Definition 10 for the maximal simplices of a finite dimensional
simplicial complex X.

Definition 11 (Linear interpolation). Let X and Y be simplicial complexes with vertex sets X0 and Y0 re-
spectively. We say that f : X → Y is a linear interpolation if the restriction f |X0 : X0 → Y is interpolable and
for any point p = ∑v∈X0 pvv ∈ X we have

f

(
∑

v∈X0

pvv

)
= ∑

v∈X0

pv f (v).

Remark 12. Note that any interpolable function f 0 : X0 → Y from the 0-skeleton X0 of a simplicial complex
X to a simplicial complex Y extends to a unique linear interpolation f : X → Y via the equation

f

(
∑

v∈X0

pvv

)
= ∑

v∈X0

pv f 0(v).

Lemma 13 (Linear interpolations are continuous). Let f : X → Y be a linear interpolation. Then f is continuous.

Proof. This follows from the gluing lemma from basic topology and the observation that linear interpola-
tions agree on intersections of simplices.

Lemma 14. Let f , g : X → Y be linear interpolations and suppose that for each simplex σ of X there is a simplex η

of Y such that for each vertex v of σ we have f (v), g(v) ∈ η. Then f and g are homotopic functions.

Proof. For t ∈ [0, 1] define F0
t : X0 → Y by setting

F0
t (v) = (1− t) f (v) + tg(v)

for each vertex v ∈ X0. Note that F0
t is interpolable so we may extend it to a linear interpolation Ft : X → Y.

Now define F : X × I → Y by setting F(x, t) = Ft(x). One observes that F(x, 0) = f (x) and F(x, 1) = g(x)
for all x ∈ X. The continuity of F follows from the continuity of the restriction F|σ×I for each simplex σ of
X and the gluing lemma.

6



Corollary 15. Let f : X → Y be a linear interpolation. For each vertex v ∈ X0 choose a vertex wv ∈ supp f (v)
and define h0 : X0 → Y by setting h0(v) = wv. Then h0 is interpolable and f is homotopic to the linear interpolation
h : X → Y of h0.

Proof. Let σ be a simplex of X. Then since f is a linear interpolation there is a simplex η of Y such that
f (σ) ⊂ η and hence supp f (σ) ⊂ η. By construction if v is a vertex of σ then supp h0(v) ⊂ supp f (σ)
so supp h0(v) ⊂ η. It follows that h0 is interpolable with linear interpolation h : X → Y. Moreover,
h(v), f (v) ∈ η so we may apply Lemma 14 to conclude that h and f are homotopic.

Finally we note that if X is a simplicial complex then its barycentric subdivision bs X is the simplicial complex
with 0-skeleton given by the set

(bs X)0 = {σ| σ is a simplex of X}

and with n-simplices given by flags of simplices of X of length n + 1. One gets a homeomorphism be-
tween X and bs X by letting j0 : (bs X)0 → X be the function sending the vertex σ ∈ (bs X)0 to the point

1
| supp σ| ∑v∈supp σ v and letting

j : bs X → X

be the linear interpolation of j0. The barycentric subdivision map

bs : X → bs X (2)

is the inverse of j.

We end our general discussion of linear interpolations with the following observation:

Remark 16. A linear interpolation f : X → Y is a simplicial map if and only if for all v ∈ X0 we have
| supp f (v)| = 1.

With the language of linear interpolations we now review Harer’s homotopy equivalence between the arc
complex at infinity and the curve complex. Suppose that g ≥ 1 and n ≥ 1 or g = 0 and n ≥ 4. Let
A∞ = A∞(Σn

g) and C = C (Σn
g). Let bs A∞ be the barycentric subdivision of A∞. The vertices of bs A∞ will

correspond to non-filling arc systems with k-simplices corresponding to increasing flags of non-filling arc
systems of length k + 1.

When an arc system α does not fill the surface Σn
g we can associate a curve system γ(α) to it by letting

N(α) ⊂ Σn
0 be a closed regular neighborhood of the union of the arcs in the arc system α and letting the

curve system γ(α) be the set of essential (in Σn
g) boundary curves of the subsurface Σn

g−N(α) with duplicate
curves removed. Let

Φ0 : (bs A∞)0 → C

be the function sending the non-filling arc system α to the barycenter 1
|γ(α)| ∑c∈γ(α) c of the simplex in C

corresponding to the the curve system γ(α).

One sees that Φ0 is interpolable as follows. If σ is a simplex of bs A∞ then it corresponds to an increas-
ing flag of non-filling arc systems α1 ( α2 ( · · · ( αk. We may arrange that the corresponding regular
neighborhoods satisfy N(αi) ( int N(αi+1) when 1 ≤ i < k. Thus all boundary curves can me made to be
simultaneously disjoint. Let η be the simplex of C corresponding to the curve system which is the union of
all such sets of boundary curves. If v is a vertex of σ then Φ0(v) ∈ η. Thus Φ0 is interpolable. Let

Φ : bs A∞ → C (3)

be the linear interpolation of Φ0.
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Known Result 17 ([5, Theorem 3.4]). Suppose that g ≥ 1 and n ≥ 1 or g = 0 and n ≥ 4. Then the map Φ in (3)
induces a homotopy equivalence between A∞(Σn

g) and C (Σn
g).

2.3 A free resolution of the homology of the Steinberg module

We now restrict to the cases where either g = 0 and n ≥ 4 or g ≥ 1 and n = 1 and utilize techniques similar
to those in [2] to give a Mod(Σn

g)-module resolution of St(Σn
g). It is the failure of (5) below when g ≥ 1 and

n ≥ 2 which renders our argument invalid for that case.

By Known Result 6 the arc complex A = A (Σn
g) is contractible and by Known Result 17 the arc complex

at infinity A∞ = A∞(Σn
g) is homotopy equivalent to the curve complex C = C (Σn

g). Known Result 5 says
that curve complex has the homotopy type of a wedge of τ-dimensional spheres. Therefore for k ≥ 1

Hk(A , A∞; Z) ∼= H̃k−1(A∞; Z)
∼= H̃k−1(C ; Z)

=

{
0, k 6= τ + 1
St(Σn

g), k = τ + 1.

(4)

Now consider the cellular chain complex C∗(A , A∞) for the pair of spaces (A , A∞).

· · · → 0→ C6g+3n−7(A , A∞)→ · · · → C1(A , A∞)→ C0(A , A∞)→ 0

where as usual we define Ck(A , A∞) := Ck(A )/ Ck(A∞). A chain complex is an exact sequence when all
of its homology groups are 0. Note that every homology group of the pair of spaces (A , A∞) is zero except
for Hτ+1(A , A∞; Z) so the chain complex C∗(A , A∞) is very close to being an exact sequence.

No arc system with 2g− 1 or fewer arcs can fill the surface Σ1
g and no arc system with n− 3 or fewer arcs

can fill the surface Σn
0 . Hence in both cases no arc system with τ + 1 or fewer arcs can fill the surface so the

entire τ-skeleton of A is contained in A∞. Thus

Cτ(A , A∞) := Cτ(A )/ Cτ(A∞) = Cτ(A∞)/ Cτ(A∞) = 0. (5)

From equations (4) and (5) we have that

St(Σn
g)
∼= Hτ+1(A , A∞)

=

ker
(

Cτ+1(A , A∞)→ Cτ(A , A∞)

)
Image

(
Cτ+2(A , A∞)→ Cτ+1(A , A∞)

)

=

ker
(

Cτ+1(A , A∞)→ 0
)

Image
(

Cτ+2(A , A∞)→ Cτ+1(A , A∞)

)
=

Cτ+1(A , A∞)

∂ Cτ+2(A , A∞)

∼=
Cτ+1(A )

Cτ+1(A∞)⊕ ∂ Cτ+2(A )

(6)

where ∂ is the boundary operator for C∗(A , A∞) or C∗(A ) depending on the context. We thus have the
following very useful description of the homology of the curve complex:
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Proposition 18. Let g = 0 and n ≥ 4 or g ≥ 1 and n = 1. Let τ be as in (1) and C∗(A ) and C∗(A∞) be the
simplicial chain complexes of the arc complex A = A (Σn

g) and arc complex at infinity A∞ = A∞(Σn
g) respectively.

Then the Steinberg module St(Σn
g) := H̃τ(C (Σn

g); Z) has the following presentation:

St(Σn
g)
∼=

Cτ+1(A )

Cτ+1(A∞)⊕ ∂ Cτ+2(A )
.

Proposition 18 says that the reduced homology of the curve complex is the quotient of the free abelian group
on all arc systems in Σn

g with τ + 2 arcs modulo all non-filling arc systems with τ + 2 arcs and boundaries of
arc systems with τ + 3 arcs.

Notice that if k ≥ τ + 2 then by equation (4) we have Hk(A , A∞) = 0 so

· · · → 0→ C6g+3n−7(A , A∞)→ · · · → Cτ+2(A , A∞)→ Cτ+1(A , A∞) (7)

is an exact sequence. As with any terminating exact sequence we can append two more terms to get a
slightly longer exact sequence

· · · → 0→ C6g+3n−7(A , A∞)→ · · · → Cτ+2(A , A∞)→ Cτ+1(A , A∞)→ Cτ+1(A , A∞)

∂ Cτ+2(A , A∞)
→ 0.

From (6) we know that the penultimate term of this sequence is isomorphic to St(Σn
g). Since the sequence

in (7) is exact we have a Mod(Σn
g)-module resolution of St(Σn

g). Note that a filling arc system in Σn
g always

has a finite but possibly non-trivial stabilizer in Mod(Σn
g). Hence for k ≥ τ + 1 the relative chain group

Ck(A , A∞) is not quite a free Mod(Σn
g)-module. However, if one restricts to a torsion free subgroup Γ <

Mod(Σn
g) then Ck(A , A∞) will be a free Γ-module.

Proposition 19. Let g = 0 and n ≥ 4 or g ≥ 1 and n = 1. Let τ be as in (1). The Steinberg module St(Σn
g) :=

H̃τ(C (Σn
g); Z) has the following Mod(Σn

g)-module resolution of finite length:

· · · → 0→ C6g+3n−7(A , A∞)→ · · · → Cτ+2(A , A∞)→ Cτ+1(A , A∞)→ St(Σn
g).

This resolution is not free but will be free for any torsion free subgroup Γ < Mod(Σn
g). The terms of this resolution

will be finitely generated as Γ-modules if the index of Γ in Mod(Σn
g) is finite.

3 Essential spheres and finite rigid sets for the surfaces Σn
0

We begin the new work in this paper. In this section we assume that n ≥ 4, and let Σn
0 be the surface of

genus 0 with marked point set V ⊂ Σn
0 of order n. We turn our attention to the goal of finding a single class

in St(Σn
0 ) whose orbit under Mod(Σn

0 ) generates St(Σn
0 ) as a Z-module.

From Proposition 18 we have that

St(Σn
0 )
∼=

Cn−3(A )

Cn−3(A∞)⊕ ∂ Cn−2(A )
.

Cn−3(A ) is the free abelian group on all arc systems with n − 2 arcs. The mapping class group is not
transitive on the set of these arc systems, but there are a finite number of orbits. We will show that after
quotienting by the relations Cn−3(A∞) and ∂ Cn−2(A ) that every element of St(Σn

0 ) will be a linear combi-
nation of elements of the Mod(Σn

0 )-orbit of the class of a single arc system.

The set of non-filling arc systems with n− 2 arcs forms a basis for Cn−3(A∞). This is a subset of the set of
all arc systems with n− 2 arcs which forms a basis for Cn−3(A ). Thus we see that non-filling arc systems
give the trivial class in St(Σn

0 ).
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The union of the arcs in an arc system α is a graph G(α). Note that in general the vertices of G(α) will be
only those marked points in V which are endpoints of at least one arc in the arc system α. The arc system
α fills the surface if Σn

0 − G(α) is a disjoint union of open disks containing at most one marked point. If the
filling arc system has exactly n− 2 arcs then each of these disks must contain exactly one marked point. We
note that if α is a filling arc system then G(α) must be connected since its complement is a disjoint union of
open disks.

Lemma 20. If α is a filling arc system in Σn
0 with n − 2 arcs then its class in the Steinberg module St(Σn

0 ) is a
Z-linear combination of the classes of filling arc systems β with n− 2 arcs such that the graph G(β) is a path graph.

Proof. Let α be an arc system in Σn
0 with n− 2 arcs. If α does not fill then its class in St(Σn

0 ) is trivial. Define
a tine of the graph G(α) to be a path subgraph P of G(α) which is either any single vertex of G(α) or else has
at least one vertex which has valence one in G(α) and at most one vertex which has valence greater than 2
in G(α) (see Figure 3). Note that every vertex of G(α) is a tine of length 0. Define the complexity µ(α) of
the arc system α to be the length of the longest tine of G(α).

G(α) Tines of G(α)

w

P(α)v G(α̂)
â

Figure 3: On the left we have a filling arc system α in the surface Σ16
0 with 14 arcs with complexity

µ(α) = 2. In the center the solid part of the graph is the union of the tines of G(α). The graph G(α)

has 13 tines of length zero, four tines of length one and one tine P(α) of length two. On the right we
have a filling arc system α̂ such that the relation in St(Σ16

0 ) induced by ∂α̂ expresses the class of α as
a linear combination of classes of filling arc systems all with with complexity at least 3.

Let P(α) be a tine of α with maximal length. If µ(α) = n− 2 then G(α) is a path graph and we are done.
Assume that µ(α) < n− 2. If µ(α) = 0 let v be the unique vertex of P(α). Otherwise let v be the unique
vertex of P(α) which has valence 1 in G(α). The vertex v must be in the closure of at least one component
of Σn

0 −
⋃

α. Let w be the marked point contained in the interior of such a component (see the center of
Figure 3). Let â be an arc disjoint from the arcs of α connecting v to w. Let α̂ = α ∪ {â} which is an arc
system with n− 1 arcs (see the right of Figure 3).

Given b ∈ α̂ set αb = α̂− {b}. We claim exactly one of the following holds:

1. αb = α.

2. αb is a non-filling arc system in Σn
0 .

3. αb is a filling arc system with µ(αb) > µ(α).

10



Note that αb = α if and only if b = â. Suppose b 6= â. Then b ∈ α. If b ⊂ P(α) then G(αb) is disconnected so
αb is non-filling. If b * P(α) then αb may or may not be a filling system but in either case µ(αb) ≥ µ(α) + 1.

We may use the relation ∂α̂ in St(Σn
0 ) to express the class of the arc system α as a Z-linear combination

of classes of arc systems with higher complexity. By induction we may write any such class as a Z-linear
combination of classes of filling arcs systems with the maximal complexity n− 2. The graphs for each of
these arc systems must be a path graph.

y1 y2 yn−2 pυ

· · ·

Figure 4: A filling arc system υ = {y1, y2, · · · , yn−2} with n − 2 arcs in the surface Σn
0 whose class

generates St(Σn
0 ) as a Mod(Σn

0 )-module.

Proposition 21. Suppose n ≥ 4. Let θυ ⊂ A (Σn
0 ) be the (n − 3)-simplex corresponding to the arc system υ in

Figure 4. Then the class

[θυ] ∈ St(Σn
0 ) =

Cn−3(A )

Cn−3(A∞)⊕ ∂ Cn−2(A )

generates St(Σn
0 ) as a Mod(Σn

0 )-module.

Proof. By Lemma 20 the class of any arc system with n− 2 arcs is a Z-linear combination of classes of arc
systems whose graphs are path graphs. All path graphs with n− 2 edges in Σn

0 are in the Mod(Σn
0 )-orbit

of the arc system υ pictured in Figure 4. Hence the Mod(Σn
0 )-orbit of the class of θυ generates St(Σn

0 ) as a
Z-module. In other words [θυ] generates St(Σn

0 ) as a Mod(Σn
0 )-module.

Corollary 22. Suppose n ≥ 4. Let θυ ⊂ A (Σn
0 ) be the (n − 3)-simplex corresponding to the arc system υ in

Figure 4. Then the class

[θυ] ∈ St(Σn
0 ) =

Cn−3(A )

Cn−3(A∞)⊕ ∂ Cn−2(A )

is non-trivial.

Proof. If the [θυ] is the trivial class in St(Σn
0 ) then by Proposition 21 we must have that St(Σn

0 ) is the zero
module. Let Γ < Mod(Σn

0 ) be a torsion free finite index subgroup. Then by [5, Theorem 4.1] the cohomo-
logical dimension of Γ is n− 3. We may use duality to show that for all k and all Γ-modules A

Hk(Γ; A) ∼= Hn−3−k(Γ; A⊗ St(Σn
0 )) = Hn−3−k(Γ; A⊗ 0) = Hn−3−k(Γ; 0) = 0.

This implies that the cohomological dimension of Γ is 0. Hence we have a contradiction.

3.1 An essential sphere in the curve complex of the surface Σn
0

Again we assume that g = 0 and n ≥ 4. In Corollary 22 we have a non-trivial class in

St(Σn
0 ) =

Cn−3(A )

Cn−3(A∞)⊕ ∂ Cn−2(A )
.

We will now use the homotopy equivalence between A∞ and C and the techniques of §2.2 to get a (n− 4)-
sphere in C representing this non-trivial class. After simplification our (n− 4)-sphere will be the dual Dn−1
of the boundary of the associahedron Kn−1 (See Definition 8).

11



The class of the filling arc system in Figure 4 is represented by a single (n− 3)-simplex θυ ⊂ A (Σn
g) all of

whose proper faces are contained in the arc complex at infinity. The connecting homomorphism

∂ : Hn−3(A , A∞; Z)→ H̃n−4(A∞; Z)

sends the class [θυ] ∈ Hn−3(A , A∞; Z) to the class [θn−4
υ ] ∈ H̃n−4(A∞; Z) where θn−4

υ denotes the (n− 4)-
skeleton of the (n − 3)-simplex θυ. Let bs : A∞ → bs A∞ be the barycentric subdivision map from (2).
Recall that the homotopy equivalence Φ : bs A∞(Σn

0 ) → C (Σn
0 ) from (3) sends a non-filling arc system to

the collection of boundary curves of a regular neighborhood of the arc system. It follows that the homology
class of the (n− 4)-sphere Φ(bs θn−4

υ ) is a Mod(Σn
0 )-module generator for H̃n−4(C ; Z) and is non-trivial.

There are a number of properties of the (n− 4)-sphere Φ(bs θn−4
υ ) which are undesirable. Firstly, since Φ is

defined on the barycentric subdivision of A∞ the sphere Φ(bs θn−4
υ ) has 2(n−2) − 2 vertices which is expo-

nential in the number of marked points. Secondly, it is a subcomplex of the barycentric subdivision of the
curve complex, whereas one would like to describe the sphere as a subcomplex of the curve complex itself.
In order to address these issues we will replace the sphere Φ(bs θn−4

υ ) with a simpler one representing the
same free homotopy class. In fact our simplified sphere X ⊂ C described below will agree with Φ(bs θn−4

υ )

setwise but will have a much simpler structure as a simplicial complex.

Let Y ⊂ bs A∞ be the flag complex whose vertices correspond to non-empty proper sub arc systems of
the filling arc system υ in Figure 4 and whose k-simplices correspond to increasing flags of such sub arc
systems of length k + 1. Notice that Y = bs θn−4

υ is the homeomorphic image of θn−4
υ under the barycentric

subdivision map bs : A∞ → bs A∞ from (2) and hence topologically a sphere of dimension n − 4. Let
i : Y → bs A∞ be the inclusion map and let ϕ = Φ ◦ i where Φ : bs A∞ → C is as in (3). Now we will apply
the techniques of §2.2 to simplify ϕ.

Let Y0 be the 0-skeleton of Y. Define the function ϕ0
1 : Y0 → C as follows. Let α ( υ be a vertex of Y. Set

α∗ ⊂ α to be the left-most connected component of the arc system α and ϕ0
1(α) to be the unique boundary

curve of α∗. Notice that ϕ0
1(α) ∈ supp ϕ(α). Hence by Corollary 15 the function ϕ0

1 is interpolable. Let

ϕ1 : Y → C

be its linear interpolation which by Corollary 15 is homotopic to ϕ.

Define the subcomplex X = X(Σn
0 ) ⊂ C (Σn

0 ) as follows. For each non-empty interval J = {j, j+ 1, · · · , m} (
{1, 2, · · · , n− 2} let xJ be the boundary curve of the arc system {yj, yj+1, · · · , ym} ⊂ υ. Let

X0 = {xJ | J ( {1, 2, · · · , n− 2} is a non-empty interval}

Let X(Σn
0 ) = span X0 ⊂ C (Σn

0 ).

Lemma 23. The complex X and the simplicial complex Dn−1 (see Definition 8) are isomorphic as simplicial com-
plexes.

Proof. Let Λn−2 be the graph in Figure 1. If J, J′ ( {1, 2, · · · , n− 2} are two non-empty intervals then the
boundary curves xJ and xJ′ form a curve system exactly when J and J′ are compatible tubings of the graph
Λn−2. We caution the reader not to confuse the graph Λn−2 which has a vertex for each arc in the arc system
υ and the underlying graph G(υ) for the arc system υ from §3 in which each arc of υ is an edge.

The linear interpolation f : Dn−1 → X of the map sending the tubing J ∈ Dn−1 of Λn−2 to the curve xJ ∈ X
is a simplicial map by Remark 16 and its inverse is the linear interpolation of the function sending the
curve xJ to the maximal subinterval of J′ ⊂ {1, 2, · · · , n− 2} such that the arc system {yj|j ∈ J′} is entirely
contained in the component of Σn

0 − xJ which does not contain the marked point pυ.
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Lemma 24. The map ϕ1 is a simplicial map, ϕ1(Y) = X and ϕ1 : Y → X is a homotopy equivalence.

Proof. The map ϕ1 is a simplicial map onto its image by Remark 16 and the observation that for each vertex
α of Y we have

| supp ϕ1(α)| = |{ϕ0
1(α)}| = 1.

If α is a vertex of Y then ϕ1(α) is a vertex of X. The map ϕ1 is simplicial so ϕ1(Y) ⊂ span X0 = X.

Observe that Y is topologically an (n − 4)-sphere and by Lemma 23 that X is topologically an (n − 4)-
sphere. Hence the map ϕ1 : Y → X will be a homotopy equivalence if and only if it is a degree ±1 map.
Let J = {1, 2, · · · , n− 3} then ϕ−1

1 (xJ) = {α} where α = {y1, y2, · · · , yn−3}. Thus the degree of ϕ1 is equal
to the degree of the induced map ϕ∗1 : Lk(α, Y) → Lk(xJ , X) where Lk(w, W) denotes the link of the vertex
w in the complex W. The map ϕ∗1 is exactly the map ϕ1 for the surface with one less puncture. For the
base case surface Σ4

0 the map ϕ1 : Y → X is a homeomorphism of 0-spheres which has degree ±1. Hence,
inductively, for all n ≥ 4 the map ϕ1 : Y → X has degree ±1 and is therefore a homotopy equivalence. It
follows that ϕ1 : Y → X is surjective.

We have arrived at the following simplification of our Mod(Σn
0 )-module generator for H̃n−4(C ; Z).

Proposition 25. Assume n ≥ 4. Let X = X(Σn
0 ) ⊂ C (Σn

0 ) be the subcomplex of all simplices of C whose vertices
are boundary curves of connected sub arc systems of the arc system υ in Figure 4. Then as a simplicial complex X is
the dual Dn−1 of the boundary of the associahedron Kn−1 (see Definition 8) and with a proper choice of orientation
the class [X] ∈ H̃n−4(C ; Z) is the same as that of θυ from Proposition 21 and hence is a non-trivial generator for
H̃n−4(C ; Z) as a Mod(Σn

0 )-module.

Proof. Lemma 23 shows that X and Dn−1 are isomorphic simplicial complexes. The map ϕ : Y → C above
represents a Mod(Σn

0 )-module generator for H̃n−4(C ; Z). As we noted ϕ1 : Y → C is homotopic to ϕ and
thus represents the same class. Let iX : X → C be the inclusion map. By Lemma 24 the map ϕ1 : Y → X
has a homotopy inverse h : X → Y. Thus iX is homotopic to ϕ1 ◦ h which represents the same class as ϕ in
H̃n−4(C ; Z).

3.2 The proof of Theorem 1

In [1] Aramayona and Leininger show that certain finite subcomplexes W ⊂ C of the curve complex are
rigid sets. That is, any injective simplicial map f : W → C extends to a simplicial injection F : C → C and
hence is induced by a mapping class.

In the case that Σ = Σn
0 their finite rigid set X = X(Σn

0 ) is a topological sphere of dimension n− 4 and they
ask [1, Question 2] if the class [X] ∈ H̃n−4(C (Σn

0 )) is non-trivial. The construction of the set X ⊂ C (Σn
0 ) is

as follows: Let Gn be a regular n-gon and let Σn
0 be the double of Gn along its boundary with each vertex

of Gn giving a marked point. For each line segment w joining two nonadjacent sided of Gn the double cw
of w will be an essential curve in Σn

0 . Let X0 be the set of all (n
2)− n essential curves in Σn

0 which may be
constructed in this manner. Define X = spanX0 to be the union of all simplices of C (Σn

0 ) whose vertices all
lie in the set X0.

The reader is referred to the Introduction to this paper for the statement of Theorem 1. Using Proposition 25,
we are now ready to give the proof.

Proof of Theorem 1. Assume that n ≥ 5. Arrange the arc system in Figure 4 so that it is entirely contained in
the image of the boundary of the n-gon Gn in Σn

0 . Arrange the arcs in Figure 4 so that they coincide with all
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but two adjacent edges of Gn. Let pυ be the marked point of Σn
0 which is not incident with any arcs. If w

is a line segment joining two nonadjacent sides of Gn then its double cw will be the boundary curve for the
maximal connected sub arc system of the arc system in Figure 4 which is disjoint from cw and which is in
the component of Σn

0 − cw which does not contain the marked point pυ. This pairing identifies the vertices
of X and X. Since both subcomplexes are the full subcomplexes of C (Σn

0 ) spanned by their vertices the
subcomplexes must coincide.

We address the case of the surface Σ4
0 in §4.3 below.

4 Essential spheres and finite rigid sets for the surfaces Σ0
g and Σ1

g

We now turn our attention to the surface Σn
g where g ≥ 1 and n ∈ {0, 1}. Our main interest is in the case

n = 0, but in the process of investigating that we will need to study the case n = 1. To get started, we review
what was done in [2] to identify the homologically non-trivial sphere in C (Σn

g) described there. After that,
we use the techniques of §2.2 to radically simplify this sphere. Finally in §4.2 we compare this simplified
sphere to the finite rigid sets for Σn

g given in [1].

4.1 An essential sphere in the curve complex of a surface of genus g > 0

Consider the surface of genus g with 1 marked point depicted in Figure 5. Let θζ ⊂ A (Σ1
g) be the (2g− 1)-

simplex corresponding to the filling arc system ζ given in Figure 5. In [2] it is shown that the class [θζ ]

generates

St(Σ1
g)
∼=

C2g−1(A )

C2g−1(A∞)⊕ ∂ C2g(A )

as a Mod(Σ1
g)-module.

... ...
z1

z2

z3

z4 z5 z6

z7

z2g−3

z2g−2

z2g−1

z2g

Figure 5: A filling arc system ζ = {z1, z2, · · · , z2g} with 2g arcs in the surface Σ1
g whose class gener-

ates St(Σ1
g) as a Mod(Σ1

g)-module.

As was the case in Corollary 22 this class in St(Σ1
g) must be non-trivial.
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Now consider the surface Σ0
g without marked points. Here we have no arc complex, but by a result of Harer

following from more general work by Kent, Leininger and Schleimer [9, Corollary 1.1] the map

Ψ : C (Σ1
g)→ C (Σ0

g) (8)

which “forgets” the marked point is a homotopy equivalence. Hence we may identify St(Σ1
g) and St(Σ0

g)

via the induced map
Ψ∗ : H̃2g−2(C (Σ1

g); Z)→ H̃2g−2(C (Σ0
g); Z)

for all g ≥ 1.

To continue, suppose that g ≥ 1 and n = 1. Let Z ⊂ bs A∞(Σ1
g) be the flag complex whose vertices corre-

spond to non-empty proper sub arc systems of the filling arc system ζ in Figure 5 and whose k-simplices
correspond to increasing flags of such sub arc systems of length k + 1. The simplicial complex Z is the
barycentric subdivision of the boundary of a (2g− 1)-simplex and hence topologically a sphere of dimen-
sion 2g− 2. Again we let i : Z → bs A∞ be the inclusion map and set ϕ = Φ ◦ i where Φ : bs A∞ → C is as
in (3).

The sequential components of a sub arc system α of the arc system ζ in Figure 5 will be the maximal subsets
of α of the form {zj, zj+1, · · · , zk} where 1 ≤ j ≤ k ≤ 2g. Note that α is the disjoint union of its sequential
components. If α1, α2 ⊂ α are sequential components of α then we say that α1 precedes α2 if for all zj ∈ α1 and
all zk ∈ α2 we have j < k. Under this order we will refer to the first, second, last, etc. sequential component
of α. The order on the sequential components of a sub arc system α ( ζ should not be confused with the
containment partial order on all arc systems under which the sequential components of α are incomparable.
A sequential component will be called odd if it has an odd number of elements and even if it has an even
number of elements. A key observation is that if the arc system α ( ζ has m odd sequential components
then it will have m + 1 boundary curves.

This first step in the simplification of ϕ : Z → C (Σ1
g) will be a straightforward application of Corollary 15.

In order to apply Corollary 15 we would like to choose a particular boundary component for a regular
neighborhood of each sub arc system of the arc system in Figure 5. Define the function ϕ0

1 : Z0 → C (Σ1
g) as

follows. Let α ∈ Z0 be a proper sub arc system of ζ. If every sequential component of α is even then there
is only one boundary curve. Let ϕ0

1(α) be this curve. If α has an odd sequential component then let α? ⊂ α

be the first odd sequential component of α. Let j be the minimum number such that aj ∈ α?. Let N(α?) be a
closed regular neighborhood of α? in Σ1

g and let ϕ0
1(α) be the boundary component of N(α?) which is to the

right when following aj in the clockwise direction (see Figure 6). By Corollary 15 the function ϕ0
1 extends to

a linear interpolation ϕ1 : Z → C (Σ1
g) which is homotopic to ϕ.

· · ·

zj

zj+1 zj+2m−1

zj+2m

ϕ0
1(α

?)

Figure 6: An odd sequential component α? = {zj, zj+1, · · · , zj+2m}, its closed regular neighborhood
N(α?) (the grey region) and one of its boundary curves ϕ0

1(α
?) (the dotted line).

We now further simplify ϕ1 : Z → C (Σ1
g) to get a map ϕ2 : Z → C (Σ1

g) whose image in C (Σ1
g) will involve
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fewer curves. First we will describe the new map ϕ2 : Z → C (Σ1
g) and then construct an explicit homotopy

between ϕ1 and ϕ2.

For each arc system α ∈ Z0 all of whose sequential components has an even number of arcs let α∗ ⊂ α the
first sequential component. Let c be the unique boundary curve of a closed regular neighborhood N(α) of
α and c∗ be the unique boundary component of a closed regular neighborhood N(α∗) for α∗ chosen so that
N(α∗) ⊂ int N(α). Lastly, modify the boundary curve c∗ in Σ1

g by pulling it past the marked point to get c′∗
(see Figures 7 and 8).

. . .

zj

zj+1

zj+2

zj+2m

zj+2m+1

Figure 7: An even sequential component α∗ = {zj, zj+1, · · · , zj+2m+1}, its regular neighborhood
N(α∗) (the grey region) and its single boundary curve c∗ (the dotted line).

. . .

zj

zj+1

zj+2

zj+2m

zj+2m+1

Figure 8: An even sequential component α∗ = {zj, zj+1, · · · , zj+2m+1} and its modified boundary
curve c′∗ (the dotted line).

Let ϕ0
2 : Z0 → C (Σ1

g) be the function

ϕ0
2(α) =

{
ϕ1(α), α has an odd sequential component
c′∗, α has no odd sequential components

.

Lemma 26. If α ⊂ β are two proper sub arc systems of the arc system ζ in Figure 5 then {ϕ0
2(α), ϕ0

2(β)} is a curve
system.

Proof. Let α ⊂ β are two proper sub arc systems of the arc system ζ in Figure 5.

Suppose β has an odd sequential component. Choose closed regular neighborhoods N(α) and N(β) of
the arc systems α and β respectively such that N(α) ⊂ int N(β). We may arrange that the curve ϕ0

2(α) is
contained in N(α) and ϕ0

2(β) = ϕ1(β) is a boundary curve of N(β). Hence they must be disjoint curves.
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Suppose β has no odd sequential components and α has an odd sequential component. Let β∗ ⊂ β be the
first (even) sequential component of β and α? be the first odd sequential component of α. Either α? ⊂ β∗
or the arc system α? ∪ β∗ has two distinct sequential components. If α? ⊂ β∗ then choose closed regular
neighborhoods N(α?) and N(β∗) such that N(α?) ⊂ int N(β∗). Let c′∗ be the modified boundary curve
of N(β∗) as in Figure 8 chosen so that its intersection with N(α?) is in a sufficiently small neighborhood
of the marked point that c′∗ is disjoint from the boundary curve ϕ1(α

∗) of N(α?). Then {ϕ0
2(α), ϕ0

2(β)} =

{c′∗, ϕ1(α
?)} is a curve system. If α? ∪ β∗ has two distinct sequential components then we can choose closed

regular neighborhoods N(α?) and N(β∗) and a closed subset N′ ⊂ N(β∗) such that N(α?) and N′ are
disjoint, ϕ0

2(α) is a boundary curve of N(α?) and ϕ0
2(β) is the boundary curve of N′. Thus {ϕ0

2(α), ϕ0
2(β)}

is a curve system.

Suppose neither β nor α has an odd sequential component. Let β∗ ⊂ β and α∗ ⊂ α be the first (even)
sequential components of β and α respectively. Either α∗ ⊂ β∗ or the arc system α∗ ∪ β∗ has two distinct
sequential components. If α∗ ⊂ β∗ then choose closed regular neighborhoods N(α∗) and N(β∗) such that
N(α∗) ⊂ int N(β∗). Let ϕ0

2(β) be the modified boundary curve of N(β∗) as in Figure 8 chosen so that it
intersects with the boundary curve of N(α∗) exactly twice and choose ϕ0

2(α) to be the boundary curve of
N(α∗) surgered to follow along the segment ϕ0

2(β) ∩ N(α∗). Then after an arbitrarily small perturbation
we may arrange that ϕ0

2(α) and ϕ0
2(β) are disjoint. Hence {ϕ0

2(α), ϕ0
2(β)} is a curve system. If α∗ ∪ β∗ has

two distinct sequential components then we can choose closed regular neighborhoods N(α∗) and N(β∗)
and closed subsets N′(α∗) ⊂ N(α∗) and N′(β∗) ⊂ N(β∗) such that N′(α∗) and N′(β∗) are disjoint, ϕ0

2(α) is
the boundary curve of N′(α∗) and ϕ0

2(β) is the boundary curve of N′(β∗). Thus {ϕ0
2(α), ϕ0

2(β)} is a curve
system.

Recall that a set of curves forms a curve system if and only if every subset of order two is a curve system. Let
σ be a simplex of Z with vertex set σ0. Then every subset of ϕ0

2(σ
0) of order two is of the form {ϕ0

2(α), ϕ0
2(β)}

for some arc systems α, β with α ( β ( ζ. By Lemma 26 all such sets of order two are curve systems. It
follows that ϕ0

2(σ
0) is a curve system and that ϕ0

2 is interpolable. Let

ϕ2 : Z → C (Σ1
g)

be its linear interpolation.

In Lemma 28 below we will construct an explicit homotopy between ϕ1 : Z → C (Σ1
g) and ϕ2 : Z → C (Σ1

g).
In order to do this we will need Lemma 27 below.

Lemma 27. If α ⊂ β are two proper sub arc systems of the arc system ζ in Figure 5 then {ϕ2(α), ϕ1(β)} is a curve
system.

Proof. Suppose α has an odd sequential component. Then ϕ2(α) = ϕ1(α) and ϕ1(β) are both boundary
curves for the arc systems α and β and therefore form a curve system.

Suppose α has no odd sequential components. Let α∗ ⊂ α be its first sequential component and choose
closed regular neighborhoods N(α∗) and N(β) of the arc systems α∗ and β so that N(α∗) ⊂ N(β). If c′∗ is
the modified boundary curve of N(α∗) as in Figure 8 then it is clearly disjoint from all boundary curves
of N(β). The curve ϕ1(β) is one such boundary curve of N(β). Hence ϕ2(α) = c′∗ and ϕ1(β) are disjoint
curves.

Now we have the tools to construct an explicit homotopy equivalence between ϕ1 and ϕ2.

Lemma 28. The maps ϕ1 : Z → C (Σ1
g) and ϕ2 : Z → C (Σ1

g) are homotopic.
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Proof. Let σ be a simplex of Z with vertex set σ0 = {α0, α1, · · · , αk} satisfying α0 ( α1 ( · · · ( αk. Consider
the simplicial complex P = σ× I which is a prism triangulated by k + 1 simplices of dimension k + 1 with
vertex sets:

P0 = {(α0, 0), (α0, 1), (α1, 1), · · · , (αk, 1)}
P1 = {(α0, 0), (α1, 0), (α1, 1) · · · , (αk, 1)}

...

Pk = {(α0, 0), (α1, 0), · · · , (αk, 0), (αk, 1)}

The 0-skeleton of P is the set σ0 × {0, 1}. Let F0
σ : σ0 × {0, 1} → C (Σ1

g) be the function

F0
σ(αi, ε) =

{
ϕ2(αi), ε = 0
ϕ1(αi), ε = 1

.

We wish to show that F0
σ is interpolable. Each maximal simplex of P = σ × I has vertex set Pi for some

i. Thus we must show that F0
σ(Pi) is a curve system for each i. Recall that a set of curves is a curve

system if and only if each subset of order two is a curve system. Subsets of order two of the set F0
σ(Pi)

are all of the form {F0
σ(α, 0), F0

σ(β, 0)}, {F0
σ(α, 0), F0

σ(β, 1)}, or {F0
σ(α, 1), F0

σ(β, 1)} where α ⊂ β ( ζ. The
set {F0

σ(α, 0), F0
σ(β, 0)} = {ϕ2(α), ϕ2(β)} is a curve system by Lemma 26. The set {F0

σ(α, 0), F0
σ(β, 1)} =

{ϕ2(α), ϕ1(β)} is a curve system by Lemma 27. Finally the set {F0
σ(α, 1), F0

σ(β, 1)} = {ϕ1(α), ϕ1(β)} is a
curve system since it contains boundary curves of two closed subsurfaces N(α) and N(β) with N(α) ⊂
int N(β). Hence F0

σ is interpolable. Let Fσ : σ× I → C (Σ1
g) be its linear interpolation. By the gluing lemma

these Fσ’s assemble to a homotopy F : Z× I → C (Σ1
g) from ϕ2 to ϕ1.

We now describe a subcomplex X(Σ1
g) ⊂ C (Σ1

g) which will prove to be the image of the map ϕ2. For
1 ≤ i ≤ 2g let z′i = ϕ2(zi) (see Figure 9). For each interval J = {j, j + 1, · · · , m} ( {1, 2, · · · , 2g} let NJ

· · ·z′1

z′2
z′3

z′4 z′2g

Figure 9

be a closed regular neighborhood of the set z′j ∪ z′j+1 ∪ · · · ∪ z′m. If |J| is even then NJ has one boundary
component. Let xJ be that boundary component. If |J| is odd then NJ has two boundary components. In
this case let xJ be the boundary component of NJ in the “back half” (if j is even) or “top half” (if j is odd) of
the surface. Let X0 be the set

X0 = {xJ | J ( {1, 2, · · · , 2g} is an interval} (9)

and define X(Σ1
g) = span X0 to be the subcomplex of all simplices of C (Σ1

g) whose vertices are in X0. Let
X(Σ0

g) = Ψ(X(Σ1
g)) be the image of X(Σ1

g) under the map Ψ : C (Σ1
g) → C (Σ0

g) from (8) above which
“forgets” the marked point.

Lemma 29. Assume g ≥ 1 and n ∈ {0, 1}. The simplicial complex X(Σn
g) is isomorphic as a simplicial complex to

D2g+1 (see Definition 8).
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Proof. For intervals J1, J2 ( {1, 2, · · · , 2g} the curves xJ1 and xJ2 are disjoint precisely when the tubes J1
and J2 for the graph Λ2g in Figure 1 are compatible. Let D0

2g+1 be the 0-skeleton of the dual D2g+1 of the
boundary of the associahedron K2g+1. The bijection f 0 : X0 → D0

2g+1 given by f 0(xJ) = J and its inverse

are interpolable maps showing that X(Σ1
g) and D2g+1 are isomorphic as simplicial complexes. The map

Ψ|X(Σ1
g)

: X(Σ1
g)→ X(Σ0

g) is an isomorphism of simplicial complexes.

Lemma 30. Assume g ≥ 1 and n ∈ {0, 1}. The maps ϕ2 : Z → C (Σ1
g) and Ψ ◦ ϕ2 : Z → C (Σ0

g) are simplicial
maps. The images of ϕ2 and Ψ ◦ ϕ2 are X(Σ1

g) and X(Σ0
g) respectively. Furthermore ϕ2 : Z → X(Σ1

g) and
Ψ ◦ ϕ2 : Z → X(Σ0

g) are homotopy equivalences.

Proof. The map ϕ2 : Z → C (Σ1
g) is a simplicial map onto its image by Remark 16 and the observation that

for each vertex α of Z we have
| supp ϕ2(α)| = 1

The map Ψ a simplicial map so the composition Ψ ◦ ϕ2 is simplicial.

The curves in the set X0 given (9) are precisely the curves in the image of ϕ2. Thus if α is a vertex of Z then
ϕ2(α) is a vertex of X(Σ1

g) and Ψ ◦ ϕ2(α) is a vertex of X(Σ0
g). The maps ϕ2 and Ψ ◦ ϕ2 are simplicial so

ϕ2(Z) ⊂ X(Σ1
g) and Ψ ◦ ϕ2(Z) ⊂ X(Σ0

g).

Observe that Z is topologically a (2g− 2)-sphere and by Lemma 29 that X(Σ1
g) is topologically an (2g− 2)-

sphere. Hence the map ϕ2 : Z → X(Σ1
g) will be a homotopy equivalence if and only if it is a degree ±1

map. Let J = {1, 2, · · · , 2g − 1} then ϕ−1
2 (xJ) = {α} where α = {z1, z2, · · · , z2g−1}. Thus the degree of

ϕ2 is equal to the degree of the induced map ϕ∗2 : Lk(α, Z) → Lk(xJ , X(Σ1
g)) where Lk(w, W) denotes the

link of the vertex w in the complex W. Applying the link argument once more we see that the degree of
ϕ∗2 is equal to the degree of the map ϕ2 for the surface with genus g− 1. For the base case surface Σ1

1 the
map ϕ2 : Z → X(Σ1

1) is a homeomorphism of 0-spheres which has degree ±1. Hence, inductively, for all
g ≥ 1 the map ϕ2 : Z → X(Σ1

g) has degree ±1 and is therefore a homotopy equivalence. It follows that
ϕ2 : Z → X(Σ1

g) is surjective.

The restriction Ψ|X(Σ1
g)

: X(Σ1
g) → X(Σ0

g) is an isomorphism of simplicial complexes and hence a degree

±1 map. It follows that Ψ ◦ ϕ2 : Z → X(Σ0
g) has degree ±1. It is therefore a surjective simplicial homotopy

equivalence.

Proposition 31. Let g ≥ 1 and n ∈ {0, 1}. Let X0 be the set of essential curves in Σn
g given in (9) and X(Σn

g) ⊂
C (Σn

g) be the full subcomplex of C (Σn
g) generated by X0. Then as a simplicial complex X(Σn

g) is isomorphic to the
dual D2g+1 of the boundary of the associahedron K2g+1 (see Definition 8). Furthermore X(Σn

g) is topologically a
sphere of dimension 2g− 2 and, choosing an orientation, the class [X(Σn

g)] ∈ H̃2g−2(C (Σn
g); Z) is non-trivial and

generates H̃2g−2(C (Σn
g); Z) as a Mod(Σn

g)-module.

Proof. Lemma 29 shows that X(Σ1
g), X(Σ0

g) and D2g+1 are isomorphic simplicial complexes. The map ϕ :
Z → C (Σ1

g) (respectively Ψ ◦ ϕ : Z → C (Σ0
g)) above represents a Mod(Σ1

g)-module (respectively Mod(Σ0
g)-

module) generator for H̃2g−2(C (Σ1
g); Z) (respectively H̃2g−2(C (Σ0

g); Z)). As we noted ϕ2 is homotopic to
ϕ and Ψ ◦ ϕ2 is homotopic to Ψ ◦ ϕ. Let iX(Σ1

g)
: X(Σ1

g) → C (Σ1
g) and iX(Σ0

g)
: X(Σ0

g) → C (Σ0
g) be the

inclusion maps. By Lemma 30 the maps ϕ2 : Z → X(Σ1
g) and Ψ ◦ ϕ2 : Z → X(Σ0

g) have a homotopy
inverses h1 : X(Σ1

g) → Z and h0 : X(Σ0
g) → Z respectively. Thus iX(Σ1

g)
and iX(Σ0

g)
are homotopic to

ϕ2 ◦ h1 and Ψ ◦ ϕ2 ◦ h0 respectively which represent the same classes as ϕ in H̃n−4(C (Σ1
g); Z) and Ψ ◦ ϕ in

H̃n−4(C (Σ0
g); Z) respectively.
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4.2 The proof of Theorem 2

Again let g ≥ 1 and n ∈ {0, 1}. In [1] a finite rigid set X(Σn
g) ⊂ C (Σn

g) is given. Our essential sphere X(Σn
g)

is a subset of X(Σn
g). Given the surprising coincidence of our essential sphere and the finite rigid set of

Aramayona and Leininger for the surface Σn
0 one might be tempted to conjecture that a subcomplex of the

curve complex is essential if and only if it is finitely rigid. As suggested by Theorem 2 this is not the case.
See §1 of this paper for the statement of Theorem 2.

Proof of Theorem 2. Suppose that g ≥ 3 and n ∈ {0, 1}. Let X0 be the set of curves described in (9). Let
N{1,2,3} be a closed regular neighborhood of z′1 ∪ z′2 ∪ z′3 where the curves z′1, z′2, z′3 are as in Figure 9 above.
Then N{1,2,3} has two boundary components. One boundary component x{1,2,3} of N{1,2,3} is in X0 the
other x′{1,2,3} is not. Modify x′{1,2,3} as in Figure 8 by pulling it passed the marked point to get x′′{1,2,3}. Let

f 0 : X0 → C (Σn
g) be the function

f 0(y) =

{
y, y 6= x{1,2,3}
x′′{1,2,3}, y = x{1,2,3}

.

Then f 0 is interpolable with continuous linear interpolation f : X → C (Σn
g). The map f is simplicial since

| supp f (x)| = 1 for all x ∈ X0. The map f is an injection since if x, y ∈ X0 are disjoint curves then f (x) and
f (y) are disjoint curves.

We claim that f is not induced by an extended mapping class h ∈ Mod±(Σn
g). Note that f is the identity on

the chain curves z′1, z′2, · · · , z′2g. Suppose that the mapping class h ∈ Mod±(Σn
g) extends f . Then without

loss of generality we may represent the class of h by a map which induces an isometry on the regular
(8g− 4)-gon G8g−4 one gets by cutting along all of the chain curves. There are 4 possibilities for h generated
by the orientation reversing reflection ε about the plane through the even curves z′2, z′4 · · · , z′2g and the
orientation reversing reflection ρ of the surface about the plane through the odd curves z′1, z′3, · · · , z′2g−1.
Since f takes the curve x{2,3,4} to itself, h must be in the subgroup generated by ρ. Since f (x{1,2,3}) = x′′{1,2,3}
we must have f = ρ. However f (x{3,4,5}) = x{3,4,5} so f 6= ρ. Thus we have a contradiction.

If g = 2 and n = 1 then X ( X. Again, we claim that X is not a finite rigid set. Let X0 be the set of curves
described in (9). Let N{1,2} be a closed regular neighborhood of z′1 ∪ z′2 where the curves z′1 and z′2 are as in
Figure 9 above. Then N{1,2} has a single boundary component x{1,2}. Modify x{1,2} reversing the procedure
in Figure 8 by pulling it passed the marked point to get x′′{1,2}. Let f 0 : X0 → C (Σn

g) be the function

f 0(y) =

{
y, y 6= x{1,2}
x′′{1,2}, y = x{1,2}

.

Then f 0 is interpolable with continuous linear interpolation f : X → C (Σn
g). The map f is simplicial since

| supp f (x)| = 1 for all x ∈ X0. The map f is an injection since if x, y ∈ X0 are disjoint curves then f (x) and
f (y) are disjoint curves.

We claim that f is not induced by an extended mapping class h ∈ Mod±(Σn
g). Note that f is the identity on

the chain curves z′1, z′2, z′3, z′4. Suppose that the mapping class h ∈ Mod±(Σn
g) extends f . Then without loss

of generality we may represent the class of h by a map which induces an isometry on the regular 12-gon G12
one gets by cutting along all of the chain curves. There are 4 possibilities for h generated by the orientation
reversing reflection ε about the plane through the even curves z′2, z′4 and the orientation reversing reflection
ρ of the surface about the plane through the odd curves z′1, z′3. All of these 4 maps fix X pointwise and
therefore cannot induce f .
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4.3 Theorems 1 and 2 for sporadic surfaces of low complexity

We address the “missing cases” in Theorems 1 and 2. The case of Σ1
2 was included in the statement of

Theorem 2, but Σ0
2 was omitted. Indeed, by direct computation, we see that X(Σ0

2) = X(Σ0
2) and hence

X(Σ0
2) is a finite rigid set.

Recall that with our nonstandard definition the curve complexes C (Σ4
0), C (Σ0

1) and C (Σ1
1) are disconnected

countable discrete sets. Clearly these complexes have no finite rigid subsets. In particular our 0-spheres
X(Σ4

0), X(Σ0
1) and X(Σ1

1) cannot be finite rigid subsets of their respective curve complexes.

However, in these three sporadic cases if C ′ is the standard 2-dimensional curve complex with 0-skeleton
given by the set of essential simple closed curves and an n-simplex for each set of n+ 1 curves with minimal
pairwise intersection number, then the 1-dimensional subcomplex X′ of C ′ spanned by X is a finite rigid
set. The finite rigid set X of Aramayona and Leininger [1, §4] is a maximal 2-simplex and we may take our
finite rigid set X′ to be a proper subcomplex of X. In this case X′ is not a sphere, but a cell of dimension
one.
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